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Abstract

This thesis strives towards finding more efficient methods of automating secu-
rity test case generation, which are currently in a state of infancy for automotive
systems, in both white and, especially, black box settings. The thesis focuses
on communication protocols used in vehicular systems and we base our re-
search on formal methods. The rationale is their rigor, as they are based on
sound logical principles, and their potential for efficiency gains, since formally
defined systems can be more easily analyzed algorithmically and, therefore,
tested automatically. Our contributions include:

• Methods for deriving automata:
• We provide a method to automatically obtain behavioral models in the

form of state machines of communication protocol implementations in
real-world settings using automata learning.

• We demonstrate a method to derive compound protocol state machines,
i.e., state machines representing systems that communicate via more
than one protocol at the same time.

• Methods for checking automata:
• We provide a means to automatically check these state machines for

their compliance with a specification (e.g., from a standard, like ISO/IEC
14443-3).

• We provide a scheme, Context-based Proposition Maps (CPMs), to aug-
ment the state machines with propositions (i.e., attributes that can be
checked).

• We define generic Linear Temporal Logic (LTL)-based properties to
recognize cybersecurity-related specification violations.

• We provide a method to model-check inferred state machines utilizing
the Rebeca modeling language providing a formally defined template.
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• Methods to facilitate test case generation:
• We present a technique to automatically derive test cases to demonstrate

deviations identified in a state machine on the actual system.
• We also present a method to create abstract cybersecurity test-case spec-

ifications from semi-formal threat models using attack trees.
• We provide a method for utilizing Large Language Models (LLMs) to

derive test cases from threat models and inferred state machines.
• We present a method utilizing LLMs to derive security properties from

threat models to model-check implemented state machines, determining
the consistency of designs’ threat models and implementations’ state
machines.



Sammanfattning

Denna avhandling strävar mot att hitta mer effektiva metoder för att auto-
matisera testfallsgenerering i både white- och black box-scenarier och vårt
fokus ligger på kommunikationsprotokoll som används i fordonssystem. Den
huvudsakliga ansatsen är att använda modellbaserade metoder. Vi present-
erar en praktisk metod för att automatiskt erhålla beteendemodeller i form
av tillståndsmaskiner för implementeringar av kommunikationsprotokoll med
hjälp av automatinlärning. Vi presenterar också ett sätt att automatiskt kon-
trollera dessa beteendemodeller för att se om de överensstämmer med en speci-
fikation (t.ex. från en standard). Vi presenterar vidare en teknik för att automa-
tiskt härleda testfall för att demonstrera ev. upptäckta avvikelser i modellen på
det faktiska systemet. Vi presenterar också en metod för att skapa abstrakta
testfallsspecifikationer för cybersäkerhet från semiformella hotmodeller med
hjälp av attackträd.
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”Gedanken ohne Inhalt sind leer,
Anschauungen ohne Begriffe sind blind.”

Immanuel Kant (1724 - 1804)
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Chapter 1

Introduction

This thesis concentrates on using formal methods for assuring correctness (with
regards to a formal specification) and security (regarding properties and behav-
ior) of systems with a focus on the automotive domain. Formal methods are
used, because their roots in strong logical concepts, which makes them intrinsi-
cally sound and their ability to be efficiently processed by computing systems,
which makes them help increasing the degree of automation of test systems.
To utilize these methodologies in practice, some problems have to be solved,
that in turn lead to solving some scientific problems that lay the fundament for
this thesis.

A special emphasis is given to verifying the correctness of communica-
tion protocol implementations in system components (e.g., NFC interfaces in
key fobs, Bluetooth interfaces in infotainment units, or the Unified Diagnos-
tics Services protocol in automotive control units). and to verification from
an architectural threat modeling perspective. Regulation R.155 [15] from the
United Nations Economic Commission for Europe (UNECE)1 mandates not
only the introduction of a cybersecurity management system (CSMS) and ac-
cording security measures for automotive systems, but also evidence of their
appropriateness and effectiveness, which is to be demonstrated by testing. This
requires an amount of testing of the cybersecurity of vehicle systems that is not
to be covered with manual testing alone. Therefore, automated methodolo-
gies for automotive cybersecurity testing are needed. Furthermore, the testing
should work in both white box and black box settings. The automation for both
types, but especially for the latter is still in its infancy. White box methods do

1https://unece.org
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4 Chapter 1. Introduction

not work in black box settings (for the lack of information), however black
box methods are not efficient in white box settings (for not using available in-
formation). Therefore we use white box methods to cover the security of all
aspects of a system in the most thorough way. We also use black box methods
for two reasons: a) provide an attacker’s view, and b) because of the lack of
access to source code or other system component internals. The latter is due to
long supply chains, as well as the unwillingness of suppliers to disclose system
details.

Formal methods has been used in engineering complex systems, e.g., in
the automotive and aerospace domains [16]. Despite the effort they normally
come with, their founding on strong mathematical principles has three main
advantages: a very structured approach that provides a high level of compre-
hensiveness, well-reasoned verdicts, and a high degree of automation capabil-
ity (once a model has been derived). This is a more rigorous and thorough
approach than, for instance, conformance testing based on combinatorial al-
gorithms, since the complete behavior a system is scrutinized systematically.
Also, hypothetical behavior can easily be introduced by slightly altering the
model, which allows for examining otherwise invisible corner cases and pos-
sible mitigations along with non-deterministic behavior. There are different
approaches to formal modeling practically in use in industry: models based
on state machines have a long tradition of analyzing systems’ correctness , on
the other hand architectural threat models [17] in the form of graphs with clear
semantics and first order logic-based threat rule sets are used in the software
industry for quite some time and have become very widely adopted as part of a
Threat Analysis and Risk Assessment (TARA) in the automotive industry [18].
Threat models analyze a system design based on data flows between its archi-
tecture’s components [17].

Regardless of these beneficial traits, the methods mentioned above are not
only ordinarily very labor-intense, but also hard to apply on black-box compo-
nents, as without access to internal information it is not trivial to obtain a state
machine model (also called automaton) in an automated way. Even if such an
automaton is present, reliable methods and rules to check it for correctness in
terms of security have to be in place – none such is so far formulated in gen-
eral, therefore sets of these rules and methods have to be established for each
use case individually. Lastly, it is an open question how white box and black
box modeling methods could support each other. An architectural threat model
from a TARA is usually (manually) generated at design time and is based on
assumptions that are often tacitly made when using modeling components. We
therefore strive to investigate, if it is possible to check whether made assump-
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tions actually hold in the implementation. If they do not, the model may be
inaccurate and the following security analysis unreliable. Concentrating on ex-
ternal interfaces of system components, automatically derived state machine
models of communication protocols are investigated. One further question is
also which algorithm and parameter configuration is most suitable for inferring
models of implementations of a specific protocol.

This thesis therefore provides an approach to generate security test cases
from an architectural threat model in white box settings, concentrating on the
question how to provide a formal translation from threat modeling results to
actions in test cases utilizing attack trees [19, 20] and labelled transition sys-
tems (LTS) [21]. For black box settings, this thesis investigates inferring a
behavioral model in form of a state machine. To derive such a model, the L∗

algorithm by Angluin [22] and variations thereof [23], as well as more modern
algorithms (e.g. [24]) are examined. Automatic model derivation is beneficial
because not only manual modeling in general is very resource-intense, but also
hard to perform in black box settings. On an example case of the Near-field
Communication’s (NFC) handshake protocol (ISO 144443-3 [25]), for which
a learning interface working in real-world environments is provided, the dif-
ferent algorithm and parameter sets were investigated, giving details (efficacy
and performance) for automata learning in special cases. The thesis also works
out the necessary level of abstraction in order to investigate the possibilities of
implementing this kind of learning in a practical (i.e., real-world) setup. Using
these learned models, a behavior-based black box compliance checking method
using bisimulation or trace equivalence is provided2. The comparison object
for these equivalences is an automaton modeled after the respective specifica-
tion or standard, the learned implementation should comply to. For the sake of
practical use we also investigate the possibility of learning models of systems
that contain more than one protocol. In practice, we encountered systems that
not only display more than one communication protocol interface, but also the
usage of these protocols in an intertwined manner. We show this in practice on
the example of a car access system that uses Bluetooth Low-Energy (BLE) [26]
for control signals and simultaneously NFC as an out-of-band method for key
exchange in the key paring process. We compare these compound models with
separately learned automata (in the example case a pure NFC and a pure BLE
automaton) to spot differences and, therefore, uncover behavior that only ap-
pears when using both protocols. To provide a more targeted approach to se-
curity test case generation, we also directly examine the model for patterns of

2In black box settings with a low number of states (¡15), as encountered in practice during this
work, the difference in both performance and strength of provided guarantees is negligible
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undesired behavior using model checking. We therefore augment the learned
Mealy-type automata with atomic propositions using an adaptable rule set and
check for certain properties in linear temporal logic (LTL). For instance, we
check whether a read operation in a protocol is only possible when the system
has successfully completed an authentication process before. A concrete ex-
ample on a electronically machine-readable travel document (eMRTD – i.e., a
passport) is that an NFC secure select file command must only be successful
iff an authentication process (e.g., a BAC) has successfully been executed be-
fore and no deauthentication (by, e.g., selecting a different application) has oc-
curred. The same applies for the automotive Unified Diagnostic Service (UDS)
protocol: for certain (protected) memory areas, a read command must only
be successful iff there was a successful security access procedure. The threat
model-based test case generation is a novel approach, while the method of com-
bining automata learning and bisimulation checking is rarely used in general,
and not at all for behavior-based black box implementation compliance check-
ing. Nevertheless, it provides a more rigorous way of compliance checking due
to its more exhaustive way of model building. So far, little comprehensive work
for automata learning in different settings has been performed (see Section 5),
for which this thesis also provides a contribution. Lastly, the thesis sketches
some notions of using feedback from the behavioral state machine checking to
the architectural threat models. The latter are ordinarily generated manually
during design phase and based on assumptions about the modeled components
(e.g., a modeled component complying to a certain standard or featuring a dis-
tinct property). These assumptions can be checked in later phases by checking
the state machines of the implemented systems if these assumptions hold (e.g.,
if the implemented component actually complies to the standard, or a security
guarantee as an attribute of a component in the model). This allows for state-
ments about the accuracy of the threat model from checking the behavioral
state machine models. Another novel approach within this work is the learning
of compound automata. So far, joint automata have been created by calculat-
ing product automata, but not by explicitly learning automata of two systems
(i.e., protocols) at once. This allows for the analysis of behavior that does not
appear in one of these systems only, which is not possible by creating such
a combination merely by calculating. The novelty of the approach of model
checking the automata lies in automated conversion of learned automata and
its automatic augmentation with atomic properties to allow for the applicabil-
ity of the process. Furthermore, the analysis of assumptions about components
in threat models, as mentioned above, become more targeted when connecting
component attributes with LTL properties in the model checker.
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1.1 Motivation: Industrial Problems Leading to
Scientific Problems

This section contains an outline of what practical problems motivate the re-
search goals (Section 3.1) and solutions to scientific problems (Section 4) in
this thesis. It also serves the purpose of giving a context how the problem
fields for the research goals are related, targeting to give a better understanding
of the overall picture of the research. The practical overall goal of this thesis
is facilitating automated cybersecurity testing of vehicular systems. Analyz-
ing contemporary state-of-the-art automotive cybersecurity engineering pro-
cesses (most prominently ISO/SAE 21434:2021 [27]), several gaps that hinder
the efficiency of testing were identified. A standard cybersecurity engineer-
ing process is aligned with the general automotive engineering processes. One
proliferated example is Automotive Spice, which is roughly defined along four
major activities [28]:

• Threat Analysis and Risk Assessment (TARA – accompanying the sys-
tem design as part of a cybersecurity security requirements elicitation
process) to analyze potential weaknesses and threats in the design and
assess their severity during the design phase.

• Implement the system using security goals and claims drawn from the
TARA mitigating the found risks and therefore implementing a secure
design (in cybersecurity implementation process).

• Validate and verify the system security measurements’ effectiveness, pro-
viding evidence and arguments for the implemented system’s cybersecu-
rity (as risk treatment verification and validation processes).

• Repeat the actions above during the rest of the system’s life cycle after
the start of production (SOP) with both updates of the system (functional
and non-functional) and of the threat landscape (e.g., discovery of new
vulnerabilities).

We set a focus on correct systems, which means that system is faithful to its
requirements [29]. To provide both more efficient and more rigorous testing of
system correctness structuring and automation is desirable to be applied. Set-
ting an emphasis on cybersecurity, we focus on deviations from a correct sys-
tem (i.e., flaws) that impact the system’s cybersecurity. One of potential fields
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identified is to combine threat modeling done in the TARA with testing by au-
tomatically deriving test cases from the former. This enhances efficiency by do-
ing two necessary things at once (TARA and test case definition) and enhances
testing rigor by directing the testing to the very security measures derived from
the security goals drawn from the TARA. To gain this ability, formalized test
cases descriptions3 has to be connected to the results of a TARA, constituting a
research problem resulting in research goal 1 (RG1 – Section 3.1.1). Although
TARA is conducted during design time (without an implementation available),
it is still possible to create the necessary test case descriptions, as those can
be made technology-agnostic and formed into practically executable test cases
once an implementation is available (see Section 5.3). Also, it is quite usual in
the automotive industry that an Original Equipment Manufacturer (OEM – in
the automotive context mostly a car maker) integrates components from sup-
pliers without getting access to their internals (i.e., not getting source code,
internal specifications, etc.). This creates the needs to test the correctness of
these systems in a black box setting. One scientific problem this requirement
opens up is a means to automatically obtain a formalized description of the be-
havior of a (sub-)system’s implementation to have an object to automatically
analyze, which eventually lead to research goal 2 (RG2 – Section 3.1.2) effi-
cient ways to create a state machine model from a black box system real-world
settings. The other side of the medal is to have a means to actually check that
model for its correctness and security. This relays to the research problem of
how to check the behavior of a model against a given specification, yielding
research goal 3 (RG3 – Section 3.1.3). Both the solution for RG1 and for RG3
have been created after industrial needs which is underpinned by patents that
have been filed as Austrian patent applications No. A50667/2023 (pending)
and A50660/2023 (granted [31]), respectively.

Furthermore, we use the learned models for targeted checking of security
properties. We augment the models with atomic propositions and derive LTL
formulas for property checking (e.g., is the authentication mechanism secure)
by protocol analysis, generalization, and from threat model attributes. In the
latter case, found property checking violations can be fed back into threat mod-
eling: assumptions made in the threat model design through set attributes then
do not hold in the implementation (as they are falsified by checking).

Future work includes methods to use learned models for fuzz testing and
derive features to check from threat modeling in order to check modeled as-
sumptions more rigorously. As this kind of test automation usually iterate over

3These formalized descriptions are outside of this thesis and have been defined by the authors
in previous work [30].
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the complete life cycle the correctness of the implementation also feeds back to
the threat modeling, by check if the assumptions made in the design phase hold
in the implementation, which influences future iterations in the life cycle. Fig-

Figure 1.1: Research goals in relation to the Security Engineering Process after
Automotive Spice [28]. The boxes represent the processes of the cybersecu-
rity engineering process group, while the arrows represent improvement from
this thesis, leading to the research questions in Section 3.1. Note that Risk
Treatment Validation is outside the scope of this thesis.

ure 1.1 gives an overview of the automotive cybersecurity process group [28]
and the practical implications of its automation leading to the research goals of
this thesis; the boxes represent the processes of the cybersecurity engineering
process group, while the arrows represent practical improvements as presented
in this thesis (see above), leading to the research goals.

Methodological Toolset
As a summary, the research goals target towards creating a set of formal meth-
ods to derive cybersecurity test cases from live, real-world systems. We lever-
age automata learning to infer formal models of systems under test and propose
two methods to use the models for test case generation:

• Compliance checking

• Model checking

The compliance checking approach encompasses (manually) modeling spec-
ification automata (from international standards and/or vendor specifications)
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and using behavioral equivalence to determine the compliance of the learned
system model with the specification automaton. Model checking involves aug-
menting the learned model with propositions and then use logical formulas,
derived from system analysis and generalization, as well as from threat mod-
els. We then check if the implementation of the system violates any of the
specified properties.

Model Learning

Compliance
Checking

Generate 
Specification 
Models from 
Standards

Graph-
based 
analysi

s

Model 
Checking

Rules 
from 
TARA

Gener
alized
Rules

Annotate
Models Statisti

cal 
analysi

s

Fuzzing

Figure 1.2: Overview of the methodologies to be researched in this thesis with
model learning as a fundament and three different approaches to generate secu-
rity tests from models, including intermediate goals. Fuzzing is in light colors,
as it is part of an overall concept, but out of this thesis’ scope.

1.2 Thesis Outline
This thesis consists of two parts: Part I provides a coat for the research, namely
the necessary preliminaries, the aim of the research, its contribution and com-
parison with existing work. Part II consists of the research papers constituting
this thesis. The remainder of Part I is organized as follows: Chapter 2 contains
the background, Chapter 3 gives and overview of the research goals and meth-
ods, Chapter 4 outlines the research contributions including a short description
of the included publications, Chapter 5 outlines related work and Chapter 6
concludes the thesis and gives an outlook to future work.



Chapter 2

Background and
Preliminaries

This section very briefly explains some basic concepts that are used in this
thesis. Other related work and alternative approaches towards reaching the re-
search goal are outlined in Section 5. The usage of this background research
this thesis builds on is as follows: threat modeling, attack trees, labeled transi-
tion systems (LTS), and Formalized Attack Languages in RG1 (Section 3.1.1),
Mealy Machines and Automata Learning in RG2 (Section 3.1.2), Mealy Ma-
chines and Behavioral Equivalences in RG3 (Section 3.1.3).

2.1 Threat Modeling
Threat modeling is a systematic, semi-formal approach to scrutinize systems
for potential threats and pitfalls. Threat modeling ordinarily requires two com-
ponents [17]. One is a structured representation of the considered system (i.e.,
a system model), containing all information necessary to determine potential
threats, as well as assessing their impact and likelihood of occurrence. A com-
monly used form of representation in sophisticated tools for threat modeling
are data flow or architecture diagrams (see Figure 2.1 for a simple example) .
The second component is the actual threat model. This model consists of a set
of rules that determine which potential threat would occur if two components
in the system model are connected in a certain way (see Listing 2.1 for a simple
rule). These rule sets can, depending on the application domain, become very

11
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complex, with the goal being to scrutinize the considered system very compre-
hensively and structured. The given example architecture and rule would yield
a threat of Introduction of Malicious Software to be applicable to the system.
This threat list will then ordinarily be subject to a risk assessment1 to priori-
tize the threats. These further lead to security goals and, eventually, security
requirements for the system design and implementation. Sophisticated threat
models contain a considerable amount of domain knowledge and are usually
created by groups of security experts in the respective domain. This thesis uses
threat models as a basis to create test cases in a structured way (see Section
4.1).

Figure 2.1: Simple example architecture diagram for threat modeling.

1Therefore in the automotive industry often the term TARA (Threat Analysis and Risk As-
sessment) is used.
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CONNECTOR {
SOURCE ELEMENT {

REQUIRES CAPABILITY ” C o n t r o l ” >= ” t r u e ”
} &
TARGET ELEMENT {

PROVIDES CAPABILITY ” C o n t r o l ” := ” t r u e ”
}

}
Listing 2.1: Example Threat Rule

2.2 Attack Trees

Attack trees display relations, interdependencies and hierarchies of threats and
vulnerabilities [19, 20]. The advantage of this form of representation is the
ability to display different paths towards a certain objective i.e., to show dif-
ferent opportunities to concatenate attacks in order to exploit a certain vulner-
ability from a distinct starting point (mostly an interface accessible from the
outside). This way, attack trees are a capable tool for assessing how combined
attacks that exploit a complete set of threats impact the overall attack surface
and success likelihood [32]. Figure 2.2 shows an attack tree for the example ar-
chitecture outlined in Section 2.1. The displayed information on top represents
the visible dashboard information (speed and RPM gauge, warning lamps, etc.)
running on the instrument cluster, which in turn is susceptible to spoofing at-
tacks, since it is connected to an unsecured CAN bus. Following the rightmost
path, the CAN bus can be accessed via the Infotainment system, which again
will be accessed through a controlled Smarthpone. One of the paths inside the
given tree represents a sequence of threats from an exposed interface to the
defined goal (in this case manipulating the dashboard). In this thesis, attack
trees stemming from threat models are the origin for a method to automatically
derive technology-agnostic security test scenarios to provide evidence for the
correct functioning of implemented security measures (see Section 4.1).

2.3 Labeled Transition Systems

A principal notation for formal representations of systems used in this thesis are
transition systems (TS) and labeled transition systems (LTS). A TS is defined
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Figure 2.2: Example attack tree for the architecture shown in Figure 2.1 with
exposed interfaces as sources and manipulating the dashboard (displayed in-
formation on the instrument cluster) as a target.

as a set of states (Q), a transition relation (→∈ Q×Q, with q, q′ ∈ Q; q → q′),
and an initial state (q0). An LTS additionally possesses a set of labels (Σ),
such that each transition is named with a label σ in Σ (q, q′ ∈ Q, σ ∈ Σ; q

σ−→
q′) [21]. LTS can describe the behavior of systems and mechanisms at different
levels. This thesis uses LTS for a translation mechanism from attack trees to
attack descriptions in a specifically designed attack description language (see
Section 4.1).

2.4 Formalized Attack Languages
Domain-specific languages (DSLs) are computer programming language of
limited expressiveness focused on a particular domain [33]. That means that
they should be just expressive enough to model any necessary features and
conditions of the respective domain and lean enough for domain experts to be
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easily read and communicated about. Besides they ordinarily have formal syn-
tax and semantics in the sense that a state machine (particularly a deterministic
finite acceptor – DFA) built for one particular language should be able to de-
cide if a word or a statement is a well-formed statement in that language. A
DSL (see Section 5.3 is used as a means for describing attacks in a technology-
agnostic manner as part of test case generation (see Section 4.1).

2.5 Mealy Machines
Mealy machines are a specific form of state machines (or automata), which are
a fundamental concept in computer science. Similar to LTS, Mealy machines
provide a formal notation for systems’ behaviors. The main difference is, that
a Mealy machine provides an output for any input, which makes them an ad-
equate representation for real-world cyber-physical systems. The definition of
Mealy machines reads M = (Q,Σ,Ω, δ, λ, q0), with Q being the set of states,
Σ the input alphabet, Ω the output alphabet (that may or may not identical to
the input alphabet), δ the transition function (δ : Q × Σ → Q), λ the output
function (λ : Q × Σ → Ω), and q0 the initial state [34]. The transition and
output functions might be merged (Q× Σ → Q× Ω). This thesis uses Mealy
machines to represent learnt system behavior through observation of inputs and
outputs in automata learning (see Section 4.2).

2.6 Automata Learning
Active automata learning is a method of actively querying systems and noting
the output to a given respective input. This allows for inferring behavioral
models of black-box systems. The classic method of automata learning, called
the L* algorithm, uses the concept of the minimally adequate Teacher [35].
This teacher has (theoretically) perfect knowledge of system to learn and can
answer two kinds of questions:

• Membership queries and

• Equivalence queries.

The membership queries’ answers are denoted in an observation table, that
eventually allows for trying to infer an automaton. The equivalence queries
determine if the inferred automaton is correct. Lacking a teacher with perfect
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Figure 2.3: Exemplary simple state machine.

system knowledge in a black-box situation, the equivalence queries are ordi-
narily replaced by traditional conformance testing. More modern algorithms
(like TTT [36]) rely on discrimination trees instead of observation tables to be
more efficient [37]. To exemplify the difference between table and tree-based
learning algorithms, Figure 2.3 shows a simple automaton with three states
and two possible inputs (higher and lower). Higher increases the number of
the state and Lower decreases it. If the state is zero, it cannot be decreased
(remains zero) and if it is two, an increase flips it over to zero again. The
output of a transition is always the target state number. Table 2.1 shows the
final observation table for that automaton derived with the L* algorithm. The
columns represent suffixes. The upper part or the table rows are the short pre-
fixes, with each indicating a state. The lower part are longer prefixes that are
discovered along the learning process. Each value of the long prefix part must
be present in the short prefixes (closedness) and they must not contradict each
other (consistency). If the table is not closed, lines from the long prefix section
must be included into the short prefixes (indicating new states). If the table
is not consistent, a new suffix (i.e., a new column) must be introduced, dis-
tinguishing the contradicting prefixes from each other. As the short prefixes
alone denot the states, the long prefixes can be seen as overhead in the table.
In contrast, tree-based algorithms concentrate on state-distinguishing features.
In a tree-based structure (the discrimination tree), they determine the distin-
guishing set of inputs that would clearly discriminate a state by the respective
output. Figure 2.4 shows the discrimination tree for the example above. It can
be clearly seen that the input HIGH distinguishes all three states (in state 0, it
yields ONE, in state 1 TWO, and in state 2 ZERO as an output). This is not the
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HIGHER
ϵ ONE

HIGHER TWO
HIGHER HIGHER ZERO

LOWER ONE
HIGHER LOWER ONE

HIGHER HIGHER HIGHER ONE
HIGHER HIGHER LOWER TWO

Table 2.1: Final observation table for the automaton displayed in Figure 2.3
by the L* algorithm. Rows are (short and long) prefixes, columns are suffixes.
It reads as prefix plus suffix equals result in the respective cell. E.g., only
HIGHER (ϵ+HIGHER) yields ONE, three times HIGHER yields ZERO.

Figure 2.4: Final discrimination tree for the automaton in Figure 2.3 by the
TTT algorithm. One input (HIGHER) discriminates all states by giving a dif-
ferent output in the respective state.

case for LOWER, as it yields ZERO in both states 0 and 1. In this example,
the tree version basically reduces the overhead of the longer prefixes compared
to the observation table. This thesis uses both traditional and modern types of
automata learning to infer behavioral component models (see Section 4.2).

2.7 Behavioral Equivalences

LTS and automata (particularly of the Mealy type used in this thesis) can be
compared for their equivalence. In particular for the purpose of this thesis, an
equivalent behavior is important. That means that two automata do not neces-
sarily have to be identical (i.e. all states and transitions being identical), but
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merely the same input has to yield the same output. This equivalence can be
evaluated by trace equivalence (i.e., assessing the same output from the same
input) or various degrees of bisimulation [2]. For Mealy machines, bisimula-
tion can be defined (with Q1 and Q2 being two compared Mealy machines as
defined in Section 2.5) as [2]:

A) q01 ∈ Q1, q02 ∈ Q2 · (q01 , q02) ∈ R.

B) for all q1 ∈ Q1, q2 ∈ Q2 · (q1, q2) ∈ R must hold

1) σ ∈ Σ · λ1(q1, σ) = λ2(q2, σ)

2) if q1′ ∈ Post(q1) then there exists q2′ ∈ Post(q2) with (q1′, q2′) ∈
R

3) if q2′ ∈ Post(q2) then there exists q1′ ∈ Post(q1) with (q1′, q2′) ∈
R

This thesis uses behavioral equivalence for compliance checking (see Section
4.3).

2.8 Linear Temporal Logic
Linear Temporal Logic (LTL) is an extension of propositional logic [38] that
allows for expressing logical temporal2 modalities [40]. Therefore, LTL ex-
tends propositional logic with to following modalities:

• always (□, or G for Globally): the proposition must hold in any subse-
quent state

• eventually (♢, or F for Finally): the proposition must hold in some (i.e.,
any arbitrary) subsequent state (may or may not hold before)

• next (⃝, or X for neXt): the proposition must hold in the immediately
subsequent state and

• until (U or U ): the proposition A1 must hold until another defined propo-
sition A2 occurs (A1UA2). A1 may or may not hold after A2 has oc-
curred. In any case, A2 has to occur at some point.

2In this context, temporal is not to be confused with timed. It has been formulated by Pnueli
in 1977 [39]. LTL only allows statements about the modality and succession order of events to
occur, not about a duration of any kind.
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For an example □(¬A) means that atomic proposition A must never become
true in the entire system. It is important to note, that all modal operators are
to be seen from the perspective of the state, they are evaluated in, hence glob-
ally counts the current and subsequent states. For instance, □(B → □(¬A)),
means that A must not become true after B occurs, since the expression after
the error is only evaluated once B has become true. If there is no expression
before the modal operator, it automatically counts for the initial state, which
for globally means that the following expression counts for the entire system.
♢(B) means that proposition B must become true in some state (not specify-
ing which). AB means that, starting from the initial state, proposition A must
remain true until B becomes true, not specifying what happens after. AUB
means that proposition A must be true until proposition B becomes true. A
may become false at the very moment B becomes true. It does not say what
happens with A after. If A should stay false ever after, that property must be
appended, which results in AUB ∧G(B → G(¬A)) If the property should be
relaxed to allowing B to never occur, this property must be appended, leading
to (AUB ∧□(B → □(¬A)))||□(¬B).

2.9 Model Checking
Model checking is a technique that is built on a sound fundament of graph
theory, data structures, and logic to evalutate systems for defined properties
to hold. [40]. It explores the complete state space of a model (e.g., an LTS).
In each state, it evaluates the given set of properties to hold. These proper-
ties are often expressed as formulas in modal logic like Linear Temporal Logic
(LTL), Computation Tree Logic (CTL), or the branching-time logic (CTL*). It
therefore finds any undesired conditions a system can be brought into, wich is
expressable in such a logic. For instance, if a resource must only be readable
if authenticated, we can define a READ and an AUTH proposition and check
for the (LTL) property □¬(READ∧¬AUTH), meaning globally, there must
not be any state where READ is true and AUTH is false. If a model checker tra-
verses through a system and encounters any state where this property does not
hold, it reports a violation. In this case, it had found a system state, where the
resource is readable without being authenticated. An efficient way to perform
this is automata-theoretic model checking, where the model checker negates
the property and creates a (Büchi) automaton from it. The property is satis-
fied if the cross product of this negative automaton and the examined model
automaton have only the empty word as accepted language[41].





Chapter 3

Research Overview

Formalized methods can be useful to improve structure and reproducibility of
both black box and white box verification of the correctness and security of sys-
tems. This also increases their comprehensiveness and efficiency. The overall
objective of this thesis is to investigate more comprehensive and efficient meth-
ods for verification through testing. This thesis therefore proposes a structured
and automated way to model-based testing in order to achieve this objective at
an architectural and a component level. Ultimately, the thesis proposes meth-
ods for assuring the cybersecurity of and enhancing the trust in systems with
a special emphasis on communication protocols used in vehicular systems. To
achieve that, the thesis is to provide a set of formal methods that facilitates
the automation of test generation from threat models, as well as automatically
checking implementations for specification compliance (which again requires
an automatic method to derive behavioral component models). As the compo-
nent behavior has to work black box, because of the reasons stated above, the
model generation concentrates on outside interfaces of that component, which
is generally a specific implementation of a (standardized or proprietary) com-
munication protocol. Based on our literature survey of previous approaches
in these areas, we decided to concentrate on Automata Learning [37] to infer
Mealy-type state machines of the behavior of implementations of communica-
tion protocols. Then we used trace and bisimulation equivalence checking for
compliance checks, as well as for LTL-based model checking [40].

21
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Overall Objective: Facilitate automated security test generation from archi-
tectural threat models, as well as implementation/specification compliance
checking by employing automata learning and model checking techniques.

3.1 Research Goals
The overall objective stated above can be divided in several sub goals each of
which solves a different scientific problem. The main motivation is to like-
wise utilize design-phase artifacts (threat models) and implementations (utiliz-
ing formal methods) to derive tests for verification. To utilize threat models,
we use approaches to directly create formal descriptions of attacks from threat
models, and utilize LLMs to generate both executable test scripts in Python,
and LTL-based security properties that can be used for model checking. We
therefore provide a means to automatically create security tests from the same
source as the requirements, both gaining efficiency through synergies and ac-
curacy through synthesis of requirements and verification. This part (research
goal RG1) fulfills the the first part of the overall objective. The second part
of the objective targets black-box checking implementations for their security
and compliance with specifications. We aim for automatically obtain suitable
models (Mealy machines, which consider input and output of a reactive sys-
tem) of these implementations (RG2) and checking them for full equivalence
with its intended behavior (defined in a specification - research goal RG3) and
for specific security properties (through model checking - research goal RG4).
Therefore, the fulfillment all four research goals meets the overall objective.
As a summary, the four resulting research goals are to:

RG1 Derive test cases, formal descriptions of cyberattacks, and security prop-
erties from a system’s threat model.

RG2 Automatically obtain state machines of communication protocols from
black box scenarios that can be used for correctness and security analy-
sis.

RG3 Facilitate behavioral equivalence as a method for compliance checking
of a learned implementation to a given specification (e.g., a standard).

RG4 Assemble a model suitable to be processed by a model checker, including
appropriate checking rules.

The attack descriptions (RG1) provide a test scenario in the form of an abstract
attack description for the overall system. This scenario is derived from threat
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modeling the architectural design using a rule set, that scrutinizes potential
threats based on the architecture. The state models are inferred from imple-
mented components (RG2) and the compliance checking of these state mod-
els (RG3) provide a verdict that verifies compliance to a specification (e.g., a
standard). This compliance (RG3) is assumed beforehand in the design phase
during the architectural threat modeling (RG1 - that lead to the attack descrip-
tions). A counterexample regarding the compliance provides (currently manu-
ally) input to the rule set for the threat modeling and therefore potentially leads
to a different outcome of the threat modeling process. RG3 therefore provides
an iterative feedback loop from the implementation back to the design phase
and the threat model-based test generation in RG1. This also indirectly brings
the standards specification into the threat modeling rule set. RG4 sets the scope
more directly on security issues. We apply model checking to directly check
the models from RG2 for security properties by converting the models into a
modeling language and augmenting them with propositions. The security prop-
erties are derived by generalizing (so these properties can applied to a broad
variety of different protocols), creating protocol-specific properties, and gener-
ating them from threat models (part of RG1). Figure 3.1 provides an overview
of the research goals in the context of an exemplary automotive cybersecurity
testing process. In this figure, amber denotes artifacts, blue denotes activities,
and cyan denotes specification inputs. The arrows denote inputs and outputs,
with the dashed input denotes a process including output. The research goals
are marked with the dashed red boxes.

3.1.1 RG1: Threat-Model-Based Test Generation

A prominent example of model-based security analysis is the threat analysis
and risk assessment (TARA) process widely used in the automotive indus-
try [18]. It uses a threat modeling, based on an architectural design model,
to identify threats and prioritize them in order to derive security goals and re-
quirements, which ultimately results in security measures to be implemented
in the architecture and components. Some kind of assessment in the fash-
ion of a TARA (although not necessarily the exact same) is even prescribed
by the automotive admission process in the UNECE region and the only rec-
ognized international standard for implementing a cybersecurity management
system [15, 27]. Both admission and standard also mandate to verify cyberse-
curity measures by testing. In order to create these tests in an efficient manner,
another goal of this thesis is to automatically derive test cases from the mod-
els made in the design phase to use it later after implementation to verify the
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Figure 3.1: Positioning of the research goals in a structured testing process.
Amber denotes artifacts, blue denotes activities, and cyan denotes specification
inputs. The arrows denote inputs and outputs, with the dashed input denotes a
process including output. The research goals are marked with the dashed red
boxes.

efficacy of the planned security measures, using a fixed rule set [4] and using
Large-Language Models (LLMs) [8]. The TARA process also determines the
verification and validation planning and methods. In this process we included
learning-based component testing as presented in RG2 and RG3 [1]. On the
other hand, during threat modeling certain assumptions about the model ele-
ments are made (e.g., it is assumed that a component’s communication com-
plies with a certain standard) [42, 17]. If these assumptions do not hold, the
model becomes inaccurate. It is therefore beneficial for the model’s accuracy
that the component’s behavior is checked against the assumptions. When these
assumptions can be formulated into a specification, the respective component’s
behavior can be automatically checked to comply with that specification. This
behavioral compliance checking is formulated in RG3. Furthermore, we uti-
lize LLMs to derive security properties from these models that we can utilize
to check derived models for (RG4) [8].
Contributing papers: Paper I, Paper II, Paper IV, Paper VIII.
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RG1: Enable deriving formal descriptions of cyberattacks from a system’s
threat model.

3.1.2 RG2: Automated Derivation of State Machines

Formal models have been used very broadly in both research and industrial ap-
plications. It is, however, very tedious and costly to create suitable models for
correctness and security analysis manually. Furthermore, in some industries
like the automotive, the necessary information to manually creating models
might not be present due to very long supply chains and/or non-disclosure. It
is therefore beneficial to possess a method to automatically infer formal behav-
ioral models (i.e., state machines) of systems under test in order to foster more
rigorous analysis and verification processes. As these state machines have to be
derived from black box systems (due to the reasons stated above), the interfaces
to interact with these systems are their respective implementations of commu-
nications protocols. These implementations are the first entry point for adver-
saries through faults and vulnerabilities. Inferring state machines for correct-
ness and security analysis (as well as test generation) is therefore a significant
building block for security improvement. In the course of this, it should also
be examined how effective Automata Learning is to infer state machines of in-
dustrial real-world communication systems. We also introduce an approach to
learn compound automata. With a single learning process, we infer two differ-
ent protocol running on the same machine (e.g., an NFC and a BLE interface of
a Tesla key fob). We can then investigate for protocol interferences by compar-
ing the compound automaton with separately learned single-protocol automata.
In an automated process, attack descriptions derived from threat models (RG1)
provide the V&V planning for components that should be examined, while the
actual compliance checking refers to RG3 and security property checking to
RG4, respectively.
Contributing papers: Paper I, Paper II, Paper III, Paper VII.

RG2: Investigate automated methods to automatically obtain state machines
of communication protocols from industrial black box scenarios to use these
state machines for correctness and security analysis.
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3.1.3 RG3: Compliance Checking
In many contemporary industries one of the main means for collaborations
along the supply chain is written specifications and standards. These include
(semi-)formal specifications like development interface agreements (DIAs),
specifications in requests for quotations (RFQs)1, as well as international and
(de facto-) industry standards. To deliver a correct system it is crucial to comply
with the respective specification. Furthermore, deviations from standards (e.g.,
absent or wrong answers to requests, vendor-specific or even undocumented
behavior, etc.) can contain faults that might lead to security vulnerabilities.
Therefore, one goal of this thesis is to create a means for compliance-checking
real-world systems in an automated manner. The compliance checking is tar-
geted to be based on state machine models (as derived in RG2), as checking
an accurate state machine uncovers consistent and inconsistent behavior both
more comprehensively and efficiently, and, thus, more solid than using tradi-
tional conformance checking. The specification is modeled into a state ma-
chine and its behavior compared to that of learned state machine. Thereby, the
behavioral aspect of the equivalence is crucial: it is not necessary that a sys-
tem’s state machine is identical to a specification state machine, only that both
state machines behave exactly the same. These checks also provide confirma-
tion or rebuttal of assumptions made in threat modeling (based on specifica-
tions tailored to these assumptions) creating a link to RG1. We also use model
checking to assure the security of specifications (RG4).
Contributing papers: Paper II, Paper III, Paper V, Paper VI, Paper VII.

RG3: Demonstrate the applicability of behavioral equivalence as a method
for compliance checking of a learned implementation against a given specifi-
cation (e.g., based on a communication protocol standard)

3.1.4 RG4: Model Checking
Deriving test cases from a black box system in a generic manner is a diffi-
cult task. Since we can gain knowledge about a system under test through
derived models (RG2 - see 3.1.2), we can use this information to analyze the
system for security properties using model checking (see Section 2.9). In order
to use a model checker, two things are needed: a) propositions that describe
the attributes of each state in the model and b) LTL formulas that describe

1This depends on the RFQ. An RFQ may or may not contain a detailed specification that can
be used for checking an implementation’s compliance with it.
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the properties to check. Since the derived models are Mealy Machines, they
do not intrinsically possess propositions. One sub-goal is therefore to find a
formalized methodology to augment mealy machine states with propositions,
that should be generally applicable for models of different settings. The sec-
ond sub-goal is to find LTL formulas to perform the model checking. These
could be derived from protocol standards, ideally generalizing these rules. It
is therefore a goal to determine to which degree such rules can be generalized
(i.e., is it possible write general rules that are able to assess the security of, e.g.,
the authentication mechanism of multiple protocols). Another source could be
attributes of elements in threat models. This way, the intrinsic assumptions of
threat models (e.g., a secure authentication mechanism) could be checked for
their validity in the following implementation, creating a link to RG1. To fur-
ther align the verification process with threats from the design phase, we also
derive LTL properties from threat models using LLMs.
Contributing papers: Paper VI, Paper VIII, Paper IX.

RG4: Create a method to generate checkable models from learned automata
and derive checkable properties reflecting system security attributes.

3.2 Research Method
This thesis follows the Design Science Research Method.(DSRM) [43]. First
thoughts on Design Science were made by Simon in 1969 [44], where he asked
how to scientifically scrutinize artificial artifacts of a certain complexity. Arti-
ficial in that sense means everything not being deducted strictly by (apodictic)
natural laws, i.e., everything human-made, including engineering. Based on
this fundament, Nunamaker et al. provided a framework for DSRM for In-
formation Systems (IS) [45]. The framework provides a multi-methodological
approach to IS research considering theory building, systems development, ex-
perimentation, observation, and their relations to each other. Their work also
provides a process to research IS consisting of the following activities and un-
derlying research issues. [45]:

1. Construct a conceptual framework

• State a meaningful research question

• Investigate the system functionalities and requirements

• Understand the system building processes/procedures
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• Study relevant disciplines for new approaches and ideas

2. Develop a system architecture

• Develop a unique architecture design for extensibility, modularity,
etc.

• Define functionalities or system components and interrelationships
among them

3. Analyze and design the system

• Design the database/knowledge base schema and processes to carry
out system functions

• Develop alternative solutions and choose one solution
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4 Build the system

• Learn about the concepts, framework, and design through the sys-
tem building process

• Gain insight about the problems and the complexity or the system

4 Experiment, observe, and evaluate the system

• Observe the use or the system by case studies and field studies

• Evaluate the system by laboratory experiments or field experiments

• Develop new theories/models based on the observation and exper-
imentation of the system’s usage

• Consolidate experiences learned

The conceptual framework (1) was done prior to the actual research by defin-
ing the overall objective and the research goals (Section 3.1) out of the motiva-
tional identified practical problems (Section 1.1), along with studying related
work (Section 5). The system architecture (2) was defined in four ways: a) as a
structured overall architecture for implementing a testing process (in paper I),
b) a system architecture for model learning and model-based compliance test-
ing (papers II, III, V, and VII), c) a conceptual architecture (paper IV) and an
alternative LLM-based architecture (paper VIII) for test case generation from
threat models, d) techniques to utilize model checking on Mealy Machine mod-
els (papers VI and IX) and e) an meta-architecture concept for integrating the
components a-c (in this thesis). System for RG1 was designed (papers IV and
VIII). Various approaches were considered and examined for RGs 2 (papers I,
II, III and VII), 3 (papers III, V, VI, and VII), and 4 (Paper IX). Based on these
designs, system implementations were built for threat model-based test gener-
ation (RG1) in paper VIII, learning (RG2) and compliance checking (RG3) in
papers III and VII, and model checking (RG4) in paper IX. These prototypes
were also used for extensive system evaluation in the same papers. Figure 3.2
contains an overview of the distribution of the research process steps among
the published papers, also denoting the relation to the research goals. As a
summary, the concept was taken early on (prior to and in Paper I), most pa-
pers (except V and VI) contributed to a (potentially different, depending on
the research goal) system architecture, design and prototyping are covered in
the papers from III onward, and the evalaution is done in the last three works
(except for III). The main works with regards to the research goals are Papers
IV and VIII for (two different approaches of) RG1, Paper III for RGs 2 and 3
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Figure 3.2: Overview of the research contributions in relation to the research
process. Amber denotes the process steps, cyan the papers contributing to each
step, and the (fulfilled) research goals in light blue
.

(VII is an extended version thereof) and IX for RG4. The other papers outline
fundamental preliminary works or more specific applications.
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Research Contributions

This chapter contains the research contributions that have been made towards
reaching the research goals stated in Section 3.1 and outlines the solutions,
their novelty and their distribution among the publications. Table 4.1 gives an
overview of the contributions of individual papers (outlined in Chapter 4.5)
towards reaching the research goals.

Table 4.1: Publication contributions to the research goals.

Paper RG1 RG2 RG3 RG4

I X X
II X X X
III X X
IV X
V X
VI X X
VII X X
VIII X X
IX X

For each research a different solution is presented, namely:

1 Threat Model-Based Test Generation (achieving RG1)

2 Automated Model Derivation and Algorithm Evaluation (achieving RG2)

3 Compliance Checking (achieving RG3)

31
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4 Mealy Machine Model Checking (achieving RG4)

The threat model-based test generation (1) goes a little bit beyond RG1,
as it also partially provides a V&V method selection, although the latter also
is meant to contain model checking for test generation, which is reserved for
future work (see Section 6.2). The automated behavior model (state machine)
derivation (2) and the compliance checking (3) achieve to RG2 and RG3, re-
spectively. The compliance checking yields a verdict that not only highlights
deviations from a specification but also a counterexample that (manually) feeds
back into threat model-based test generation by providing input for altering
the threat modeling rule set (see Section 3.1). Analogously, model checking
(4) provides a methods to achieve RG4. It provides a more targeted method
to uncover cybersecurity flaws, as opposed to the compliance checking. Fig-
ure 4.1 provides an overview of the contributions in relation to the research
goals and to the thesis papers. Blue boxes mark the contributions, surrounded
by the research goals in red dashed lines. The cyan boxes mark previous work
the contributions build on, while the dashed black boxes denote the respec-
tive papers including the contributions and previous work. The arrows indicate
dependencies; solid ones indicate sub-parts and dashed ones indicate inputs.

4.1 Threat-Model-Based Test Generation
To fulfill RG1, Paper IV presents a (static, rule-based) method for transferring
threat models, via attack trees and labeled transition systems (LTS), into at-
tack descriptions conceived in a domain-specific language (DSL). The method
bases on an existing threat modeling tool (actually, the graph-based represen-
tation of the attacks has the form of a Directed Acyclic Graph – DAG) [46]
and an existing DSL called Agnostic domain-specific Language for the Im-
plementation of Attacks (ALIA) [30] and concentrates on the transition be-
tween those two. ALIA is a procedural text-based language consisting of
sequences of single actions (called test patterns) as a pseudo code that stand
for specific steps of a composed attack in a technology-agnostic manner (not
bound to a specific system-under-test). These steps will be translated into con-
crete executable instructions for specific systems-under-test based on Xtext and
Xtend [47]. ALIA also supports pre and post conditions and flow controls like
conditionals and loops. Since, the edges of an attack tree (or DAG, respec-
tively) correspond with actions to be taken to get from one threat to another,
we can attribute them to corresponding actions in ALIA (see Figure 4.2). We
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Figure 4.1: Relations of the main research contributions. Blue boxes mark the
contributions, surrounded by the research goals in red dashed lines. The cyan
boxes mark previous work the contributions build on, while the dashed black
boxes denote the respective papers including the contributions and previous
work. The arrows indicate dependencies; solid ones indicate sub-parts and
dashed ones indicate inputs.
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Figure 4.2: Attack tree to Test Scenario transformation example from Paper IV
(modified to fit the example in Section 2.2).
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Source Target Conn. DSL Key
Name SubType Name SubType SubType
Smart-
phone

External
Inter-
actor

Info-
tainment

ICU WiFi BBScan
BBExploit
OpenAndroidHotspot
OpenADB

Info-
tainment

ICU CAN
Bus

Wired
Bus

CAN InstallPythonEnv
InstallPythonLib

CAN
Bus

Wired
Bus

Instru-
ment
Cluster

Control
Unit

CAN InstallAndroid-
CANDosScript
ADBPythonScript

Instru-
ment
Cluster

Control
Unit

Dis-
played
Infor-
mation

- isAsset -

Table 4.2: Example rules for translating attack trees into DSL scripts. Only
the rules directly used for the mapping in Figure 4.2 are displayed. ICU means
Infotainment Control Unit. That the names are only present for the reader’s
convenience, for the ruling the subtypes are sufficient. To obtain this informa-
tion and correctly label an attack tree, we need correlate information from the
attack tree (Figure 2.2) and the architectural model (Figure 2.1).

manually create a rule set that determines the action to be taken. Therefore,
we categorize the threats that form the nodes of the DAG. We then define an
action to be taken for each combination (i.e., an edge from a source node of
type x to a target node of type y). The rule set for this actions forms the la-
beling function that turns the DAG into a Labeled Transitions System (LTS):
∀q1, q2 ∈ Q, a ∈ ACT · s1

a−→ s2 := a × s1 → s2. With the labeling func-
tion of an LTS, the alphabet of ALIA will be attributed to paths within DAGs
generated out of the threat model. Subsequently traversing the resulting LTS
along a DAG’s path will automatically sequence that input and generate an at-
tack description in ALIA. From the ALIA, it is possible to generate concrete
test cases, once an implementation of the architecture is ready.The rules (i.e.
the partial labeling function) we apply is noted in Table 4.2. When fusing this
with a basic structure template, we eventually gain an ALIA script as shown in
Listing 4.1.

Paper VIII presents a method utilizing Large Language Models (LLMs) to
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Listing 4.1: ALIA example of an automotive attack

PreConditions:
Actions:

bbtarget: scan(type:BlueBorne, interface:BT_IF)
bbshell: exploit(type:BlueBorne, target:bbtarget)
wifitarget: exploit(type:OpenAndroidHotspot, target:

bbtarget, shell:bbshell) default "XXXXX"
adbshell: exploit(type:OpenADB, target:wifitarget)
install_python_env: exploit(type:InstallPythonEnv,

target:adbshell)
install_python_lib: exploit(type:InstallPythonLib,

shell:adbshell)
attackScript: exploit(type:InstallAndroidCANDosScript

, target:adbshell)
can_attack: exploit(type:ADBPythonScript, target:

mytarget, shell:adbshell, file:"CanAttackScript",
interval:5)

PostConditions:

generate test cases from the same attack trees mentioned above. Concentrat-
ing on the automotive Unified Diagnostic Services (UDS), we therefore utilize
a Retrieval-Augmented Generation (RAG) approach. This RAG consists of
multiple stages of queries, particularly (1) an attack tree analyzer, (2) a docu-
ment retriever that fetches relevant code parts from a vectorized database, (3)
a grader that evaluates the retrieved documents and has a feedback loop to the
retriever, (4) a generator that produces test cases in Python and (5) an evaluator
that assesses the quality of the code an has a feedback loop to the generator (re-
generating if the quality is not satisfactory). The vectorized database consists
mainly of existing test cases from our AVL TestGuard test catalog and external
sources that connect threats and test code 1. Listing 4.2 shows a truncated ex-
ample test case. As an alternative, we generate also generate properties in Lin-
ear Temporal Logic (LTL) with an adapted RAG. An example for a generated
property from the same tree as the listing is AUTHENTICATION ENFORCE-
MENT:□(DIAG SESSION INIT ∧ UNAUTH → false2. This means
that a UDS interactor has to first authenticate before entering a diagnostic ses-

1E.g., the Auto-ISAC Threat Matrix (ATM): https://atm.automotiveisac.com/
2This corresponds to □¬(EXT ∧¬AUTH) for our annotated Mealy machines (see Section

4.4).
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sion on the system. These properties can be used for model checking (RG4).
However, in this case the rule is semantically wrong, since authentication in
UDS is not necessary when entering such a session, but when accessing pro-
tected resources. This means that there is further research to perform to adjust
the RAG in a way that it can cope with such protocol details. To improve the
overall quality of both test cases and LTL properties, we use learned protocol
state machines as additional input for the generator, drawing a link to RG2.
Paper I describes a structured approach to derive a testing strategy from threat
modeling RG1 and its connection to learning-based component testing (RG2),
and Paper II describes the general embedding of threat modeling into a security
testing process.

Listing 4.2: Example of an LLM-generated test case from an attack tree.

"test_cases": [
{

"id": 1,
"name": "Bypass Physical and Logical Protections -

Unauthorized Diagnostic Port Access",
"description": "Tests whether an attacker with

physical access can connect to the diagnostic
port and initiate UDS communication without
authentication.",

"vulnerability_addressed": "Lack of Authentication
on Diagnostic Interfaces",

"setup": "# Setup instructions: ...",
"test_code": "import can\\nimport os\\n ...",
"teardown": "# Teardown: ...",
"expected_result": "If the system is vulnerable,

the ECU will ..."
},
...

]

This contribution contains several novelties, namely: (a) the approach of
transferring a threat model into test descriptions using attack trees and LTS, (b)
using attack trees in conjunction with protocol Mealy Machines as input to an
LLM RAG for automated improved test case generation, and (c) utilizing an
LLM RAG to derive properties for model checking.
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4.2 Automated State Machine Derivation

A solution to achieve RG2 was developed by using active automata learning to
infer behavioral communication protocol models (concretely state machines,
also called automata) on the example of the handshake protocol (ISO 14443-
3 [25]) of NFC systems. A similar system for a platooning protocol is in devel-
opment (see Section 6.2). The developed solution consists of an NFC adapter
interface library for the LearnLib library [48], containing the necessary adjust-
ments (including compiling a new firmware) to an NFC hardware adapter along
with an abstraction layer that transforms symbols from the learning algorithm
to NFC hardware signals and vice versa. The solution also delivers insights
on learning the ISO 14443-3 protocol, as it has some very characteristic fea-
tures in the handshake protocol (particularly, two intertwined combination lock
structures with almost identical states and the property that it does not send a
response in case of a non-expected signal3). In this setting also, different propa-
gated learning algorithms were evaluated for their suitability and (surprisingly)
an older algorithm was found best performing to learn correct implementations
(namely the L* algorithm with the closing strategy by Rivest/Schapire), while
(less surprisingly) the modern TTT algorithm was best performing when it
comes to detecting flaws (see next chapter). The theory for the solution was
worked out in Paper I, while Paper II describes the solution concept. Paper III
contains the full solution implementation with a description of the complete
details for deriving a state machine of NFC handshake protocol implementa-
tions (example see Figure 4.3), including performance evaluations (see Table
4.3 for an example.

Paper VII, eventually, contains an extension to learn compound automata
of multiple protocols running on the same device and gives a practical example
with a device providing both an NFC and a Bluetooth Low-Engergy (BLE)
interface (see Figure 4.4).

Specifically, there is quite some previous work on automata learning-based
approaches for learning communications systems (even one for NFC banking
cards - see Section 5), but for the ISO 14443-3 protocol, so far no automated
black box-learning solution has been presented. Furthermore, the approach
of inferring a compound Mealy Machine representing multiple protocols on a
system in a single learning process is novel.

3On the other hand, it is not time sensitive. Therefore, a lot of engineering effort was put into
error correction to make the learning robust. Since, we cannot learn non-deterministic automata
with our approaches, timing-induced (and other) non-determinism has to be abstracted. We have,
however, the opportunity to artificially re-introduce it for model checking (see Section 4.4).
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Max. Word Algorithm
Length L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

10 5.92 5.05 6.00 4.38 4.38 5.45 5.37
20 20.08 9.34 10.93 12.24 11.65 7.66 7.40
30 41.90 12.92 9.82 12.19 11.47 10.67 10.04
40 68.17 8.54 11.16 15.56 12.89 10.87 9.49
50 34.75 7.87 11.02 15.60 12.53 11.29 9.91
60 77.33 17.15 12.98 17.16 13.37 13.04 10.85
70 134.65 11.34 14.46 17.68 14.81 13.06 11.32

Table 4.3: Runtime (minutes) per algorithm and maximum word length for the
ISO/IEC 14443-3 protocol from Paper III.

4.3 Compliance Checking

RG3 was reached by comparing two automata using bisimulation and trace
equivalence: one inferred using automata learning (see 4.2) and a second one
based on a specification. While the basic concept was mentioned in Paper II,
this was implemented for the NFC handshake protocol in Paper III. This way
of checking the conformance is more comprehensive than traditional confor-
mance checking trough testing, because it compares the complete behavior of
a system with the complete behavior of a specification instead of merely test-
ing a small subset in form of specific traces. The reason for using bisimulation
and trace equivalence (∼) instead of a much simpler full (graph) identity is that
standards compliance does not require the state machines to be identical, but
merely to behave the same way. A system with a deviating automaton could
still behave equivalent to and therefore be compliant to a specification (or stan-
dard). Figure 4.3 shows a representative example of learned automata with an
ISO/IEC 14443-3 compliant automaton and one deviating from the standard
(the Tesla key fob). The deviation could easily automatically detected using
this approach. We also use a similar methods to evaluate compound automata
(see Section 4.2) in Paper VII. Using simulation (⪯) and trace (⊆) preorder,
we can evaluate whether two learned single-protocol automata (in our exam-
ple NFC and BLE) are represented in a compound automaton that represents
both. We can also determine if the compound automaton displays additional
behavior. This is the case when a protocol (e.g., for a pairing process) utilizes
both communication interfaces. This leads to additional behavior (i.e., states)
in the compound automaton, that is not visible in both single-protocol coun-
terparts. Figure 4.5 for an example, shows an additionally found τ state in a
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Figure 4.3: ISO/IEC 14443-3 automaton of an NXP test card (left, standard-
compliant) and a Tesla car key fob (right, deviating from the standard with the
transition DESEL in the ACTIVE* state) learned with TTT from Paper III.

Tesla key fob’s BLE behavior when learned in conjunction with NFC. We also
present an approach to assure the security of the used specification automaton
using model checking in a primitive form in Paper V and more elaborated in
Paper VI, in which we also introduce the modeling of formal specifications
in the Rebeca modeling language and converting them into a specification au-
tomaton. Since many standards are underspecified (leaving ambiguities in the
desired behavior), in Papers V and VI we do not formally use Mealy machines
for specifications, but non-deterministic Mealy-styled LTS. The difference is,
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Figure 4.4: Compound NFC/BLE Tesla key fob model learned with TTT from
Paper VII. Transitions in black are NFC and blue BLE, pale lines are without
output (i.e., timeouts). We also used NFC* and BLE* for all other BLE and
NFC inputs for better readability.

that we allow for non-deterministic behavior, i.e., an input symbol in a given
state can have two transitions (with different goals and/or outputs). This al-
lows us to model multiple possibilities for each input-state combination, if the
respective specification leaves multiple options for behavior. Then simulation
or trace preorder determines if the learned implementation’s behavior is part of
the specification’s (i.e., if each transition of the implementation automaton is
also present in the specification). Figure 4.6 shows an example for a learned
model (a passport) and an automaton of an underspecified standard (the ICAO
electronic machine-readable travel document standard).

There is (though few) previous work using the concept of automata learning
paired with bisimulation for behavior comparison (see Section 5), however,
no solution for practically working protocol conformance checking against a
formal specification.

4.4 Model Checking
For RG4, we transformed the learned models (state machines) in a format that
is suitable for for being checked for security properties. Since model check-
ing is a technique that checks every state for a system and evaluates the given
properties to hold (see Section 2.9), a model must fulfill two conditions: a) it
must contain checkable properties and b) it must be in a format that a model



42 Chapter 4. Research Contributions

s0

s1

VERS_IND() / []

s2

ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()] s3

FEAT_RSP() / []

τ

τ

VERS_IND() / [] FEAT_RSP() / [LL_VERSION_IND()] ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()]

VERS_IND() / []FEAT_RSP() / []ATT_EXCHANGE_MTU_REQ() / []

VERS_IND() / [LL_VERSION_IND()] FEAT_RSP() / [] ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()] VERS_IND() / [] FEAT_RSP() / [] ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()]

Figure 4.5: Single-protocol automaton of a Tesla key fob’s BLE interface from
Paper VII, learned with TTT (in blue), added (in light gray) is the additional
state when learning a compound model.
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Figure 4.6: Simplified example of a Rebeca specification model converted in a
non-deterministic Mealy-style LTS compared to a learned MRTD Mealy model
from Paper VI. Note that the difference lies in additional transitions in the
model, modeling optional behavior.

checker can interpret. With the fulfillment of RG2, we possess system models
in Mealy Machine format. These models do not possess any state information
(they are only labeled with a sequential numeric identifier). To fulfill condition
a), we use protocol specific Context-based Proposition Maps (CPMs) C that
define conditions for gaining (Cg) and losing (Cl) meaningful propositions,
depending on the Mealy Machine’s transition labels (i.e. input and output).
A condition (c ∈ C) is a triplet of a set of propositions SP ∈ 2P , an input
set SΣ ∈ 2Σ, and an output set SΩ ∈ 2Ω (⟨SP , SΣ, SΩ⟩) and P as set of
all propositions in the annotated Mealy machine. For instance, passports use
(among others) basic authentication (BAC) to authenticate a user who wants
to read a protected resource. If a transition contains a symbol for BAC as an
input and a success code (e.g., 9000 in NFC) as an output, the target sate gets
the proposition authenticated (AUTH). We also define losing conditions when
the system reaches a de-authenticated state (e.g., after a new session, etc.). In
an automated process, we then iteratively propagate the propositions over all
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transitions that do not contain a lose condition. That means that if a transition’s
origin state has the AUTH proposition, also the target state gets it, unless its
transition label (i.e., input and output) are defined as a lose condition. This
way, we annotate the complete Mealy Machine with propositions, effectively
transforming it into a Kripke-like structure [49] MK = (Q, q0,Σ,Ω, , δ, λ,L),
which corresponds to the original Mealy machine with the function L attribut-
ing any combination of propositions (SP ∈ 2P ) to each state. To fulfill con-
dition b, we parse the graph of the resulting Kripke structure and transform it
into a modeling language. We chose Rebeca for this purpose, since it is an
actor-based language is designed to model reactive systems [50]. In our au-
tomated translation process, we formally define a Rebeca template with two
(M := rsys||renv): the system (rsys), that displays the behavior of the Kripke
structure and an environment actor (renv), that provides inputs. Propositions
are modeled by setting and unsetting state variables of the system actor. Cer-
tain outputs (e.g. for a successful read or write operation) are not system state
propositions, but still vital for model checking. To be able to check these tran-
sition labels that contain vital information, we define temporary propositions,
which basically represent an output rather than an actual state proposition, and
are automatically cleared for following states. Formally, we split the transi-
tion into two parts, with an internal (τ ) state in between. This state inherits all
propositions from the origin state and additionally gets the temporary proposi-
tion. The model checker can then check for this temporary proposition when
examining the τ state. We denote these temporary propositions in the CPM us-
ing a dedicated condition set (Cτ ). In the Rebeca model, inputs are functions
(message servers) of the system and outputs are functions (messages servers)
called back based on the system state and calling input function. In the input
functions the set the system variables, which are the (boolean) propositions and
an integer representing the system state. Therefore, formally the system actor is
rsys := ⟨Vsys,Msys,Ksys⟩, with the set of state variables Vsys := {q}∪P , the
method identifiers Msys := Σ and the set of known actors Ksys := {renv}.
The environment actor is renv := ⟨Venv,Menv,Kenv⟩, with Venv := Cτ ),
Menv := Ω ∪ {req} (the output symbols and an initial request function), and
Kenv := {rsys}. What is left for checking the model using RMC (the Rebeca
model checker) are properties to check. We therefore use a) general prop-
erties, b) protocol-specific properties, which represent behavior contradicting
the respective standard and c) threat-model-dervied properties that check an
implementation for the threats in the modeling phase being mitigated. The lat-
ter class we derive utilizing an LLM RAG system, described in Section 4.1.
While the protocol-specific properties are derived case-by-case, the general
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properties are derived from basic security requirements (both defined in Paper
IX):

• R1 (Authentication): GIVEN the system is in a non-authenticated state,
WHEN a access operation on a protected resource occurs, THEN the
operation must not return a positive response.

• R2 (Confidentiality): GIVEN the system is in an arbitrary state, WHEN
an non-secured access operation on a protected resource occurs, THEN
it should not be successful.

• R3 (Privilege Levels): GIVEN an authenticated state, WHEN the level
of privilege is not sufficient, THEN a performed operation must not be
successful.

• R4 (Key Validity): GIVEN an authentication OR secure access opera-
tion, WHEN an actor is asked for a key, THEN providing an invalid key
must not be successful.

From these requirements, we derive generic properties (that use propositions
which are defined by the CPMs for each protocol4):

• P1 (Authentication): □(¬AUTH ∧ PROT → ¬ACCESSOK)5

A read operation on an protected resource without authentication must
not be successful.

• P2 (Confidentiality): □(PROT → ¬ UREADOK)
An unsecured read operation on a protected resource must not be suc-
cessful.

• P3 (Privilege Levels): □((PRIV → AUTH) ∧ (¬PRIV ∧ CRIT →
¬ACCESSOK))
A read operation on critical resources without having a privileged au-
thentication must not be successful. The privileged status must be higher
(≥) than a normal authenticated status (implies relation).

• P4 (Key Validity): □(¬INV KEY OK)6

An invalid key must never be accepted.

4E.g., a CPM for UDS defines when is a state authenticated in UDS (which inputs and outputs
have to occur). For other protocols, it works analogously with their own CPMs.

5Afra does not support implications in the property file, therefore we use □(¬(¬AUTH ∧
PROT ) ∨ ¬ACCESSOK), instead.

6This includes deprecated keys (OLDKEY ) or wrong keys (WRONGKEY ), like an all-
zero key.
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Figure 4.7: Simplified annotated Mealy machine of the learned UDS model
from an automotive ECU. Self-loops that do not add to the understanding have
been removed and the output truncated for readability. The star (*) denotes any
other input not explicitly stated. The red transition violates property P4.

We check these properties with very different protocols, namely ICAO elec-
tronically Machine-Readable Travel Document (eMRTD) running via NFC on
passports and Unified Diagnostic Services (UDS) running on an automotive
control unit. In the former case, we could successfully verify these properties
on different passport documents. In the latter case, we found R2/P2 being vio-
lated. This is expectable, since UDS on the can bus does not support encryption
– a long known circumstance. But our specific device (from a German supplier
used in car models from a Chinese manufacturer) also violates R4/P4, since it
accepts wrong keys, once in an already authenticated session7 (see Figure 4.7
for a model displaying this violation. Furthermore, we also define a slightly al-

7This flaw was discovered by colleagues from AVL in Paper III. Paper IX shows that the
model checking approach can successfully detect this kind of flaws.
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tered template that introduces non-deterministic transitions to a timeout state,
which allows for checking this kind of behavior without manual modeling, de-
spite the learning algorithms (Section 4.2) only allow inferring deterministic
models.

4.5 Publications
This section contains an outline of each publication in this thesis consisting
of an abstract, the work in this thesis’ context, its contribution to the research
goals and the author’s contribution to the respective paper.

4.5.1 Paper I

Title: A Systematic Approach to Automotive Security
Authors: Masoud Ebrahimi, Stefan Marksteiner, Dejan Ničković, Roderick
Bloem, David Schögler, Philipp Eisner, Samuel Sprung, Thomas Schober, Se-
bastian Chlup, Christoph Schmittner, and Sandra König
Abstract: We propose a holistic methodology for designing automotive sys-
tems that consider security a central concern at every design stage. During the
concept design, we model the system architecture and define the security at-
tributes of its components. We perform threat analysis on the system model to
identify structural security issues. From that analysis, we derive attack trees
that define recipes describing steps to successfully attack the system’s assets
and propose threat prevention measures. The attack tree allows us to derive a
verification and validation (V&V) plan, which prioritizes the testing effort. In
particular, we advocate using learning for testing approaches for the black-box
components. It consists of inferring a finite state model of the black-box com-
ponent from its execution traces. This model can then be used to generate new
relevant tests, model check it against requirements, and compare two different
implementations of the same protocol. We illustrate the methodology with an
automotive infotainment system example. Using the advocated approach, we
could also document unexpected and potentially critical behavior in our exam-
ple systems.
Work in the thesis context: The paper outlines a structured process to verifi-
cation by testing, containing threat modeling an black box-inferring behavioral
models of systems using automata learning.
Contributes to research goals: RG1, RG2.
Thesis author’s contribution: One equally contributing main author. Main
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responsible for section 4 (security testing), contributed parts of sections 1 and
2, complete section 4.1 and parts of 4.2. This corresponds to co-developing
the overall testing concept based on learning methods, describing the automata
learning theory and general parts of the use cases.

4.5.2 Paper II
Title: Approaches for Automating Cybersecurity Testing of Connected Vehi-
cles
Authors: Stefan Marksteiner, Peter Priller, and Markus Wolf
Abstract: Vehicles are on the verge building highly networked and intercon-
nected systems with each other. This requires open architectures with standard-
ized interfaces. These interfaces provide huge surfaces for potential threats
from cyber attacks. Regulators therefore demand to mitigate these risks us-
ing structured security engineering processes. Testing the effectiveness of this
measures, on the other hand, is less standardized. To fill this gap, this book
chapter contains an approach for structured and comprehensive cybersecurity
testing of contemporary vehicular systems. It gives an overview of how to
define secure systems and contains specific approaches for (semi-)automated
cybersecurity testing of vehicular systems, including model-based testing and
the description of an automated platform for executing tests.
Work in the thesis context: The paper outlines a concept to automate auto-
motive cybersecurity testing using automata learning, incorporating the results
of a threat model, an a platform for automated execution based on a domain-
specific language.
Contributes to research goals: RG1, RG2, RG3.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed all content except the introductory sections 1 and 2, 3.1, 4.4 and
4.5 (delivered review for these sections). This corresponds with the main con-
cept, an automotive life cycle testing description, a testing process and a model-
based testing concept based on automata learning.

4.5.3 Paper III
Title: Using Automata Learning for Compliance Evaluation of Communica-
tion Protocols on an NFC Handshake Example
Authors: Stefan Marksteiner, Marjan Sirjani, and Mikael Sjödin
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Abstract: Near-Field Communication (NFC) is a widely proliferated standard
for embedded low-power devices in very close proximity. In order to ensure
a correct system, it has to comply to the ISO/IEC 14443 standard. This pa-
per concentrates on the low-level part of the protocol (ISO/IEC 14443-3) and
presents a method and a practical implementation that complements traditional
conformance testing. We infer a Mealy state machine of the system-under-test
using active automata learning. This automaton is checked for bisimulation
with a specification automaton modelled after the standard, which provides a
strong verdict of conformance or non-conformance. As a by-product, we share
some observations of the performance of different learning algorithms and cal-
ibrations in the specific setting of ISO/IEC 14443- 3, which is the difficulty to
learn automata of system that a) consist of two very similar structures and b)
very frequently give no answer (i.e. a timeout as an output).
Work in the thesis context: This paper contains an examination how to effi-
ciently infer automata of black box NFC systems using automata learning and
automatically comparing the behavior (using bisimulation) to a specification
automaton, therefore comprehensively assessing the standards compliance of
the system-under-test.
Contributes to research goals: RG2, RG3.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed most of the content.

4.5.4 Paper IV

Title: From TARA to Test: Automated Automotive Cybersecurity Test Gener-
ation Out of Threat Modeling
Authors: Stefan Marksteiner, Christoph Schmittner, Korbinian Christl, Dejan
Ničković, Mikael Sjödin, and Marjan Sirjani
Abstract: The UNECE demands the management of cyber security risks in
vehicle design and that the effectiveness of these measures is verified by test-
ing. This mandates the introduction of industrial-grade cybersecurity testing in
automotive development processes. The regulation demands also to keep the
risk management current, which again creates the need of stretching the test-
ing over the full life cycle of an automotive system. Currently, the automotive
cybersecurity testing procedures are not specified or automated enough to be
able to deliver tests in the amount and thoroughness needed to keep up with that
regulation, let alone doing so in a cost-efficient manner. This paper introduces
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an automotive security life cycle governance approach, that takes the currently
being developed concepts of Cybersecurity Assurance Levels and Targeted At-
tack Feasibility into account and provides a means to automatically generate
test cases at early development stages. These tests can also be used in later
phases to verify and validate the implementations of developed systems. These
formalized concepts increase the both the completeness and efficiency of auto-
motive cybersecurity testing over vehicles’ complete life cycles.
Work in the thesis context: The paper contains an approach to derive an at-
tack tree from a threat model and a concept to transform into an agnostic attack
script in a domain-specific language, with a labeled transition system (LTS) as
an intermediate step, allowing for automatically creating a test case once the
modeled system is implemented.
Contributes to research goals: RG1.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed sections 1,2, 3.2, and 5. This corresponds to the paper’s motiva-
tion and a concept for transforming a threat model-based attack tree into attack
descriptions written in an (formal) domain-specific language.

4.5.5 Paper V

Title: Automated Passport Control: Mining and Checking Models of Machine
Readable Travel Documents
Authors: Stefan Marksteiner, Marjan Sirjani, and Mikael Sjödin
Abstract: Passports are part of critical infrastructure for a very long time.
They also have been pieces of automatically processable information devices,
more recently through the ISO/IEC 14443 (Near-Field Communication – NFC)
protocol. For obvious reasons, it is crucial that the information stored on de-
vices are sufficiently protected. The International Civil Aviation Organization
(ICAO) specifies exactly what information should be stored on electronic pass-
ports (also Machine Readable Travel Documents – MRTDs) and how and under
which conditions they can be accessed. We propose a model-based approach
for checking the conformance with this specification in an automated and very
comprehensive manner: we use automata learning to learn a full model of pass-
port documents and use trace equivalence and primitive model checking tech-
niques to check the conformance with an automaton modeled after the ICAO
standard. Since the full behavior is underspecified in the standard, we compare
a part of the learned model and apply a primitive checking ruleset to assure
proper authentication. The result is an automated (non-interactive), yet very
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thorough test for compliance, despite the underspecification. This approach
can also be used with other applications for which a specification automaton
can be modeled and is therefore broadly applicable.
Work in the thesis context: The paper extends the conformance checking part
to include underspecified standards. This allows a more hands-on usage of the
approach and opens it up for application at a broader spectrum of systems to
check.
Contributes to research goals: RG3.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed most of the content.

4.5.6 Paper VI

Title: Black-box protocol testing using Rebeca and Automata Learning
Authors: Stefan Marksteiner and Mikael Sjödin
Abstract: Industrial and critical infrastructure devices should be scrutinized
with rigorous methods for inconsistencies with a specification. At the same
time, this specification should also be correct, otherwise the specification con-
formance is of little value. On the example of eMRTDs (electronic Machine-
Readable Travel Documents) we demonstrate an approach that combines model-
checking a specification for correctness in terms of security with learning an
implementation model using automata learning. Once the specification is mod-
eled, we automatically mine a model of the implementation and check the
model for compliance with the verified specification using simulation and trace
preorder. Underspecification of the standard is in this setting modeled as non-
deterministic behavior, so one of the possibilities has to simulate the imple-
mentation in order for the latter to be compliant. We also present a working
tool chain realizing this method. When adopting the tool chain accordingly, the
method might be used in practice for checking the correctness of any reactive
system.
Work in the thesis context: Introduces model checking of specification mod-
els and automatically generating specification automata from them. This as-
sures specifications to be correct and bridges compliance checking (RG3) with
model checking (RG4).
Contributes to research goals: RG3, RG4.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed most of the content.
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4.5.7 Paper VII

Title: Learning Single and Compound-protocol Automata and Checking Be-
havioral Equivalences
Authors: Stefan Marksteiner, David Schögler, Marjan Sirjani, and Mikael
Sjödin
Abstract: This paper presents a method and a practical implementation that
complements traditional conformance testing. We infer a Mealy state machine
of the system-under-test using active automata learning. This automaton is
checked for bisimulation with a specification automaton modeled after the stan-
dard, which provides a strong verdict of conformance or nonconformance. We
further present a method to learn models of multiple communication proto-
cols running on the same device using a dispatcher system in conjunction with
the same automata learning algorithms. We subsequently use similar checking
methods to compare it with separately learned models. This allows for deter-
mining whether there is some interference or interaction between those proto-
cols. In the practical execution of the system, we concentrate on lower levels
of the Near-Field Communication (NFC, ISO/IEC 14443-3) and the Bluetooth
Low-Energy (BLE) protocols. As a by-product, we share some observations of
the performance of different learning algorithms and calibrations in the specific
setting of ISO/IEC 14443-3, which is the difficulty to learn models of systems
that a) consist of two very similar structures and b) timeout very frequently, as
well as the role of conformance testing for compound models and speed opti-
mizations for time-sensitive protocols.
Work in the thesis context: Extends the learning-based compliance check-
ing to allow for examining multiple-protocol systems. It therefore extends the
learning capabilities and utilizes the equivalence checking method to determine
the differences between single-protocol and compound-protocol behavior.
Contributes to research goals: RG2, RG3.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed most of the content, except for the BLE learner.

4.5.8 Paper VIII

Title:
Authors: Tanmay Kuhle, Stefan Marksteiner, Jose Alguindigue, Hannes Fuchs,
Sebastian Fischmeister and Apurva Narayan
Abstract: In modern automotive development, security testing is critical for
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safeguarding systems against increasingly advanced threats. Attack trees are
widely used to systematically represent potential attack vectors, but generat-
ing comprehensive test cases from these trees remains a labor-intensive, error-
prone task that has seen limited automation in the context of testing vehicular
systems. This paper introduces STAF (Security Test Automation Framework),
a novel approach to automating security test case generation. Leveraging Large
Language Models (LLMs) and a four-step self-corrective Retrieval-Augmented
Generation (RAG) framework, STAF automates the generation of executable
security test cases from attack trees, providing an end-to-end solution that en-
compasses the entire attack surface. We particularly show the elements and
processes needed to provide an LLM to actually produce sensible and exe-
cutable automotive security test suites, along with the integration with an auto-
mated testing framework. We further compare our tailored approach with gen-
eral purpose (vanilla) LLMs and the performance of different LLMs (namely
GPT-4.1 and DeepSeek) using our approach. We also demonstrate the method
of our operation step-by-step in a concrete case study. Our results show sig-
nificant improvements in efficiency, accuracy, scalability, and easy integration
in any workflow, marking a substantial advancement in automating automotive
security testing methodologies. Using TARAs as an input for verification tests,
we create synergies by connecting two vital elements of a secure automotive
development process.
Work in the thesis context: Contains a more dynamic approach to gener-
ate test cases from attack trees. Furthermore, it utilizes behavior models to
improve the quality of generated test and, finally, it generates properties for
model checking.
Contributes to research goals: RG1.
Thesis author’s contribution: Co-contributor to adapting an existing RAG to
the automotive domain, contributed to prompt engineering, introduced UDS
models to boost the LLM’s result quality, engineered the LTL generation part.

4.5.9 Paper IX

Title: Learn, Check, Test - Security Test Generation Utilizing Automata Learn-
ing and Model Checking
Authors: Stefan Marksteiner, Marjan Sirjani, and Mikael Sjödin
Abstract: Cyber-physical systems are part of industrial systems and critical
infrastructure. Therefore, they should be plumbed in a comprehensive manner
to verify their correctness and security. At the same time, the complexity of
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such systems demands such examinations to be systematic and, to a certain
degree, automated for efficiency and accuracy. A method that provides these
features is model checking. However, it requires a model that faithfully dis-
plays the behavior of the scrutinized system. This task is not trivial, as many of
these systems can be examined only in black box settings, due to long supply
chains or secrecy. We therefore utilize active black box learning techniques to
mine behavioral models in the form of Mealy machines of such systems at run-
time and translate it into a form that can be scrutinized using a model checker.
On this behalf, we first annotate the model with propositions by mapping con-
text information from the respective protocol to the model using Context-based
Proposition Maps. We gain annotated Mealy machines that resemble Kripke
structures. Creating a formally defined template, we then translate this struc-
ture into code in the Rebeca modeling language. Based on general security
requirements (authentication, confidentiality, privilege levels, and key valid-
ity), we further define generic security properties that are composed of the
propositions from the annotated Mealy machines. By defining the meaning
of a propositions in the context of a specific protocol, CPMs assure the same
propositions are present in each annotated Mealy machine, even when they rep-
resent different protocols. Using the Rebeca model checker, we can therefore
subsequently check basic security requirements using the same generic proper-
ties for different protocols. Furthermore, the gained model can be easily altered
to introduce non-deterministic behavior (like timeouts) or faults and examined
if the properties still hold under these different conditions. Lastly, we demon-
strate the versatility of the approach by providing case studies of very different
systems (a passport and an automotive control unit), speaking different com-
munication protocols (NFC and UDS), checked with the same tool chain and
the same security properties.
Contributes to research goals: RG4.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed most of the content.





Chapter 5

Related Work

This section considers other work in this field and adjacent fields. Given the
research goals and contributions it is divided into contributions made in dif-
ferent fields namely: model-based test generation, automated state machine
derivation and protocol learning, conformance checking, and applications of
automata learning to cybersecurity.

5.1 Model-Based Test Case Generation

Model-based testing (MBT) uses a model representation (normally behavioral,
but also structural or other kinds) of a system-under-test. Model-based test
case generation is an automated test case generation based on model-based
testing. It is used in very diverse application domains like Information and
Communications Technology (ICT), Automotive, Consumer electronic, Rail-
way, Aerospace, Avionic, Tourism, Agriculture, Finance, Management, Con-
struction, Sport, Automation. The used models include broad variety of dif-
ferent types (like state machines, activity and sequence diagrams, Simulink
models, pre/post models, Simulink models, etc.) and the approaches to gener-
ate tests include structural coverage (based on control-flow, data-flow, transi-
tions or UML), data coverage (boundary values, statistical or pairwise testing),
fault and requirements-based criteria, and explicit and statistical test genera-
tion, state, search; model checking, requirements, event, random-based and
others [51, 52].
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5.2 Attack-Trees-Based Security Testing

Attack trees are a formal (graphical) representation of the set of possibilities
to attack a certain system and have been described in the late 1990ies [19, 20].
They connect specific small attacks (i.e., exploiting threats) to a system in order
to attack a complete system or a specific target inside a system with a combined
or concatenated attack. The single attacks can be underlaid with different in-
formation like necessary skills or features or a success probability, allowing
for also calculating this information (i.e., a complete set of skills or features
or the combined attack success probability) for the complete attack. It further
allows for selecting different paths through that tree that are most efficient re-
garding defined criteria (e.g., maximized success probability). There is also an
approach that combines security-related attack trees with safety-related fault
trees and also provides a translation mechanism to transfer them into stochas-
tic timed automata. These can be analyzed using model checking [53]. This
can be used to generate test cases. More directly, attack trees have been used
to build fault injection-based attacks that can be used directly onto a system-
under-test [54]. There is also work to adopt attack trees for automotive sys-
tems [55]. There is also an automotive-related method to create attack trees
from threat models [42]. The thesis builds upon the later work by providing a
translation mechanism from attack trees into a formal attack description lan-
guage that provides blueprints for cyberattacks in RG1 (Section 3.1.1).

5.3 Formalized Test Descriptions

There is quite extensive work on languages for describing attacks to computer
systems [56, 57, 58, 59, 60, 61]. However, this thesis builds upon a domain-
specific language (DSL) tailored for automating attacks on automotive systems
called Agnostic domain-specific Language for the Implementation of Attacks
(ALIA) co-authored by the thesis author [30]. The language concept stems from
the principle to abstract attacks on specific automotive systems from their (pro-
prietary) technology-specific traits, leaving a blueprint structure for an attack
that needs to be concretized again to be executed against a different system.
The ALIA DSL is therefore designed for describing attacks on automotive sys-
tems in a technology-agnostic way. Apart from the original intention of port-
ing attacks from one (proprietary) system to another, this allows for specifying
attacks at design time and concretizing them once an implementation is avail-
able. This thesis integrates this language as a formal description for attacks to
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achieve RG1 (Section 3.1.1).

5.4 Automated State Machine Derivation and Pro-
tocol Learning

One of the key elements for fully automating model-based test case generation
is automatically obtaining a suitable model to analyze. Finite state machines
have been frequently used for correctness analyses [62, 63, 64, 65] possibil-
ities to analyze them for their correctness and security properties. There are
various approaches to automatically inferring (i.e., learning) state machines.
Recurrent networks have been used to learn state machines already in the early
1990ies [66]. Some algorithms work on steering learning from traces by using
a two-stage approach. They first analyze traces and mine a rule set and sec-
ondly using the rule set for learning automata from traces [67]. Others impose
constraints on learning using linear temporal logic [68]. Many of the trace-
based inferring methods base on the KTail algorithm [67]. This algorithm has
been defined already 1972 by Biermann and Feldman [69]. Trace-based mech-
anisms are also used to generate other models like sequence diagrams [70].
Since the aim of this thesis is to black box-learning behavioral models of real-
world systems, it concentrates on approaches actively querying a system. A
method for this that has made many advances in the recent years is automata
learning (for the basics see Section 2.6). There is quite some work of using
automata learning for security analysis and testing, specifically for learning
communication protocols [71, 72, 73, 74, 75, 76]. This also includes NFC
but concentrates on the upper layer (ISO/IEC 14443-4) protocol, dodging the
specific challenges of the handshake protocol [77]. Aichernig et al. provided
a benchmark for different automata learning setups using existing benchmark
data [78]. This thesis also provides and automata learning performance evalu-
ation, which is however very specially tailored for the ISO/IEC 14443-3 proto-
col, with accordingly different results. Recent works also concentrated on mak-
ing use of these techniques for practical use, e.g., for security analyses [79, 76]
or model-based fuzz testing [75]. The thesis differentiates from these works by
combining learning with compliance checking and also using this to checking
assumptions in threat modeling.
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5.5 Conformance Checking Using Equivalence of
State Machines

There are, partly theoretic, approaches of learning a state machine and com-
paring it with other ones, targeting target DFAs [80] or probabilistic transition
systems (PTS) [81]. For Mealy type machines, which (through their input and
output behavior modeling) are better suited for describing reactive systems,
Neider et al. provided some fundamental work, using automata learning and
bisimulation [82]. Similar things were put into practice by viewing different
machines as labeled transition systems (LTS) for model comparison [83, 84]
and to verify inferred embedded control software models [85]. The closest
work to ours is from Schuts et al., which uses Mealy machine learning and
(trace and bisimulation) equivalence to compare the behavior of legacy indus-
try system before and after refactoring [86]. However, there is no known com-
prehensive approach for using bisimulation for protocol compliance checking
against a formal specification, which is the differentiation mark of this thesis
compared to the described approaches (RG3 - Section 3.1.3)

5.6 Model Checking
Peled et al. [41] have provided a very influential paper regarding black box
testing that combines automata learning with model checking. They propose
a variant with a pre-learned model and a combined learning and testing ap-
proach. The latter approach is improved by Groce et al. [87] and Shijubo et
al. [88] with adaptions in integrating model checking into the learning pro-
cess to improve its performance. Our work is based on a similar idea, and
we extended the approach by annotating Mealy machines with atomic proposi-
tions creating Kripke-like structures that we turned into Rebeca code for model
checking. That way, we implemented all the phases for going through learning,
checking, and testing real-world examples with an automated tool chain. Nei-
der and Jansen used a symbolic approach to learn and model-check DFAs (but
not Mealy or More machines) [89]. Similarily, Fiterau-Brostean et al. [90, 91]
also used a symbolic approach (using the NuSMV model checker). Translating
the learned model to Rebeca, our approach provides more advanced possibil-
ities to manipulate the model. Since in Rebeca a model’s behavior is defined
similar to a programming language, altering it is trivial. Furthermore, Rebeca
possess an operator for non-determinism (the ? operator). This allows for re-
introducing some non-deterministic behavior that is usually abstracted away
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during the learning process (since the used learning algorithms can only han-
dle deterministic state machines).





Chapter 6

Conclusion and Future Work

This chapter summarizes the work included in the Licentiate thesis and outlines
further directions to go from the current status of the research done in the thesis
and generally in the research field.

6.1 Conclusions

The research described in this thesis aims for facilitating the usage of formal
methods for generating tests to assure correctness and security with a focus on
the automotive domain and on communication protocols. Following the need
of the domain, we concentrated on generating test cases from the security anal-
ysis during the design phase, namely Threat Analysis and Risk Assessment
(TARA) process and from the implementation, namely by checking the imple-
mentation’s compliance with a specification using automata learning, as well
as annotating the models with propositions and deriving properties for model
checking. The latter part provides feedback for the design phase: since TARA
models systems components with given properties that are based on assump-
tions about a later implementation (e.g., conforming to international commu-
nication protocol standards), the actual compliance to a specification can prove
these assumptions to be correct or incorrect. The first part leads to RG1, which
is creating attack descriptions out of threat models, which can be used to gen-
erate concrete test cases for automotive systems once systems are implemented
(Section 3.1.1). The second part is twofold, first we aim for mining a suitable
model for security and correctness analysis (RG2 - Section 3.1.2) and sec-
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ond, we aim for a suitable methodology to use a behavioral equivalence with a
specification as means for compliance checking (RG3 - 3.1.3). Furthermore,
we aim for annotating the model with propositions and deriving properties in
order to bring the model in a format that allows for verifying its security with
a model checker (RG4 - 3.1.4.

Each of these research goals is met with a respective contribution namely,
a method for test generation based on threat models (Section 4.1). This oc-
curs by generating technology-agnostic test specifications written in the Ag-
nostic domain-specific Language for the Implementation of Attacks (ALIA)
out of attack trees derived from an existing tool for TARA (ThreatGuard) us-
ing labeled transition systems (LTS) as a means for the transformation. This
approach is, to the best of our knowledge, novel. Alternatively, we utilized a
RAG-based LLM system to create a) test scripts (in python) from attack trees
(or DAGs) and b) derive LTL properties for model checking. Including learned
protocol models into the RAG improved the quality of the generated tests. The
second goal is met by automated state machine derivation based on active au-
tomata learning (Section 4.2). We showed the practical use of this technique
by deriving state machines of Near-Field Communication (NFC) system for
correctness and security analyses. We also provide insights on setups, abstrac-
tion and performance evaluations of different algorithms in special settings.
The third goal was matched by a compliance checking method (Section 4.3).
This method compares the behavior two state machines; one learned from an
implementation and one modeled after a specification (e.g., the ISO 14443-3
standard). We therefore use bisimulation and trace equivalence, which in com-
bination with automata learning is novel for protocol conformance checking.
The fourth goal was achieved by a method that converts learned Mealy Ma-
chines into a checkable format (Section 4.4). Using context maps (rules that
determine when a certain proposition or property occurs) that determine the
semantics of a given protocol, we can annotate the model with atomic propo-
sitions (if necessary) and create appropriate model checking rules. We showed
that these rules can be generalized to a certain extent, so that a set of rules can
be used for checking multiple different communication protocols.

6.2 Future Directions

Despite the efforts taken in this thesis so far, quite some closely related prob-
lems have been left open to fulfill the overall objective in its entirety. Some of
these directions are:
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• Further implementations of adapters for specific protocols using the same,
general learning framework. E.g., dealing with the specifics of V2X pro-
tocols or the reader parts of NFC systems in order to create a comprehen-
sive multi-protocol learning framework. The research goal is to create a
generally applicable method for protocol model inference.

• Utilize the learned models for fuzz test generation using different strate-
gies based on node and transition properties of the learned models. The
research goal is to create highly efficient approaches for fuzz testing in
order to create effective zero-input testing methods. We propose a vari-
ety of strategies:

– Use Galois lattices [92] to build equivalence groups for fuzzing

– Averaging fuzz tests in different states (i.e., provide an equal dis-
tribution of fuzz tests over all system states).

– Fuzzing inputs with high probability of inducing state changes

– Fuzz inputs inside states that are frequent target states

– Fuzz inputs inside states that have the highest number of successor
states

• Utilize the learning and model checking framework to more specifically
look for attack pattern (like downgrade attacks, old key usage, etc.).
Therefore, we define needed input symbols for the learner, context maps
for transferring in a checkable model, and LTL rules to check for the
attacks.

• Implement a timed version of the tool chain to deal with time-sensitive
protocols (e.g., use learning concepts like MM1Ts [93] and model check-
ing with timed Rebeca).
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ing for Compliance Evaluation of Communication Protocols on an NFC
Handshake Example,” in Engineering of Computer-Based Systems
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[71] C. Y. Cho, D. Babi ć, E. C. R. Shin, and D. Song, “Inference and analy-
sis of formal models of botnet command and control protocols,” in Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security, CCS ’10, (New York, NY, USA), pp. 426–439, Association for
Computing Machinery, Oct. 2010.

[72] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias, “SFADiff:
Automated Evasion Attacks and Fingerprinting Using Black-box Differ-
ential Automata Learning,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, (New
York, NY, USA), pp. 1690–1701, Association for Computing Machinery,
Oct. 2016.
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Abstract

We propose a holistic methodology for designing automotive systems that con-
sider security a central concern at every design stage. During the concept de-
sign, we model the system architecture and define the security attributes of
its components. We perform threat analysis on the system model to identify
structural security issues. From that analysis, we derive attack trees that define
recipes describing steps to successfully attack the system’s assets and propose
threat prevention measures. The attack tree allows us to derive a verification
and validation (V&V) plan, which prioritizes the testing effort. In particular,
we advocate using learning for testing approaches for the black-box compo-
nents. It consists of inferring a finite state model of the black-box component
from its execution traces. This model can then be used to generate new rel-
evant tests, model check it against requirements, and compare two different
implementations of the same protocol. We illustrate the methodology with an
automotive infotainment system example. Using the advocated approach, we
could also document unexpected and potentially critical behavior in our exam-
ple systems.
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7.1 Introduction

The advent of connected, cooperative automated mobility provides a huge op-
portunity to increase mobility efficiency and road safety. However, the result-
ing connectivity creates new attack surfaces that affect the vehicle’s safety,
security, and integrity. With an estimated 100 million lines of embedded code,
modern vehicles are highly complex systems that need to provide consistent
cyber-security assurances. Indeed, there are an alarming spike in cyber-attacks
targeting connected cars, their electronic control units (ECUs), and the original
equipment manufacturer (OEM) back-end servers.

Therefore, making the right security decisions from the early design stages
is crucial. The ad-hoc security measures done by domain experts are insuffi-
cient to meet the requirements in the automotive domain. The standard ISO/SAE
21434 and the mandatory regulation UN R155 advocate for more systematic
reasoning about system security. The United Nations Economic Commission
for Europe (UNECE) has adopted new security regulations, such as UNECE
R155 and R156, for the homologation of future vehicles that address the iden-
tified cyber-attack risks, for example, during software updates. Similarly, the
cyber security standard ISO/SAE 21434, introduced in 2021, defines precise
security requirements for vehicles during the entire product life cycle, from its
development to its operation and maintenance. Hence, there is an urgent need
for methods and tools that address multiple security-related aspects, from early
vehicle design to deployment and operation phases.

This paper proposes a top-down methodology for systematically assessing
automotive security at different stages of vehicle development. The proposed
methodology follows the product cycle in several steps. During the early de-
sign phase, we use threat modeling, analysis, and repair to provide more sys-
tematic support for the concept design of secure (automotive) systems. These
methods allow us to identify the system’s weaknesses in security threats and
develop structural measures to prevent and mitigate them. We then use the
threat analysis results to capture the system’s critical components concerning
security properties and derive a verification and validation (V&V) plan. We
apply established processes (fuzz testing, penetration testing, etc.) for testing
the implemented system components. However, the source code of the com-
ponent implementation is often unavailable to the V&V team, and they cannot
efficiently use the classical testing methods and tools. In that case, we advo-
cate using automata learning for testing that builds an explainable model of
a black-box implementation of a component from a set of executed test cases
that facilitates testing and other V&V activities. This methodology is a re-



82 Paper I

1 Concept Design 2 V&V Planning 5 V&V Methods

3 Model Validation 4 Model Learning

M
od

el
Ch

ec
ki
ng

Fu
zz
in
g

. . .

In
te
gr
at
io
n

Te
st
in
g

Architecture Model

Threat
DB

Analysis &
Repair

Black-Box
Component
Under Test

6 V&V Execution

Component
Tester

Au
to
m
at
a

Le
ar
ni
ng

Model-based Testing

Automata

Figure 7.1: Overview of the TRUSTED methodology

sult of a joint research effort amongst the industrial and academic partners in
TRUSTED1, a project focusing on trust and security in autonomous vehicles.
In implementing our proposed methodology, we were also supported by part-
ners from the related LearnTwins2 project, which focuses on learning-based
testing methods for digital twins.

7.2 TRUSTED Methodology

The TRUSTED methodology starts with the concept design with a threat model
of the vehicle; see Stage 1⃝ in Figure 7.1. The threat model consists of two
components: (i) a system model architecture and (ii) a threat database. The
system model architecture provides a structural view of the vehicle. This view
includes vehicle components and subsystems (e.g., sensors, actuators, ECUs)
and describes their (wireless or wired) interconnections. We can assign security

1https://TRUSTED.iaik.tugraz.at/
2https://learntwins.ist.tugraz.at/
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attributes (e.g., authentication, encryption) to system components and commu-
nication links. A system model can define security boundaries that enclose
trusted subsystems and assets we need to protect from potential attacks. The
threat database contains a set of known threats—these threats from public do-
main sources, relevant standards, and previous experience. The threat model is
an input to a threat analysis method allowing the detection of structural weak-
nesses in the system’s architecture. We then combine the threat analysis with
the repair activities to identify prevention and mitigation actions required to
protect the system from identified threats.

The high-level threat analysis performed in the early stages of the design
provides essential insights into the security-related weaknesses in the system
architecture. We can take structural defense actions to improve the system’s
security based on threat repair outcomes (e.g., implementing authentication in
a specific component). Yet, there is no guarantee that an attacker cannot break
the resulting measures. Hence, it is imperative to have a solid verification and
validation (V&V) plan. In the TRUSTED methodology, we use the insights
gained by threat analysis and repair to identify risks and prepare an effective
V&V plan corresponding to 2⃝ in Figure 7.1.

We use the system architecture model developed during the concept de-
sign phase to implement and integrate the components of the system. The
implementation step is outside the scope of the TRUSTED methodology, but
we assume the components are available as black boxes (see 3⃝ in Figure 7.1).
That is, we assume that we can execute components, but we cannot access their
implementations.

During the development and integration of different components from the
system architecture, verifying and testing safety and security functionalities
becomes another critical aspect that we must address. Model validation ( 3⃝
in Figure 7.1) tests the model for conformance against the component under
test. This step provides either affirmation for the correctness (or completeness,
respectively) of the model or counterexamples to refine the latter in a loop until
the model is considered good enough to be used for test case generation.

We propose a learning-for-testing approach using automata learning ( 4⃝ in
Figure 7.1) as the core method for generating tests during V&V. In automata
learning (see Section 7.4.1), we construct a Finite State Machine (FSM) of the
System Under Test (SUT). We use the inferred FSM to: (1) obtain potential at-
tack data, and (2) identify critical inputs that might show differences between
the FSM and the SUT. We must automatically perform the necessary tests dur-
ing the development and especially the maintenance phase to guarantee a quick
response in the event of a threat.
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We chose the learning-based testing approach due to its versatility and nu-
merous V&V activities that we can undertake with the inferred FSM ( 5⃝ in
Figure 7.1). We can use the inferred FSM to: (1) visualize and understand the
implementation, (2) model check it against its formalized requirements (pos-
sibly generating test cases on specification violations), (3) generate additional
test cases by fuzz testing, and (4) Test for equivalence between implementation
and a reference model or another implementation.

In the last phase ( 6⃝ in Figure 7.1), we use various V&V strategies to ver-
ify the specified properties against the actual component under test. The test
results are final verification outcomes; meanwhile, we can use them as coun-
terexamples for the learning algorithms in 4⃝ in Figure 7.1. This policy pro-
vides a feedback loop for refining the model in the learning-based testing ap-
proach. We execute and store tests using an automated test execution platform
that augments generic test cases with additional information. This additional
information comes from a test database or is provided in a grey box testing [1].

The threat model and the tests created during various design phases must
be continuously maintained and updated throughout the vehicle lifecycle. We
must incorporate new unknown threats and vulnerabilities into the model and
re-evaluate the model to find new security issues. We must also integrate the
changes to functions resulting from software updates into the system model
and their impact on the vehicle’s security analyzed and re-tested. This closely
corresponds with the notions on testing in ISO 21434 and UNECE R155.

7.3 Automotive Security by Design

In this section, we demonstrate the use of THREATGET [2], a tool for threat
modeling and analysis to improve the security of automotive applications dur-
ing their early stages of design (step 1⃝ in Figure 7.1) and generate an appro-
priate V&V plan (step 2⃝ in Figure 7.1). We illustrate the approach with an
automotive infotainment system developed by the industrial partner.

We first model the system using THREATGET (Section 7.3.1) and apply
analysis to identify potential structural weaknesses in the system architecture
(Section 7.3). We then use this analysis to derive a V&V plan (Section 7.3.3).
Finally, we can augment it with threat repair to propose additional security
measures [3].
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7.3.1 System Architecture Model

We first create an accurate model of the automotive infotainment system (IS),
shown in Figure 7.2. The IS is part of a larger ADAS reference model. It has
several external interfaces that expose an attack surface of the vehicle. The
external interfaces in Figure 7.2 are Bluetooth, WiFi, Interior Camera, and On-
Board Diagnostics (OBD). The Multimedia Interface Hub (MIH) is an essential
component of the infotainment system that (co-)implements core functionali-
ties, including navigation, phone calls, and music playback. MIH also bridges
external and internal interfaces. The Telematics Communication Unit (TCU)
is the primary interface to the Internet. Many components in a modern vehicle
depend on the TCU. For example, navigation systems use TCUs to access and
update maps, and ECUs use them for over-the-air updates. Finally, all compo-
nents except for TCU and Head Unit communicate through a CAN interface.
We add two assets to the model – the confidentiality asset associated with the
Head Unit and the availability asset associated with the TCU. The assets need
to be protected, and their associated components are potential targets for at-
tackers.

The IS is a weak security link in modern vehicles because it is more prone
to successful cheap attacks than other components (e.g., Body Control Unit or
the Engine Control Unit). This is due to versatile attack scenarios provided
by the use of mainstream Unix-like operating systems, e.g., Uconnect and Au-
tomotive Grade Linux, the user requirements demanding functionalities like a
built-in internet browser and installing third-party apps enabling remote code
execution attacks, and the use of CAN bus that cannot guarantee communica-
tion integrity between the vehicle’s external and internal interfaces.

7.3.2 Threat Analysis

We analyze the system model with THREATGET against its threat database,
defining a set of possible threats formulated as rules. The threat descriptions
are collected from multiple sources: automotive security standards and regula-
tions (e.g., ISO/SAE 21434, ETSI, UNECE WP29 R155, and UNECE R156),
publicly documented threats identified in past incidents, and expert knowledge.

We illustrate threat rules with two examples used during the analysis of
the infotainment system model: the rule named “Gain Control of Wireless
Interface (e.g., WiFi, Bluetooth, or BLE)” and the rule named “Flood CAN
Communication with Messages”. Both threat rules originate from automotive
security analyses performed by domain experts. The first threat’s formaliza-
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Figure 7.2: Automotive infotainment system model.

tion is

ELEMENT : "Wireless Interface"{
"Authorization" NOT IN ["Yes", "Strong"] &
"Input Sanitization" != "Yes" &
"Authentication" NOT IN ["Yes", "Strong"] &
"Input Validation" != "Yes" &
PROVIDES CAPABILITY "Control" := "true". }

This rule specifies that a wireless interface (e.g., WiFi or Bluetooth) that neither
implements authorization and authentication nor sanitizes or validates its inputs
is susceptible to threats. The last line in the rule explicitly states that if this
threat is exploited, the malicious user can control the wireless interface. The
“Threat Flood CAN Communication with Messages” threat is formalized as

FLOW {
SOURCE ELEMENT : "ECU"

{ REQUIRES CAPABILITY "Control" >= "true" } &
TARGET ELEMENT : "ECU" {

HOLDS ASSET {
"Cybersecurity Attribute" = "Confidentiality" &
PROVIDES CAPABILITY "Read" := "true" } } &

INCLUDES ELEMENT : "BUS Communication" &
INCLUDES NO ELEMENT : "ECU" {"Anomaly Detection" = "Yes".} }

This rule states that the threat is present if there is a path starting from an ECU
that is under the control of a malicious user to another ECU that holds the
confidentiality asset and that there is a bus between them and no ECU on the
path has implemented anomaly detection.
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When applied to the infotainment system model, THREATGET identifies
multiple threats. One threat is “Spoof messages in the vehicle network because
of the missing components”. It describes a pattern that starts at an Interface
with no Authentication and ends at an ECU with no Input Validation and holds
an asset. It includes a wired Shared Medium representing a vehicle’s CAN
BUS. Moreover, no element (of type Firewall, Server, ECU, or Gateway) on
the flow from the Interface to the ECU takes care of Anomaly Detection.

We can address the identified threats with appropriate security measures.
Threat repair [3] consists of preventing concrete threats by proposing secu-
rity measures that can be implemented during the system’s design. THREAT-
GET implements attribute repair, a method that proposes changes in the com-
ponents’ security attributes as locally deployed measures with a simple cost
model.

In the case of the automotive infotainment system model, e.g., the proposed
threat repair measures include enabling authorization and implementing au-
thentication in the WiFi and Bluetooth components. We note that threat repair
does not remove the need for the planned V&V activities. The fact that authen-
tication is integrated into the WiFi device, following the outcomes of threat
repair, does not guarantee that the authentication algorithm’s implementation
is weakness free. On the contrary, systematic testing of the WiFi’s authentica-
tion protocol is even more necessary to gain confidence that the WiFi device is
not a possible entry point for malicious users.

7.3.3 V&V Planning
In addition to threat analysis, there is support for identifying and modeling
more sophisticated threats using attack trees; c.f. [4]. This results in more
knowledge about potential attackers’ steps when intruding into a system. Sim-
ple rules can be assigned attributes called capabilities that are either required
for an intrusion or can be gained through the intrusion of a system compo-
nent. Moreover, we can define the different access levels to a component (e.g.,
Access < Read < Modify < Control). Depending on previously acquired
capabilities, different attack tree rules trigger, yielding distinct attack trees. An
example of such a generated attack tree is illustrated in Figure 7.3.

The attack tree depicted in Figure 7.3 shows how a malicious user can
access the confidentiality asset associated with the Head Unit via external in-
terfaces such as WiFi and Bluetooth. For instance, control of the Bluetooth
interface can be gained if its security attributes (input validation and saniti-
zation, authorization and authentication) are not implemented or have weak-
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nesses. From there, the user can gain control of the Multimedia Interface Hub,
which is not sufficiently secure, and then get control of the Head Unit and
hence the access to the asset. The attack tree exposes the most critical compo-
nents that need to be protected. We note that the attack tree from Figure 7.3
is not maximal nor unique – while THREATGET generates multiple trees for
each asset in the model, including the maximal attack trees, we use a simpler
tree for illustration purposes.

Confidentiality Asset
Read = true

Head Unit
Control = true Head Unit

Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Multimedia IF Hub
Control = true Multimedia IF Hub

Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Bluetooth
Control = true Bluetooth

Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

WiFi
Control = true

WiFi
Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

Figure 7.3: Attack tree derived from THREATGET. Multiple children from the
same node are implicitly interpreted with an OR operation.

7.4 Automotive Security Testing

In this section, we advocate an approach based on learning to test critical com-
ponents identified by the threat analysis methods during concept design, when
these components are assumed to be black-box to the tester.

7.4.1 Automata Learning for Correctness

Many cyber-physical components in the automotive domain implement one or
multiple finite state machines (FSMs).

Implementing larger automotive FSMs becomes cumbersome mainly be-
cause: (1) ensuring FSM’s correctness w.r.t. its specification is expensive, (2)
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correctly coding the structure of a large FSM is difficult, and (3) correct inte-
gration of FSMs in complex software is hard.

Unfortunately, many software-driven components in the automotive indus-
try are black boxes from different manufacturers, hence are hard to verify and
thus do not provide functional or non-functional guarantees.

Given an FSM of a black-box automotive component, we can test and ver-
ify it to increase our confidence in its correctness. Automata learning has
proven to be a successful method for learning-based testing of communication
protocols that are also used in the automotive domain, e.g., MQTT [5] or Blue-
tooth Low Energy [6]. We use automata learning [7] to infer an FSM model
(concretely a Mealy machine) of the the SUT. In the learning context we refer
to the SUT by system-under-learning (SUL). In automata learning, a learner
asks an oracle two types of queries. First, membership queries to determine
the SUL’s output for a given input word. Second, equivalence queries check
whether a learned model conforms to the SUL, to which the oracle returns pos-
itive answer or a counterexample. A counterexample is an input-output word
distinguishing SUL from hypothesis. In practice, oracles for black box systems
work with conformance testing.

Ordinarily, real-world systems’ alphabets are not manageable for learning
algorithms. Abstraction helps to both cope with this fact and to make inferred
models more human-readable. Too much abstraction, however, might induce
non-deterministic behavior and hide problems we intend to find. There are
also automatic abstraction refinement approaches for an optimum of abstrac-
tion in a mapper [8, 9]. An abstraction mapper consists of a mapping function
that converts a concrete input into an abstract symbol. It also observes the
SUL’s concrete outputs and sends an abstraction to the learner. To send a con-
crete input to the SUL, the mapper inverses the abstraction. There are multiple
methods to assess the behavioral correctness of the learned FSMs, including
(1) black-box checking [10], adaptive model checking [11], a combination of
learning-based testing and machine learning [12] and symbolic execution [13].

7.4.2 Use-Case Scenarios

The attack tree (see Figure 7.3) poses the critical components that need to be
tested for security. In this section, we illustrate our learning-based testing ap-
proach on the two components highlighted in gray color in Figure 7.3 - the
Bluetooth interface (as an entry vector) and the Head Unit ECU.
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Bluetooth and Bluetooth Low Energy

Bluetooth is a well-established standard for wireless audio used in most info-
tainment systems. Bluetooth Low Energy (BLE) grows in popularity for car
access and sensor data transmission. The protocols have a variety of known
vulnerabilities [14, 15, 16, 17, 18], some also specifically for automotive sys-
tems3.
Learning Setup we use Intel Wireless Controllers (AC 8265 and AX200) im-
plementing Bluetooth and BLE. The learning setups are similar, the difference
is in the radio hardware and the physical layer, requiring three entities: (1) Ra-
dio Device, (2) Learner, and (3) Interface between the two with a mapper. The
learner was implemented using the LearnLib framework [19].

Learned Model and Findings We inferred the pairing process models, which
are used for encryption and therefore security-critical in the SULs. As a tangi-
ble result, we discovered a BLE deadlock state (red state in Figure 7.4) in the
Linux BLE host software. With repeated out-of-order transmission of pairing
requests of different types, we force the respective BLE stack into a state that
limits the device to respond to basic link-layer control packets. After the state
is reached, each following connection will start in this state until the controller
is reset.

3https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-a-key-
passive-entry-vulnerable-to-relay-attacks/
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Unified Diagnostic Services

Each ECU has a secure access mode reachable through its UDS implementa-
tion, available via vehicle’s OBD connector. An attacker able to exploit UDS
security features would be also able to manipulate data or even flash the ECU
with a malicious firmware.

Learning Setup To communicate with the ECU we used a CAN interface.
To learn a different ECU we only need to adapt the interface. We started by im-
plementing a reduced UDS interface, consisting of instructions to put an ECU
into secure access mode. Communications occures via a CAN bus interface.
The learner was implemented using the AALpy framework [20].

Learned Model and Findings The learning experiment resulted in a reduced
FSM of the UDS shown in Figure 7.5. An analysis of the results shows that
once being successfully authenticated (state s4), an incorrect authentication
key will still result in the same state. This is unexpected and allows for pro-
longing a session without authentication. When requesting a new seed for
re-authentication (s5) this behavior persists. Moreover, on re-entering a secure
session afterwards (from s6), the ECU accepts an old key as well; an unex-
pected behavior after re-initiating the key authentication. Figure 7.5 marks all
unexpected behaviors in red.
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7.5 Conclusion
We introduced the TRUSTED methodology for designing and assessing trusted
and secure automotive systems. The main novelty of the proposed methodol-
ogy is its holistic and systematic approach to security, which starts at concept
design and is carried down to the implementation and assessment of individual
components. We instantiated the different parts of the methodology using the
state-of-the-art methods and tools for threat modelling and analysis, automata
learning and testing. We illustrated the use of the methodology by applying
it step-by-step an automotive infotainment system. Using the learning-based
testing approach we could document previously unpublished denial-of-service
conditions in the examined BLE setups, as well as unexpected behavior allow-
ing for extending secure UDS programming sessions on the scrutinized ECU.

Future Work We plan to further automate the transition from the concept
design and V&V planning on one side, to the actual testing activities done
on the level of components by devising a domain-specific test description lan-
guage that can define abstract V&V plans derived from the attack trees, and be
refined in a way so that eventually it can be executed on a platform (e.g., as in
[21]). Second, the TRUSTED methodology mainly focuses on the transition
from concept design to testing the implementation. We plan to also study the
opposite direction – how to use the component testing results to update the sys-
tem model and have a more refined threat analysis and a more realistic threat
assessment.
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Abstract

Vehicles are on the verge building highly networked and interconnected sys-
tems with each other. This requires open architectures with standardized inter-
faces. These interfaces provide huge surfaces for potential threats from cyber
attacks. Regulators therefore demand to mitigate these risks using structured
security engineering processes. Testing the effectiveness of this measures, on
the other hand, is less standardized. To fill this gap, this book chapter con-
tains an approach for structured and comprehensive cybersecurity testing of
contemporary vehicular systems. It gives an overview of how to define secure
systems and contains specific approaches for (semi-)automated cybersecurity
testing of vehicular systems, including model-based testing and the description
of an automated platform for executing tests.
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8.1 Introduction
Mobility is a high priority in our society. Statistics report global annual car
sales between 60 and 75 million1 during recent years. According to the Eu-
ropean Automobile Manufacturers’ Association (ACEA), just in Europe ap-
proximately 350 million cars are currently in use [1], and the number grows
to beyond 1 billion for a worldwide estimation. Cars are ubiquitous, for many
families and businesses around the world, since decades. What has changed,
however, is the fact that today’s vehicles have become complex IT systems, of-
ten also called ”computers on wheels”. Modern cars run 100+ million lines of
source code (MLOSC), and host complex computer networks both internally
(in-vehicle networks) and externally. Many modern cars are now connected
via the Internet to (maybe even multiple) cloud services, as well as to cellular
networks (3G, LTE, 5G), and to specific vehicular networks (also known as car-
to-car (C2C) or vehicle-to-everything (V2X), like ITS-G5). And that’s not all:
most vehicles also provide local networking capabilities (also called personal
area networking, PAN). Typically based on WIFI and Bluetooth, it is used to
connect to users’ personal devices like smart phones and tablets, or to their
home WLAN. To complement that already impressive array of wireless com-
munication interfaces, some car manufacturers (or Original Equipment Manu-
facturers - OEMs) might add ultra-wide band (UWB) radios to communicate
with car access systems like owner’s keys or keycards. In addition, advanced
driver assistance systems (ADAS) and future fully automated driving (AD) ca-
pabilities add GNSS receivers (Global Navigation Satellite System), TMC re-
ceivers (Traffic Message Channel), and active radar systems. Modern vehicles
combine deeply complex software with exposure to a wide range of wireless
networking technologies to both public and closed networks). In cybersecu-
rity, this is called opening a large attack surface. This is worsened by the fact
that vehicles are exposed for a much longer time than, e.g., personal computers
(PC) or mobile devices like smart phones. Cars are in operation for some 15
years and more, which increases the threat that a vulnerability is found, shared,
and at some point in time exploited by an attack. With such significant high
exposure, let’s consider potential threats which could evolve from malign at-
tacks. Vehicles are highly dynamic (by nature), provide high levels of energy
(storing 100kWh and more), are valuable (sometimes beyond 100kC) and ex-
ist as worldwide accessible objects in public, thus unrestricted places. When
exploited by an attack taking over remote control, vehicles could become dan-
gerous weapons, for both passengers inside, and for other road participants.

1https://www.statista.com/statistics/200002/international-car-sales-since-1990/
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Worse, if groups of vehicles would come under attacker’s control, they could
be used to stage threats on city or even national level. State-sponsored attackers
could stage war or terror attacks of not-yet-seen scale. Other scenarios might
be less about harming humans, but could include denial-of service on single ve-
hicles (e.g., owners cannot use their vehicles unless a ransom is paid) or on fleet
level (e.g., blocking important road infrastructure, threatening whole commu-
nities, and some serious damage of a brand’s reputation). And of course, there
is simple car theft. Data privacy is also an important aspect. Modern cars might
”know” quite a lot about their users, including their past and present locations,
driving habits, additional passengers, anything spoken in the vehicle, attention
level while driving, contact information like phone numbers from connected
personal devices, etc. An attack could therefore retrieve quite a lot of personal
information and thus become considerable value to attackers. While not all of
these threats have been discussed widely in public, the automotive industry is
very much aware of it, and has stepped up efforts in designing more secure sys-
tems in cars, and establishing secure life cycle processes to provide necessary
updates to fix vulnerabilities. An important part of securing these vehicular
systems is the verification and validation of the effectiveness of taken security
measures through testing. This testing needs to be done continuously through
the life cycle (as new exploits might come up over time), and also as updating
a system (or just a part of it) might alter its behavior an a way relevant to its
security. In essence, (cyber)security testing must assure a system to display
a small attack surface, be resilient and (possibly) to fix vulnerabilities before
they are exploited in the wild.

The remainder of the chapter is structured the following way: Section 8.2
contains the current state of the art and related work. Section 8.3 contains
measures for securing automotive systems. Section 8.4 contains specific ap-
proaches for automated cybersecurity testing of vehicular systems, including
model-based testing and the description of an automated platform for execut-
ing tests. Section 8.5, eventually concludes this chapter.

8.2 State of the Art and Related Work

The automotive industry can draw from experience in other domains regard-
ing security testing. General IT (managing e.g., corporate networks and IT
systems) has established a history of penetration testing (abbreviated: pen test-
ing), as simulated, authorized cyber-attacks. Typically executed by cybersecu-
rity experts (acting as “white-hat hackers”), the goal is to identify weaknesses
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by letting these experts try to hack into the system under test (SUT) under pre-
defined constraints (e.g., no physical access, no permanent harm), typically
within a defined time window. If successful, these tests can thereby discover
and document weaknesses. Translated to automotive industry, several com-
panies offer similar pen-testing as a service on different levels (component,
system, vehicle). While pen-testing might provide highly valuable insights
into what level of security has been achieved for the vehicle, and might even
uncover previously unknown vulnerabilities, it suffers from limited scalability
and repeatability, as it is driven by and dependent on human experts. Security
experts have toolboxes with highly effective tools (like the open source Metas-
ploit framework2), but often need to supervise and configure these tools, and to
adapt existing or write new scripts for complete attack chains to match a spe-
cific SUT. This requires skills and labor, and often involves considerable costs,
which clearly limits scalability. Due to the sheer complexity of automotive
software code (100+ MLOSC), it is also quite challenging for the experts to
correctly hypothesize vulnerabilities, and to select (and execute) the most ef-
fective attacks, given the limited time available. This might heavily depend on
expertise of the human testers, further limiting repeatability and comparability
between pen tests campaigns. The threat of cyber attacks by adversaries has,
however, also been recognized by standards and regulatory bodies. The United
Nations Economic Council for Europe (UNECE) has issued a regulation (R
155 [2]) that prescribes the installation of a cybersecurity management system
(CSMS). A CSMS is a process framework that accompanies the automotive
development process over the complete life cycle and assures cybersecurity in
every phase. Consequently, the International Organization for Standardization
(ISO) and the Society of Automotive Engineers (SAE) have issued a joint stan-
dard (ISO/SAE 21434 [3]) that defines such a CSMS. As testing guidelines
in these standards are somewhat underrepresented in contrast to security engi-
neering, a structured approach is needed, e.g., as defined in [4, 5]. It further
became clear that in order to establish dependable security covering all vari-
ants of vehicle lines in their full life cycle, supporting the upcoming acceler-
ated software development cycles (automotive DevOps), an advanced process
based on smart automation was required, as suggested in [6].

2https://github.com/rapid7/metasploit-framework
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8.3 Automotive Cybersecurtiy Lifecycle Manage-
ment

In order to maintain secure (and through, security-related impacts, also safe)
vehicular systems, the respective system needs a security concept. The cyber-
security testing (see Section 8.4) will eventually validate and verify the effec-
tivness of that concept. To establish a security concept for the complete life
cycle of a vehicle for testing, we mainly rely on five pillars:

1. Threat Modeling (see Section 8.3.1)

2. Variant Management

3. Vulnerability Assessment

4. Automated Test Generation (see Section 8.4.2)

5. Process Governance

Threat modeling (see Section 8.3.1) is a widely proliferated technique in
the automotive industry, mainly as part of a threat analysis and risk assessment
(TARA) process [7].

As an OEM’s fleet contains various vehicle model configurations, all of
which contain tens of ECUs all of which again may display different hardware
and software versions, keeping track of this potentially vast number of vari-
ants is crucial to determine the security posture of each member of the fleet.
Our approach to tackle this problem is to use calibration data management that
links technical attributes with software calibrations, to keep track of all ECU
variations over the system’s life cycle [8, 9]. This system, CRETA, contains
exhaustive information about the variants, including their ECU firmware bina-
ries.

This allows for the stored firmwares to be subsequently analyzed, generat-
ing a digital model of the software. To do so, firstly the firmware is extracted
by iterating through the file tree, using an extraction algorithm and validat-
ing the extraction’s correctness. The extracted software undergoes a compo-
sition analysis that pre-processes executables and normalizes the software in
order to compare to a large database of mapped components, identified e.g.
by file paths, file names, and characteristic strings in the software or configu-
ration data, yielding a Software Bill-of-Materials (SBOM). Subsequently, the
model is analyzed for security properties using pattern recognition. Patterns
of known attacks from Common Vulnerabilities and Exposures (CVEs) are
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compared with each identified software library in the SBOM. Furthermore, the
model undergoes a binary code analysis to find vulnerabilities not found in
public databases: the binary is mapped in data and code sections, the code is
then disassembled and later mapped into an intermediate language (for nor-
malizing purposes) that allows for reconstructing the functions, analyzing the
parameters and stack behavior and building control and data flows [10]. This
matching, for instance, is able to identify common flaws like buffer overflows
and, hence, is able to uncover zero-day vulnerabilities in software in a black
box setting. Thirdly, patterns for proliferated code guidelines and relevant se-
curity standards are implemented, allowing for compliance checking against a
given set of standards. This analysis, paired with full life cycle-coverage of the
variants, allows for dealing with the parts lists and vulnerability management
requirements mentioned above, as well as for verifying security requirements.

Vulnerabilities found in the code through pattern matching, however, are
not necessarily exploitable for a variety of reasons. For instance, the location
in the code could not be reachable, the impact of the vulnerability could be
nullified through write protection of the memory or file system, or the interface
might be protected by access controls. Therefore, the generated model also
allows for model-based cybersecurity test case generation by using either the
generated behavior model for model checking or by directly using the found
patterns as basis for vulnerability exploitation [11]. We also aim for deriv-
ing test cases from threat modeling with a certain degree of automation (see
Section 8.4.2).

To govern the process we developed our tool, FUSE, that guides activities
of a given standard and provides standards-compliant documentation given the
necessary input. We implemented ISO/SAE 21434 [3] and UNECE R155 [2]
(as well as ISO 26262 [12], ISO 25119 [13]). The modeled objectives from the
standards allow for providing all necessary artifacts for performing a review or
audit, as well as keeping track of the conformance to relevant standards inside
the development project.

8.3.1 Threat Modeling

One key element of cybersecurity analysis in all life cycle phases is threat mod-
eling. This technique for security analysis is around for many years and well
proliferated. It basically consists of modeling the information flows in an SUT
and consequently examining them in a comprehensive way, e.g., via STRIDE
or a similarly structured method [14].
Numerous software capable of performing a thread modeling process exists,
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but prior to ThreatGet none was specifically developed for embedded or IoT
systems. ThreatGet is a software tool developed by Austrian Institute of Tech-
nology (AIT) and based on Microsoft Enterprise Architect, a commonly used
platform for systems model engineering [15].
It is used to examine models, objects, connections and charts in a system to
enable iterative threat and risk analysis, covering the following categories:

• Actor,

• Sensor,

• Vehicle Unit,

• Data Store,

• Communication Interface,

• Communication Flow

Objects and connections in ThreatGet have so called tagged values at cre-
ation time. These describe analysis or security relevant properties of elements.
It is recommended for users to extend the properties in addition to already pro-
posed tagged values. Additionally, a database is used in the background that
contains objects, which can also be extended by a user [15].

As an application example, Figure 8.1 shows the threat diagram of a com-
munication flow inside ThreatGet. In this case, the environment data from the
camera is directed to the ”Sensor Data Fusion and Decision Making” unit. Af-
ter all diagrams are completed, a threat-overview is derived. An automatic risk
evaluation consists of suggested values and can be adapted in a manual risk
evaluation. In this step it is possible to rate the impact and occurrence of a
threat at different levels and afterwards results can be exported in a report [15].

8.4 Cybersecurity Testing
In order to assure the cybersecurity of automotive systems and provide evi-
dence for the appropriateness and effectiveness of security measures (accord-
ing to a cybersecurity management system) , rigorous, structured and com-
prehensible testing is necessary [2]. Therefore a structured process, aligned
with ISO/SAE 21434 [3] is recommendable. Such a process for testing could
contain the following activities [5]:
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Figure 8.1: A list of found threats between the camera and the sensor data
fusion and decision making [15].

1. Item Definition

2. Threat Analysis and Risk Assessment

3. Security Concept Definition (mainly including the test targets)

4. Test Planning and Scenario Development

(a) Penetration Test Scenario Development

(b) Functional and Interface Test Development

(c) Fuzz Testing Scenario Development

(d) Vulnerability Scanning Scenario Development

5. Test Script Development

(a) Test Script Validation

6. Test Case Generation
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(a) Test Environment Preparation

7. Test Case Execution

8. Test Reporting

While items 1-3 correspond to a threat modeling process (see Section 8.3.1),
the rest of them are the core testing process. To increase testing efficiency,
these steps could be partially automated using model and learning-based ap-
proaches that can execute test planning and execution steps [6]. Here, the steps
can be summarized into concept design. Item 4 forms V &V planning, while
items 5 and 6 can be subsumed under V & V Methods. Finally, items 7 and 8
forms V & V execution. In between the planning and the methods, steps for
automation can take effect: models from the concept design can be validated
in an automated way and single components can be modeled using automated
learning techniques and verified using methods from the V & V methods. An
example of this used in the InSecTT project is described in Section 8.4.1. The
full approach as described above consists of the following steps [6]:

1. Concept Design

2. V&V Planning

3. Model Validation

4. Model Learning

5. V&V Methods

6. V&V Execution

8.4.1 Learning-based Testing
Following the approach described above, we use learning, more concretely ac-
tive automata learning to derive a model of a system [16]. The methodology
uses a learner-teacher system where an all-knowing teacher answers the learn-
ing system queries about the SUT, in the context of cyber-physical systems or-
dinarily by providing the output to a series of inputs. The learner tries to infer
a state machine from the given information. Once it has a hypothesis of a state
machine that describes the observed behavior, it presents it to the teacher who
then acknowledges the hypothesis as correct or gives a counterexample. This
again, in real-world situations of black-box learning will mostly be simulated



8.4 Cybersecurity Testing 107

Learnlib (JAVA) API (C/C++) ProxmarkSocket
USB NFC

SuL

Figure 8.2: NFC Automata Learning Setup [23]

by conformance testing algorithms: if conformance is shown, the hypothesis
is assumed as correct, otherwise a failing test sequence serves as a counterex-
ample. The counterexample is taken as new input to refine the hypothesis and
the learning continues until no more counterexamples are found. The this algo-
rithm has been first formulated by Angluin [17] and has experienced significant
improvements since (e.g., [18, 19]).

In accordance with the process outlined in Section 8.4, we use this tech-
nique to infer a model of a component. As a proof-of-concept we test a car
access system based on Near-Field Communications (NFC). The testing setup
consists on a learner (as described above) based on the Learnlib Java library
[20] and a Proxmark NFC device [21] with an respective API that enables us
to learn a model of the ISO 14443-3 NFC handshake protocol [22]. Figure
8.2 shows an overview of this setup. The used learning setup allows for infer-
ring a state machine of the protocol and compare it to the specification in the
standard to check its conformance. Figure 8.3 shows the learned model of the
actual SUT (and NXP test card of a car access system prototype). Further use
of the model is to do actual model checking or to use the model as an input for
guided fuzz testing.
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Figure 8.3: Learned Model of an NXP NFC Test Card

8.4.2 Model-based Test Case Generation

On a macroscopic level, a model of a complete vehicle as defined in the threat
model (see Section 8.3.1) has to be explored in order to identify single com-
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ponents and generate test cases based on an attack tree [24, 25], a petri net
[26, 27], or similar. If the SUT is modeled manually and, therefore, the com-
ponents are known, this is trivial. If the setting is a black or grey box situation,
we follow the approach to assume a generic model as starting point and test
various components of the model by, e.g., send certain CAN messages for enu-
meration or try out an exploit that is known to affect a very broad variety of
systems. Based on a comparison of the expected and actual output of the test,
one can narrow down the set of likely components and system architectures (as
described in [28]), e.g., based on SAT solving [29].

In order to generate test cases on a component level, a model must be trans-
formed into a form that can be examined using a model checker (e.g. the Re-
beca model checker [30] or SLAM [31]). Violations of the specification found
by a model checker point towards an interesting position for a test case that
could be extrapolated out of the traces leading to the respective states. There is
also work regarding a toolchain using the UPPAAL framework [32].

Subsequently properties defining the security of a system shall be defined
and used in the model checking. For c) where the model checking fails, a
security problem might be present. The trace of the counter example can help
in building a test case. Moreover, the input sequences used for the automata
learning of the model shall be used to make test cases for the actual system-
under-test. Using the traces as test vectors eliminate false positives from the
model checking, as the exploitability of specification violations is test on the
actual system. To concrete the abstract input, fuzzing techniques may be used
[33].

8.4.3 Testing Platform

To realize the testing in the faction outlined in Section 8.4, a testing framework
was developed and implemented. The high-level architecture was derived from
the approach outlined in [4]. It has been adapted to suit the need of performing
test in any phase of the product life cycle by adding co-simulation techniques
into the testing framework architecture (see Figure 8.4 for an overview). The
core component is a Security Testing Framework (see Section 8.4.4). It gains
test cases from a generation engine that is fed by two sources: security func-
tional tests from security requirements and penetration test attack vectors that
have been tried out before (see description in Section 8.4.4) from a library.
The core framework executes the attacks directly onto the SUT or into a co-
simulation platform (indicated as framework interfaces in the figure) that inter-
connects various simulation parts: environment (i.e. other vehicles’ and infras-



110 Paper II

Figure 8.4: Overview of the Automotive Cybersecurity Testing Framework’s
high-level architecture

tructure’s interference), network (generating mainly ITS-G5 traffic), channel
(capable of simulating various physical layer signals as well as emitting them
physically) and application (Section 8.4.4 contains an example with a platoon-
ing application). This way, each component can be stimulated the same way
regardless if it is a physical or simulated component.

8.4.4 Automated Test Execution
For test execution, the test cases that were derived as described in previous
chapters are fed into the automated test execution environment. Test cases are
either manually written or generated in the ALIA DSL [34] format, which aims
to provide an abstract and system agnostic representation of logical steps in a
test case. Out of the main test-script and its included sub-scripts (containing
frequently occurring blocks that handle a specific task such as opening a lis-
tener) a JSON Object is generated. These test case descriptions in DSL and
JSON format are stored into a Database and can be accessed through the Or-
chestration Application; a platform independent web application that allows a
user to manage information about the current SUT, schedule test execution and
review results. This Orchestration Application then sends the test cases that
the user wants to execute to the Execution Engine (AXE) and afterwards gen-
erates a report out of the received output from the AXE and the Test Oracle.
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Figure 8.5: AACT Test Execution Framework

The AXE is a Python based software that runs on an instance of Kali Linux
and utilizes a variety of different interfaces, libraries and other software tools
to perform a test case execution. It takes either a single test case or a structured
collection of tests as input in JSON format and starts to subsequently execute
contained steps. Figure 8.5 shows an overview of this architecture. This modu-
lar approach allows not only to target a specific SUT but also to control and pa-
rameterize whole (semi-) virtual SUT environments to manage SUT-behavior
during a test scenario. Furthermore, it is possible to define and address differ-
ent processes for tool execution which enables for example to host a malicious
server, start a netcat listener and execute exploit code sequentially in a single
test and afterwards perform code execution in an obtained reverse shell in the
listener process.

One proof-of-concept use case implemented in the framework was security
testing of the Ensemble platooning protocol [35] in a simulated environment.
The concrete setup consisted of two truck simulations running on low-cost
hardware connected via physical ITS-G5 [36] connection via Cohda modems.
Another modem is used as an adversary to eavesdrop and interfere with the
connection. The testing framework is able to start the simulation, so that the
simulated trucks form a platoon. The actual test consists of a) listening to the
communications b) distilling the session key out of a package c) cracking the
key (for testing purposes, the key was reduced to eight bits) d) injecting a ma-
licious message to disband the platoon. Figure 8.6 shows an overview of this
setup. The result was that the injection failed for timing reasons, because the
platoon keep-alive messages were sent in such a high frequency that they in-
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Figure 8.6: Platooning Use Case Overview

terfered with the break-up sequence. Even with reduced key (from AES-256
down to 8 bits) the protocol was secure against the tested attack. Furthermore,
ITS-G5 built-in signatures, that were disabled for the test, would have pre-
vented a successful injection. The test could therefore show the security of the
protocol in an automated way as described above.

8.4.5 Fuzzing
The goal of fuzzing is to reach a non-intended state of a SUT by using com-
pletely or partially random input. The latter technique may use a structured
frame structure that is compliant with communication standards used by the
SUT and randomized payload data. [37] In case of a CAN-Bus, a fuzzing tool
can create packets that consist of the standard ID Range (0 to 2047) and a pre-
viously learned or sniffed payload [38]. A fuzzer should include the following
components [39]:

• A fuzz generator that assembles input from non-random components and
random components with a sufficient amount of randomness

• A deliver mechanism that sends the generated inputs to the SUT

• A monitoring system (test oracle), which interprets the results such as
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SUT responses, monitored network communication, debug interface out-
put, system signals or other physical responses and performs decisions
based on it e.g. if a test passes or fails.

By using this approach, no in-depth knowledge about the SUT is needed
and every component that provides external interfaces can be targeted for test-
ing, including ECU software, ECU hardware, protocols and busses (e.g. CAN).
Fuzzing may be utilized in the automotive environment to [40]:

• Reverse engineer messages on busses

• Disrupt an in-vehicle communication network

• perform a cyber-attack

• lead to vehicle component damage.

Depending on the used interface and protocol it may not be possible to
fuzz-test every possible combination of input in its entirety in a feasible time
frame. Therefore, it makes sense to pre-select meaningful value and posi-
tion ranges for randomized content. Because of this potentially large test case
space, fuzzing may be applied in parallel to other test methods as long as the
complete run-time is still in a defined range and produces positive results.

In case of the AVL AXE, fuzzing CAN bus signals is a very common use
case. A fuzzing software e.g. booFuzz, American Fuzzy Lop or caring caribou
is armed with valid CAN Messages or a template with a specification which
parts of messages should be randomized and then handles the tasks of sub-
sequently sending the (generated) data to the SUT as well as receiving and
interpreting the feedback (such as Vector Tools CANoe).

8.5 Conclusion
This chapter showed a holistic approach of cybersecurity testing of modern
vehicles over the complete life cycle. It showed how, proceeding from threat
modeling and variant management, test cases can (semi-)automatically be de-
rived using structured processes and learning techniques. The generated tests
are subsequently executed on an automated platform that is capable of control-
ling the test and/or simulation setup and applying the respective attack vector.
The described methodology provides an end-to-end means to test vehicular
systems over the complete life cycle.
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Abstract

Near-Field Communication (NFC) is a widely adopted standard for embedded
low-power devices in very close proximity. In order to ensure a correct system,
it has to comply to the ISO/IEC 14443 standard. This paper concentrates on
the low-level part of the protocol (ISO/IEC 14443-3) and presents a method
and a practical implementation that complements traditional conformance test-
ing. We infer a Mealy state machine of the system-under-test using active
automata learning. This automaton is checked for bisimulation with a specifi-
cation automaton modelled after the standard, which provides a strong verdict
of conformance or non-conformance. As a by-product, we share some obser-
vations of the performance of different learning algorithms and calibrations in
the specific setting of ISO/IEC 14443-3, which is the difficulty to learn models
of system that a) consist of two very similar structures and b) very frequently
give no answer (i.e. a timeout as an output).
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9.1 Introduction

In this paper we describe an approach of very thoroughly evaluating the com-
pliance of Near-Field Communications (NFC)-based chip systems with the
ISO/IEC 14443-3 NFC handshake protocol [1] using formal methods, con-
cretely automata learning and equivalence checking. We present a tool chain
that is easy to use - both the learning and the equivalence checking can run
fully automatic. A complete automaton of the system-under-test (SUT) com-
pared with a specification automaton modeled after the standard, provides a
strong complement to conformance testing. The remainder of this paper struc-
tures as follows. First we provide its motivation and contribution. Section 9.2
gives an overview of basic concepts in this paper, including a formal definition
of bisimulation for Mealy Machines as used in this paper. Section 9.3 describes
the developed interface for automata learning of NFC systems, while Section
9.4 describes the learning setup including a comparison of different algorithms
and calibrations to be most suitable for the specifics of the NFC handshake pro-
tocol. Section 9.5 shows real-world results, while Section 9.6 compare them to
the works of others. Section 9.7, eventually, concludes the paper and gives and
outlook on future work.

9.1.1 Motivation

As the NFC protocol is widely adopted in a broad variety of different, often
security-critical, chip systems like banking cards, passports, access systems,
etc., that use relatively weak hardware, a correct implementation is utterly
important. While there are many works about security weaknesses in NFC
(e.g., [2, 3]), also specifically regarding the ISO/IEC 14443-3 handshake (e.g.,
[4, 5]), there is few works on comprehensive testing (see Section 9.6). As-
suring the correctness of the system is a principal step in the quest to trust-
worthy systems. As there is, to the best of our knowledge, no comprehensive
works regarding assessment of the handshake protocols, as the fundament of
secure protocols build atop, we aim for a strong verdict of ISO compliance for
NFC systems. To make this verdict more scalable than manual modeling, yet
strongly verified, we choose automata learning to automatically infer a formal
model of the implementations under scrutiny. For the actual compliance check-
ing, we use bisimulation and trace equivalence checks against a specification
automaton from the ISO/IEC 14443-3 standard (a rationale is given in Section
9.2.2).
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9.1.2 Contribution
Overall, this paper is on the interface between communications protocols, em-
bedded systems and formal methods. This work provides the following contri-
butions for people with scholarly or applied interest in this approach of strong
compliance checking:

• Insights regarding the specifics of learning NFC using active automata
learning

• An evaluation on the performance of different learning algorithms in
systems with very similar structures

• Developing an NFC interface for a learning system

• An approach for automated compliance checking using bisimulation and
trace equivalence

We saw the NFC handshake to be specific in two aspects: a) it consists of
two parts that are very similar and hard to distinguish for Learners and b) the
vast majority of outputs from a system-under-learning are timeouts. This has
severe impact on the learning where we examined different algorithms and
configurations. The maximum word length has an impact on correctly infer-
ring an automaton: too short yields incomplete automata, too long seemed
to have a negative performance impact. Surprisingly the L* algorithm [6]
with Rivest/Schapire (LSR) closure [7] surpassed more modern ones in learn-
ing performance. For discovering deviations from the standard, the minimum
word length was found to have an impact. Here, the TTT algorithm [8] per-
formed best, also followed by LSR. We further created a concrete hardware/-
software interface using a Proxmark device and an abstraction layer for NFC
systems. Lastly, we integrated bisimulation and trace equivalence checking
into the learning tool chain, which enables completely automated compliance
checking with counterexamples in the case of deviations from the standard.

9.2 Preliminaries
This section outlines the theoretical fundamentals of state machines and au-
tomata learning including a definition of equivalence and bisimilarity in the
context of this paper. It further briefly describes the used framework and the
basics and characteristics of the scrutinized protocol.
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9.2.1 State Machines

A state machine (or automaton) is a fundamental concept in computer sci-
ence. One of the most widely used flavors of state machines are Mealy ma-
chines, which describe a system as a set of states and functions of resulting
state changes (transitions) and outputs for a given input in a certain state [9].
More formally, a Mealy machine can be defined as M = (Q,Σ,Ω, δ, λ, q0),
with Q being the set of states, Σ the input alphabet, Ω the output alpha-
bet (that may or may not identical to the input alphabet), δ the transition
function (δ : Q × Σ → Q), λ the output function (λ : Q × Σ → Ω),
and q0 the initial state. The transition and output functions might be merged
(Q×Σ → Q×Ω). An even simpler type of automaton is a deterministic finite
acceptor (DFA) [10]. It lacks of an output (i.e. no Ω and no λ), but instead it
has a set of accepted finishing states F , which are deemed as valid final states
for an input word (i.e. sequence of input symbols), resulting in a definition of
D = (Q,Σ, δ, q0, F ). The purpose is to define an automaton that is capable
of deciding if an input word is a valid part of a language. A special subset of
DFAs are combination lock automata (with the same properties) but the addi-
tional constraint that an invalid symbol in an input sequence would set the state
machine immediately back into the initial state [11].

9.2.2 Transitions and Equivalence

An element of the combined transition/output function can be defined as 4-
tuple (⟨p, q, σ, ω⟩) with p ∈ Q as origin state of the transition, q ∈ Q as desti-
nation state, σ ∈ Σ as input symbol and ω ∈ Ω as output symbol. Generally, to
conform to a standard, a system must display the behavior defined in that stan-
dard. The ISO 14443-3 standard [1] describe the states of the NFC handshake
with their respective expected input and result. . That means one can derive an
automaton from this specification. The problem of determining NFC standard
compliance can therefore be seen as comparing two (finite) automata. There is
a spectrum of equivalences between Labeled Transition Systems (LTS) includ-
ing automata. For being compliant with a standard, not necessarily every state
and transition must be identical as long as the behavior of the system is the
same. There might be learned automata that deviate from the standard automa-
ton and still be compliant, e.g., if they are not minimal (the smallest automaton
to implement a desired behavior). Figure 9.1 shows a very simple example of
a three-state automaton and its behavior-equivalent (minimal) two-state coun-
terpart.
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Figure 9.1: Example for a partial automaton and its minimal counterpart.

To compare this type of equivalence between two LTS LTS1 and LTS2,
commonly used are (various degrees of) simulation, bisimulation (noted as
LTS1 ∼ LTS2) and trace equivalence. Simulation means that one automa-
ton can completely reproduce the behavior of the other, for the bisimulation,
this relation becomes bidirectional (i.e. functional). Trace equivalence com-
pares the respective output of automata. Just (uni-directional) simulation alone
is not sufficient as this would only the presence or absence of a certain behav-
ior with respect to the specification, while the standard compliance mandates
both. Bisimilarity of two transition systems is originally defined for labeled
transition systems (LTS), defined as LTS = (S,Act,→, I, AP,L), with S be-
ing the set of states, Act a set of actions, → a transition function, I the set of
initial states, AP a set of atomic propositions and L a labelling function.

Definition 1 (Bisimilarity). Bisimlarity of two LTS LTS1 LTS2 is defined as
exhibiting a binary relation R ⊆ QxQ, such that [12]:

A) ∀s1 ∈ I1∃s2 ∈ I2 · (s1, s2) ∈ R and ∀s2 ∈ I2(∃s1 ∈ I1 · (s1, s2) ∈ R.

B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈
R

3) if s2′ ∈ Post(s2) then there exists s1′ ∈ Post(s1) with (s1′, s2′) ∈
R
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Condition A of Definition 1 means that all initial states must be related,
while Condition B means that for all related states the labels must be equal
(1) and their successor states must be related (2-3). Formally the succes-
sion (Post) is defined as Post(s, α) = {s′ ∈ S|s α−→ s′} and Post(s) =⋃

α∈Act Post(s, α), meaning the union of all action successions, which again
are again the result the transition function with a defined action and state as in-
put. As this is recursive, a relation of the initial states implies that all successor
states are related. Since all reachable states are (direct or indirect) successor
states of the initial states, this definition encompasses the complete LTS. We
interpret Mealy machines as LTS using the output functions as labeling func-
tions for transitions and the input symbols as actions, similar to [13]. Based on
this, we define Mealy bisimilarity (M1 M2) for our purpose follows:

Definition 2 (Mealy Bisimilarity). A) q01 ∈ Q1, q02 ∈ Q2 · (q01 , q02) ∈ R.

B) for all q1 ∈ Q1, q2 ∈ Q2 · (q1, q2) ∈ R must hold

1) σ ∈ Σ · λ1(q1, σ) = λ2(q2, σ)

2) if q1′ ∈ Post(q1) then there exists q2′ ∈ Post(q2) with (q1′, q2′) ∈
R

3) if q2′ ∈ Post(q2) then there exists q1′ ∈ Post(q1) with (q1′, q2′) ∈
R

As the transition function is dependent on the input, we define Post(q, σ) =
δ(q, σ) and Post(σ) =

⋃
σ∈Σ Post(q, σ), which is essentially the same as for

LTS brought into the notation of Section 9.2.1. There are a couple of dif-
ferent bisimulation types that differentiate by the handling of non-observable
(internal) transitions (ordinarily labeled as τ transitions), e.g. strong and weak
bisimulation, and branching bisimulation to give a few examples. This dis-
tinction is, however, theoretical in the context of this paper. The reason is
that we intend to compare a specification, which consists of an automaton
that does not contain any τ transitions, with an implementation that is ex-
ternally (black box) learned, rendering τs unobservable. Therefore, two au-
tomata without any τs are compared directly, which makes this distinction not
applicable. More precisely, from a device perspective, the type of bisimula-
tion equivalence cannot be determined, as the SUTs are black boxes. This
means that internal state changes (commonly denoted as τ ) are not visible,
which determines the kind of bisimulation. From a model perspective, the
chosen comparison implies strong bisimulation (i.e the initial state is related



128 Paper III

(formally, q0Ml
= q0Ms

) and all subsequent states are related as well (formally
Q = QMl

= QMs ;n = |Q|;∀n ∈ Q|qnMl
= qnMs

).
Trace equivalence, on the other hand, means that two transitions systems

produce the same traces for each same input.

Definition 3 (Trace equivalence). Traces(LTS1) = Traces(LTS2)

Although both bisimulation and trace equivalence might be principally ca-
pable of comparing a specification with an implementation automaton for de-
termining the standard compliance, determining bisimulation is a problem to
be solved in efficiently, whereas trace equivalence is PSPACE complete [14].
However, this might be negligible with a relatively low number of states and
transitions. In any case, bisimulation implies trace equivalence (LTS1 ∼
LTS2 implies Traces(LTS1) = Traces(LTS2), but is finer than the lat-
ter [12]. For the purpose of this paper, we consider two automata equivalent
if they are trace or bisimulation equivalent. In practice, we have obtained pos-
itive results with both bisimulation and trace equivalence (see Section 9.4.4).
Therefore, trace equivalence is preferred as it is sufficient for standard com-
pliance, but bisimilarity might be used in cases where more efficient checking
algorithms are necessary.

9.2.3 Automata Learning

The classical method of actively learning automata of systems, was outlined
in Angluin’s pivotal work known as the L* algorithm [6]. This work uses a
minimally adequate Teacher that has (theoretically) perfect knowledge of the
SUT (in this case called System-under-learning – SUL) behind a Teacher and
is allowed to answer to kinds of questions:

• Membership queries and

• Equivalence queries.

The membership queries are used to determine if a certain word is part of the
accepted language of the automaton, or, in the case of Mealy machines, which
output word will result of a specific input word. These words are noted in an
observation table that will be made closed and consistent. The observation ta-
ble consists of suffix-closed columns (E) and prefix-closed rows. The rows
are intersected in short prefixes (S) and long prefixes (S.Σ). The short prefixes
initially only contain the empty prefix (λ), while the long ones and the columns



9.2 Preliminaries 129

contain the members of the input alphabet. The table is filled with the respec-
tive outputs of prefixes concatenated with suffixes (S.E or S.Σ.E). The table
closed if for every long prefix row, there is a short prefix row with the same
content (∀s.σ ∈ S.Σ∃s ∈ S : s.σ = s). The table is consistent if for any two
equal short prefix rows, the long prefix rows beginning with these short prefixes
are also equal (∀s, s′ ∈ S∀a ∈ Σ : s = s′ → s.a = s′.a. A complete, closed
and consistent table can be used to infer a state machine (set of states Q con-
sists of all distinct short prefixes, the transition function is derived by following
the suffixes). Even though this algorithm was initially defined for DFAs, it has
been adapted to other types of state machines (e.g., Mealy or Moore machines)
[15]. Alternatively, some algorithms use a discrimination tree that uses inputs
as intermediate nodes, states as leaf nodes, and outputs as branch labels, with a
similar method of inferring an automaton. One of these algorithms, TTT[8], is
deemed currently the most efficient [16]. Other widely used algorithms include
a modified version of the original L* with a counterexample handling strategy
by Rivest and Schapire [7], or the tree-based Direct Hypothesis Construction
(DHC) [17] and Kearns-Vazirani (KV) [18] algorithms.

Once this is performed, the resulting automaton is presented to the Teacher,
which is called equivalence query. The Teacher either acknowledges the cor-
rectness of the automaton or provides a counterexample. The latter is incor-
porated into the observation table or discrimination tree and the learning steps
described above are repeated until the model is correct. To allow for learning
black box systems, the equivalence queries in practice often consist of a suf-
ficient set of conformance tests instead of a Teacher with perfect knowledge
[19]. Originally for Deterministic Finite Automata, this learning method could
be used to learn Mealy Machines [20]. This preferred for learning black box
reactive systems (e.g. cyber-physical systems), as modeling these as Mealy is
comparatively simple.

9.2.4 LearnLib

To utilize automata learning we use a widely adopted Java library called Learn-
Lib [21]. This library provides a variety of learning algorithms (L* and vari-
ants thereof, KV, DHC and TTT), as well as various strategies for membership
and equivalence testing (e.g., conformance testing like random words, random
walk, etc.). The library provides Java classes for instantiating these algorithms
and interfaces systems under test. The interface classes further allow for defin-
ing the input alphabets that the algorithm routines uses to factor queries used
to fill an observation table or tree. Depending on the used algorithms, the li-
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brary is capable of inferring DFAs, NFAs (Non-deterministic finite acceptors),
Mealy machines or VPDAs (Visibly Pushdown Automata).

9.2.5 Near Field Communication
Near Field Communication (NFC) is a standard for simple wireless communi-
cation between close coupled devices with relatively low data rates (106, 212,
and 424 kbit/s). One distinctive characteristic of this standard (operating at
13.56 Mhz center frequency) is that it, based on Radio-Frequency Identifica-
tion (RFID), uses passive devices (proximity cards - PICCs) that receive power
from an induction field from an active device (reader or proximity coupling
device PCD) that also serves as field for data transmission. There are a couple
of defined procedures that allow for operating proximity cards in presence of
other wireless objects in order to exchange data [22]. One standard particularly
defines two handshake procedures based on cascade-based anti-collision and
card selection (called type A and type B), one of which NFC proximity cards
must be compliant with [1]. This handshake is the particular target system-
under-learning (SUL) of this paper, with the purpose of providing very strong
evidence for compliance. Due to the proliferation and the nature of the given
system-under-learning, this paper concentrates on type A devices. Therefore,
all statements on NFC and its handshake apply for type A only.

9.2.6 The NFC Handshake Automaton

ISO 14443-3 contains a state diagram that outlines the Type A handshake
procedure for an NFC connection (see Figure 9.2). This diagram is not a state
machine of the types described in Section 9.2.1, for it lacks both output and fi-
nal states. As we learn Mealy machines, we augmented it with abstract outputs
(see Sections 9.4.2 and 9.4.4) to get a machine of the same type. The goal of
the handshake is to reach a defined state in which a higher layer protocol (e.g.
as defined in ISO 14443-4 [22]) can be executed (the PROTOCOL state). The
intended way described in the standard to reach this state is: when coming into
an induction field and powering up, the passive NFC device enters the IDLE
state. After receiving a wake-up (WUPA) or request (REQA) message it enters
the READY state. In this state, anti-collision (AC, remaining in that state) or
card selection (SELECT going to the ACTIVE state) occur. In the latter state,
the card waits for a request to answer-to-select (RATS), which brings it into
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Figure 9.2: NFC handshake automaton after ISO 14443-3 [1] augmented with
abstract outputs. Note: star (*) as input means any symbol that is not explicitly
stated in another outbound transition of the respective state.



132 Paper III

Learnlib (JAVA) API (C/C++) ProxmarkSocket
USB NFC

SuL

Figure 9.3: NFC interface setup.

said PROTOCOL state. In all of these states, an unexpected input would return
the system to the IDLE state, no giving an answers (denoted as NAK). Based
solely on ISO 14443-3 commands, the card should only leave this state after
a DESELECT command, after which it enters the HALT state. Apart from a
complete reset, it only leaves the HALT state after a wake-up (WUPA) signal
(in contrast to the initial IDLE state, which also allows a REQA message). This
brings it into the READY* state, which again gets via a SELECT into the AC-
TIVE* state that can be used to get to the PROTOCOL state again. The only
difference between READY and READY*, as well as ACTIVE and ACTIVE*
state is that it comes from the HALT instead of IDLE state. Similar to the first
part of the automaton, an unexpected answer brings the state back to HALT
without an answer (NAK).

Apart from the commands stated above that are expected by a card in the
respective state, every other (i.e. unexpected) command would reset the hand-
shake if its not complete (i.e. wrong commands from IDLE, READY, and AC-
TIVE states would lead back to the IDLE state, while HALT, READY*, and
ACTIVE* lead back to the HALT state and unexpected commands in the PRO-
TOCOL state let it remain in that state. Even though this behavior of falling
back into a base state resembles a combination-lock automaton or generally
an accepting automaton, we model the handshake as a Mealy Machine for the
following reasons:

a) As we observe a black box, input/output relations are easier to observe
than not intrinsically defined accepting states

b) The states are easier distinguishable: a variety of input symbols with the
corresponding output may represent a broader signature than just if a
state is accepting (apart from the transition to other states)
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c) The output may processed at different level of abstraction (see Section
9.4.2)

There is also one specific feature to the NFC handshake protocol: unlike most
communication protocols, an unexpected or wrong input yield to no output.
This has an implication to learning, as a timeout will be interpreted as a general
error message.

9.3 NFC Interface
As Learner, we use the algorithm implementations in the Learnlib Java library
(see Section 9.2.4), configured as outlined in Section 9.4. To interact with
the NFC SUL, a Proxmark RFID/NFC device (see Section 9.3.1) is used that
works with an adapter written in C++ (see Section 9.3.2). Figure 9.3 provides
an overview of the setup.

9.3.1 Learner Interface Device

The interface with an NFC SUL is established via Proxmark3. Proxmark3 is
a pocket-size NFC device capable of acting as an NFC reader (PCD) or tag
(PICC), as well as sniffing device [23]. Proxmark3 can be controlled from a
PC, as well as, allowing firmware updates. Thus it allows us to construct the
NFC frames needed for learning and establishing a connection to the learning
library via a software adapter (see Section 9.3.2).

9.3.2 Adapter Class

The actual access to the NFC interface runs over a C++ program, running on a
PC, based on a provided application that comes with the Proxmark device. As
this application is open source, it was possible to modify it in order to adapt
it for learning. The main interface to the Java-based Learner is a Socket con-
nection that take symbols from the Learner (see Section 9.4.2) and concretizes
them by translating the symbols into valid NFC frames utilizing functions from
the SendCommand and WaitForResponse families. These functions send and
receive, respectively, command data (i.e. concrete inputs, symbol for sym-
bol) to the Proxmark device where the firmware translates it into frames and
sends them to the SUL and proceeds vice versa for the response. This, how-
ever, turned out to create an error prone bottleneck at the connection between
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the PC application and the Proxmark device running over USB. Due to round-
trip times and timeouts, the learning was slowed down and occasional non-
deterministic behavior was introduced, which jeopardized the learning process
and made it necessary to repeat the latter (depending on the scrutinized sys-
tem, multiple times, which hindered the overall learning greatly). Therefore,
the Learner was re-implemented to send bulk inputs (i.e. send complete input
words instead of single symbols), which improved the throughput significantly
and solved non-determinism.

Firmware Modifications

In order to be able to transfer traces word-wise instead of symbol-wise, sig-
nificant modifications of the device’s firmware were necessary. The standard
interface of the device is designed for sending a single packet at one time (via a
provided application on a PC) and delivering the answer back to the application
via a USB interface. This introduces latency, which through the sheer amount
of symbols sent in the learning process, has a significant performance impact.
To reach the device’s firmware with multiple symbols at once, we modulate the
desired inputs into one sent message in Type-Length-Value (TLV) format (im-
plemented types are with or without CRC and a specialized type for SELECT
sequences) and modify the main routine of the running firmware to execute a
custom function if a certain flag is set. This custom function deserializes the
sent commands and sends them to the NFC SUT. Answers are modulated into
an answer packet in length-value format, followed by subsequent answer mes-
sages containing precise logging and timestamps, if used. As NFC is a protocol
that works with relatively low round-trip times and time outs these modifica-
tions, eliminating a great portion of the latency times of frequently used USB
connections, boost the performance of the learning using different learning al-
gorithms significantly (for a performance evaluation see Section 9.4.1).

9.4 Learning Setup

One distinctive attribute of ISO14443-3 with respect to learning is that it spec-
ifies to not give an answer on unexpected (i.e. not according to the standards
specification) input. Ordinarily, the result of such a undefined input is to drop
back to a defined (specifically the IDLE or HALT) state. In this sense, the NFC
handshake resembles a combination lock. A positive output on the other hand,
ordinarily consists of a standardized status code or information that is needed



9.4 Learning Setup 135

Max. Word
Length

Algorithm
L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

10 5.92 5.05 6.00 4.38 4.38 5.45 5.37
20 20.08 9.34 10.93 12.24 11.65 7.66 7.40
30 41.90 12.92 9.82 12.19 11.47 10.67 10.04
40 68.17 8.54 11.16 15.56 12.89 10.87 9.49
50 34.75 7.87 11.02 15.60 12.53 11.29 9.91
60 77.33 17.15 12.98 17.16 13.37 13.04 10.85
70 134.65 11.34 14.46 17.68 14.81 13.06 11.32

Table 9.1: Runtime (minutes) per algorithm and maximum word length.

for the next phase of the handshake, e.g., parts of a card’s unique identifier
(UID). The non-answer to undefined is a characteristic feature of the NFC stan-
dard. This directly affects the learning because it yields many identical answers
and efficient time-out handling is essential. It is therefore necessary to evaluate
different state-of-the-art learning algorithms for their specific fitness (see Sec-
tion 9.4.1) well as determining the optimal parameter set (Section 9.4.1). We
scrutinize the main algorithms supported by Learnlib: classical L*, L* with
Rivest/Schapire counterexample handling, DHC, KV and TTT - the latter two
with linear search (L) and binary search (B) counterexample analysis.

9.4.1 Comparing Learning Algorithms and Calibrations

All of the algorithms can be parameterized regarding the membership and
equivalence queries. The former are mainly defined via the minimum and max-
imum word length, while the equivalence queries (lack of a perfect Teacher), is
determined by the method and number of conformance tests. Generally speak-
ing, a too short (maximum) word length results in an incompletely learned
(which, if the implementation is correct, should contain seven states). The
maximum length, however, has a different impact on the performance for ob-
servation and tree-based algorithms: table-based are quicker with a short max-
imum word length, whereas for tree-based ones there seems to be a break-even
point between many sent words and many sent symbols in our specific set-
ting. Table 9.1 shows a comparison of the runtime of different algorithms with
different maximum word lengths (in red the respective algorithm’s shortest
runtime that learned the correct 7-state model). Some of the non-steadiness
in the results can be explained by the fact that some calibrations with shorter
word lengths required more equivalence queries and, thus, refinement proce-
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Algorithm L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B
(20) (10) (30) (30) (30) (30) (40)

States 7 7 7 7 7 7 7
Runtime (min) 20.08 5.05 9.82 12.19 11.47 10.67 9.49

Words 1137 282 539 496 451 468 382
Symbols 10192 2588 5124 7932 7607 6628 6213

EQs 2 3 2 5 5 4 4

Table 9.2: Performance evaluation of different algorithms for a compliant sys-
tem with their respective fastest calibration in the given setting.

dures. Table 9.2 shows the results with the best performing (correct) run of
the respective algorithm. This, however, only covers the performance of learn-
ing a correct implementation. The opposite side, discovering a bug, shows a
different picture. We therefore used a SUT with a slightly deviating behavior
(see Section 9.5.3). This system is much more error-prone, needing signif-
icantly higher timeout values, resulting in higher overall runtimes. One key
property in this case seems to be the minimum word length. Some of the algo-
rithms by their require a lower minimum word length to discover than others.
This has a significant impact with the special setting of getting relatively many
timeouts, which is greatly aggravated by the necessary long timeout periods.
With a minimum word length of 10 symbols, again the original L* with the
Rivest/Schapire closing strategy was performing quickest, but discovered only
7 out of 10 states of the deviating implementation. DHC yielded a similar re-
sult. Both needed a word length of 20 to discover the actual non-compliant
model, which was significantly less efficient in terms of runtime. The TTT
and KV algorithms needed a minimum length of 10, however with quite some
deviation in efficiency. While TTT was the best performing algorithm to learn
the SUT’s actual behavior model, KV was performing worst. The runtimes
roughly correspond with the amount of sent symbols, in this case the a very
long timeout has to be set to avoid non-determinism. The classical L* is not
in the list, as the algorithm crashed after more than 24 hours of runtime. Table
9.3 provides an overview of minimum word lengths, run time, words, symbols
and equivalence queries. Lower minimum word lengths yielded false negatives
(i.e. the result showed a correct model with the deviation not uncovered).
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9.4.2 Abstraction
Ordinarily, when applying automata learning to real-world systems, the input
and output spaces are very large. To reduce the alphabets’ cardinalities to a
manageable amount, an abstraction function (∇), that transforms the concrete
inputs (I) and outputs (O) to symbolic alphabets (Σ and Ω) using equivalence
classes. Of all possible combinations of data to be send, we therefore concen-
trate on relevant input for the purpose of compliance verification. In the fol-
lowing we present some rationales for the chosen degree of abstraction through
the input and output alphabets. These alphabets’ symbols are abstracted and
concretized via an according adapter class that translates symbols to data to be
send (see section 9.3.2).

Input Alphabet

For the input alphabet we use the one needed for successfully establishing a
handshake (cf. Figure 9.2), according to the state diagram for Type-A cards in
the ISO 14443-3 standard [1]:

• Wake-UP command Type A (WUPA)

• Request command, Type A (REQA)

• Anticollision (AC)

• Select command, Type A (SELECT)

• Halt command, Type A (HLTA)

• Request for answer to select (RATS)

• Deselect (DESEL)

The last two commands are actually defined in the ISO 14443-4 standard [22].
However, as the handshake’s purpose is to enter and leave the protocol state,
they are included in the 14443-3 state diagram and, consequentially, in our
compliance verification.

Output Alphabets

In general, the output alphabet does not need to be defined beforehand. It
simply consists of all output symbols observed by the Learner in a learning
run. The Learner can derive the output alphabet implicitly. This means that
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Algorithm L*-RS DHC KV-L KV-B TTT-L TTT-B
Min Length 20 20 10 10 10 10

Runtime (min) 309.81 328.83 520.34 423.27 277.67 131.43
Words 575 855 952 679 688 616

Symbols 14637 15262 23867 19241 13353 11769
Eqs 5 3 6 6 5 5

Table 9.3: Performance evaluation of different algorithms for a non-compliant
system with their respective fastest calibration in the given setting.

if a system behaved non-deterministicly, the output alphabet could vary – al-
though when learning Mealy machines, which are deterministic by definition,
nondeterminism would jeopardize the Learner. The output alphabet has ob-
viously to be defined (in the abstraction layer) when abstracting the output.
Therefore, using raw output has the benefit of not having to define the alpha-
bet beforehand. The raw method has one drawback: there are cards that use
a random UID (specifically, this behavior was observed in passports). Every
anti-collision (AC) and SELECT yields a different output, which introduces
non-deterministic behavior. This is not a problem with abstract output, as the
concrete answer is abstracted away. We therefore tried a heavily abstracted out-
put consisting of only two symbols, namely ACK for a (positive) answer and
NAK for a timeout, which in this case means a negative answer (see Section
9.2.5). This solves the problem, but degrades the performance of the Learner,
since states are harder to distinguish if the possible outputs are limited to two
(aggravated by the similar behavior of certain states - see Section 9.2.6). This
idea was therefore forfeit in favor of raw output for the learning. We still
maintained this higher abstraction for the equivalence checking (see Section
9.4.4 for the reasoning). Raw output, however, retains this problematic non-
determinism. We therefore introduce a caching strategy to cope with this issue.
Whenever a valid (partial) UID is received as an answer to an anti-collision or
select input symbol, we put it on one of two caches (one for partial UIDs from
AC and one for full ones from SELECT sequences). The Learner will subse-
quently only be confronted with the respective top entries of these caches. We
therefore abstract away the randomness of the UID by replacing it with an ac-
tual but fixed one. This keeps the learning deterministic while saving the other
learned UIDs for analysis, if needed.
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9.4.3 Labeling and Simplification
An implementation that conforms to the standard will automatically labeled
correctly, as the labelling function follows a standards-conform handshake
trace:

a) label the initial state with IDLE,

b) from that point, find the state, where the transition with REQA as an
input and a positive acknowledgement as an output ends and label it as
READY,

c) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE,

d) from that point, find the endpoint of a positively acknowledged RATS
transition and label it as PROTOCOL,

e) from that point, find the endpoint of a positively acknowledged DESE-
LECT transition and label it as HALT

f) from that point, find the endpoint of a positively acknowledged WUPA
transition and label it as READY*

g) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE*

If the labeling algorithm fails or there are additional states (which are out of
the labeling algorithm’s scope), this is an indicator for the learned implemen-
tation’s non-compliance with the ISO 14443-3 standard (given that only the
messages defined in that standard are used as an input alphabet - see Section
9.4.2).

To simplify the state diagram for better readability and analysis, we cluster
the transitions of each states for output/target tuples and label the input for that
mostly traveled tuple with a star (∗). Normally that is the group of transitions
that mark an unexpected input and transitions back to the IDLE or HALT state.
This reduces the diagram significantly. Therefore, in those simplified diagrams,
all inputs not marked explicitly in a state can be subsumed under the respective
star (∗) transition.

9.4.4 Compliance Evaluation
Proving or disproving compliance needs a verdict if a potential deviation from
the standard violates the (weak) bisimulation relation. We use mCRL2 with
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the Aldebaran (.aut) format for bisimilarity and trace equivalence checking (as
described in Section 9.2.2) [24]. As the Learnlib toolset provides to possibil-
ity to store the learned automata in a couple of formats, including Aldebaran,
setting up the tool chain is easy, even though some re-engineering was neces-
sary. Learnlib’s standard function for exporting in the Aldebaran format does
not include outputs. This accepts transitions as equal that are in fact not (as
they distinguish only through the output). We therefore rewrote this function
to use the transition’s in the label of an LTS as well. mCRL2 comes with a
model comparison tool that uses, amongst others, the algorithm of Jansen et
al. [25] for bisimilarity checking. We therefore simply model the specification
in form of the handshake diagram (see Figure 9.2) as an LTS with the cor-
responding Mealy’s input and output as a label in the Aldebaran format and
use the mCRL2 tool to compare it to automata of learnt implementations. The
models of SUTs, although, could differ greatly event if the behavior is similar .
Due to different UIDs the outputs to legit AC and SELECT commands would
ordinarily differ between any two NFC cards. Also most other outputs might
differ slightly. E.g., we observed some cards to respond to select with 4800,
others with 4400. We therefore use the higher abstraction level as described
above and use only NAK and ACK as output, circumventing this problem.
This way, inequalities as detected by the tool indicate non-compliance to the
ISO 14443-3 standard of the scrutinized implementation. If a non-compliance
(i.e. a missing or additional state or transition actually countering the bisimula-
tion relation) is found, all we need is to do a simple conformance test. A trace
of the non-compliant state/transition is trivial to extract from the automaton
(see the example in Section 9.5.3). If that trace is executed on the system-
under-test and actually behaves like predicted in the model, we have found the
actual specification violation in the real system, disproving the compliance.

Alternatively, an actual positive verdict of compliance of a learned model is
simple. A full compliance proof can be made when doing identity equivalence,
that is comparing the learned model state by state and transition by transition
with the model manually derived from the ISO 14443-3 standard. If every state
and transition is equal, we consider the system as compliant. More formally,
the learned machine Ml must be fully equal the specification machine Ms, i.e.
Ml = Ms∧(Ml = Ms |= QMl

= QMs ∧ΣMl
= ΣMs ∧ΩMl

= ΩMs ∧δMl
=

δMs
∧ λMl

= λMs
∧ q0Ml

= q0Ms
). This, obviously, is a simpler but stronger

relation that is not coersive for ISO protocol compliance. The probability of
learning (with a sufficient amount of conformance testing) an incorrect model
that is still compliant with the standard is negligible.
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9.5 Evaluation

In this section we briefly outline the achieved results with the described tool
chain. We used serveral different NFC card systems for testing, which are de-
scribed below. All of these systems have shown to be conform to the ISO14443-
3 standard, except for the Tesla key fob.

9.5.1 Test Cards and Credit Cards

We used five different NFC test test cards by NXP (part of an experimental car
access system) to develop and configure the Learner. Furthermore, we used
two different banking cards, a Visa and a Mastercard debit. All of these cards
are conform to the standard, with only minor differences. One of these deffen-
rences is replying with diffent ATQA to REQA/WUPA messages with 4400
and 4800 respectively. Overall, the results with these cards are very similar.
Figure 9.4 shows an example of a learnt automaton (left side).

9.5.2 Passports

We also examined two different passports from European Union countries: one
German and one Austrian. The main noticeable difference (at ISO 14443-3 lev-
lel) between the other systems is that these systems answer to AC and SELECT
inputs with randomly generated (parts of) UIDs. This implements a privacy
feature to make passports less traceable. Without accessing the personal data
stored on the device the passport should not be attributable. This, however,
requires authentication.

9.5.3 Tesla Key Fob

Apart from significantly slower answers than the other devices, which required
to adapt the timeouts to avoid nondeterministic behavior, the learned automa-
ton slightly differs when learnt with the TTT algorithm. Figure 9.4 (right side)
shows a model of a Tesla car key fob learnt with TTT. The (unnamed) states
3,4 and 6 are very similiar to the HALT, READY* and ACTIVE* states, re-
spectively. Apart from the entry points (HALTA from the ACTIVE state for
the first and DESEL from the PROTOCOL state, respectively) these two struc-
tures are identical and in the reference model, those two transitions lead to the
same state. However, the ACTIVE* transition allows for issuing a DESELECT
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Figure 9.4: Automaton of an NXP test card (left) and a Tesla car key fob (right)
learnt with TTT.

command that actually returns a value (i.e. an ACK in the higher abstraction),
which does not correspond to the standard.

The mCRL2 comparison tool rightfully identifies this model not to be bisim-
ilar and trace equivalent with the specification. Using the according option, the
tool also provided a counterexample in the form of the trace (⟨REQA/ACK⟩,
⟨SELECT/ACK⟩, ⟨RATS/ACK⟩, ⟨DESEL/ACK⟩, ⟨WUPA/ACK⟩, ⟨SELECT/
ACK⟩, ⟨DESEL/ACK⟩). According to the specification, the last label should



9.6 Related Work 143

be ⟨DESEL/NAK⟩.

9.6 Related Work
There are other, partly theoretic, approaches of inferring a model using au-
tomata learning and comparing it with other automata using bisimulation al-
gorithms. However, they target DFAs [26] or probabilistic transition systems
(PTS) [27]. Neider et al. [28] contains some significant theoretic fundamen-
tals of using automata learning and bisimulation for different types of state
machines, including Mealys. It also contains the important observation that
(generalized) Mealy Machines are bisimilar if their underlying LTS are bisim-
ilar. Tappler et al. [13] used a similar approach of viewing Mealy Machines
as LTS to compare automata regarding their bisimilarity. Similarly, bisimu-
lation checking was also used to verify a model inferred from an embedded
control software [29]. There is also previous work on using automata learning
for inferring models of NFC cards [30], which concentrates on the upper layer
(ISO/IEC 14443-4) protocol, dodging the specific challenges of the handshake
protocol. Also there is no mentioning of automatic compliance checking in this
approach. To the best of our knowledge, there is no comprehensive approach
for compliance verification of the ISO/IEC 14443-3 protocol.

9.7 Conclusion
In this paper, we demonstrated the usage of automata learning to infer models
of systems under test and evaluate their compliance with the ISO 14443-3 pro-
tocol by checking their bisimilarity with a specification. We described a learn-
ing interface setup, showed practical results and made interesting observations
on the impact of the protocol specifics on learning algorithms’ performances.

9.7.1 Discussion

Using our learning setup on real-world devices, we found little differences be-
tween the SUTs – all examined systems were compliant to ISO/IEC 14443-3.
Observed differences were mainly in the privacy-related random UIDs sent by
passports and the slow answers and a slightly different automaton of the Tesla
key fob. However, the scrutinized NFC handshake protocol has two charac-
teristics that are distinct from other communications protocols: a) it does not
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send an answer on unexpected input and b) the automaton has two almost iden-
tical parts (IDLE/READY/ACTIVE and HALT/READY*/ACTIVE*) that pose
challenges in learning. Supposedly these characteristics are responsible for the
somewhat surprising finding that the L* algorithm with the Rivest/Schapire im-
provement surpasses more modern tree-based algorithms for correct systems.
However, TTT performed best in finding a non-compliant system, which is the
actual purpose of the testing and that the minimum word length has an impact
on the ability to find incompliances. This might give some hints for optimiza-
tion of learning strategies for similar structures.

9.7.2 Outlook
The compliance checking is but a first step towards assuring correctness and,
subsequently, cybersecurity for NFC systems. Concretely, further research di-
rections include test case generation using model checking and using the model
to guide an intelligent fuzzer to leverage cybersecurity validation and verifica-
tion (V&V). The target of these V&V activities are on the one hand upper
layer protocols and on the other hand NFC reader devices to search for faults
that might lead to exploitable security vulnerabilities. To talk to readers, be-
cause of the low latency of NFC communications, it is crucial to already know
what to send before a conversation, which is satisfied by the predefined input
words in the automata learning process.
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BIBLIOGRAPHY 147

J. Knoop, T. Margaria, D. Schreiner, and B. Steffen, eds.), vol. 336,
pp. 248–260, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[18] M. J. Kearns and U. Vazirani, An Introduction to Computational Learning
Theory. MIT Press, Aug. 1994.

[19] D. Peled, M. Y. Vardi, and M. Yannakakis, “Black Box Checking,” in For-
mal Methods for Protocol Engineering and Distributed Systems: FORTE
XII / PSTV XIX’99 IFIP TC6 WG6.1 Joint International Conference on
Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XII) and Protocol Specification, Testing and
Verification (PSTV XIX) October 5–8, 1999, Beijing, China (J. Wu, S. T.
Chanson, and Q. Gao, eds.), IFIP Advances in Information and Commu-
nication Technology, pp. 225–240, Boston, MA: Springer US, 1999.

[20] M. Shahbaz and R. Groz, “Inferring Mealy Machines,” in FM 2009: For-
mal Methods (A. Cavalcanti and D. R. Dams, eds.), Lecture Notes in
Computer Science, (Berlin, Heidelberg), pp. 207–222, Springer, 2009.

[21] M. Isberner, F. Howar, and B. Steffen, “The Open-Source LearnLib,” in
Computer Aided Verification (D. Kroening and C. S. Păsăreanu, eds.),
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Abstract

The United Nations Economic Commission for Europe (UNECE) demands the
management of cyber security risks in vehicle design and that the effectiveness
of these measures is verified by testing. Generally, with rising complexity
and openness of systems via software-defined vehicles, verification through
testing becomes a very important for security assurance. This mandates the
introduction of industrial-grade cybersecurity testing in automotive develop-
ment processes. Currently, the automotive cybersecurity testing procedures are
not specified or automated enough to be able to deliver tests in the amount
and thoroughness needed to keep up with that regulation, let alone doing so in
a cost-efficient manner. This paper presents a methodology to automatically
generate technology-agnostic test scenarios from the results of threat analysis
and risk assessment (TARA) process. Our approach is to transfer the result-
ing threat models into attack trees and label their edges using actions from a
domain-specific language (DSL) for attack descriptions. This results in a la-
belled transitions system (LTS), in which every labelled path intrinsically forms
a test scenario. In addition, we include the concept of Cybersecurity Assurance
Levels (CALs) and Targeted Attack Feasibility (TAF) into testing by assigning
them as costs to the attack path. This abstract test scenario can be compiled into
a concrete test case by augmenting it with implementation details. Therefore,
the efficacy of the measures taken because of the TARA can be verified and
documented. As TARA is a de-facto mandatory step in the UNECE regulation
and the relevant ISO standard, automatic test generation (also mandatory) out
of it could mean a significant improvement in efficiency, as two steps could be
done at once.
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Figure 10.1: Relationship for risk mitigation.

10.1 Introduction

The market introduction of vehicle-to-x (V2X) functions and advanced driv-
ing assistance systems (ADAS) to automotive systems make them increasingly
complex. At the same time, cybersecurity incidents (increasingly induced by
criminals) display an exponential growth [1]. This is being recognized by stan-
dards and regulation bodies. For example, the United Nations Economic Com-
mission for Europe (UNECE) issued a regulation (R155) that demands cy-
bersecurity concerns to be addressed over the complete life cycle and verify
the measures through testing [2]. Therefore, a holistic approach for cyberse-
curity engineering and testing over the complete life cycle is needed. This
paper presents the confluence of a life cycle governance and a structured semi-
automated testing approach to provide fast, comprehensive and cost-efficient
cybersecurity testing over the complete automotive life cycle in conjunction
with the concepts of Cybersecurity Assurance Levels (CALs) and Targeted At-
tack Feasibility (TAF). Section 10.2 describes the latter concepts and their in-
tegration in a security testing process. Section 10.3 elaborates automating the
process of generating suitable threat models and attack trees. Section 10.4 de-
scribes the transfer mechanism from attack trees to agnostic test cases and their
application to an actual implementation. Section 10.5 describes the application
of the process in a small case study. Section 10.6 gives an overview of different
work in this direction and Section 10.7, eventually, concludes the paper.
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10.1.1 Motivation
As current standards (most prominently ISO/SAE 21434 and UNECE R155)
lack the details of how to test, there are two initiatives ongoing in ISO’s stan-
dardization: ISO/SAE PAS 8475 (WIP)1 [3] that copes with Cybersecurity
Assurance Levels (CALs) and Targeted Attack Feasibility (TAF) and ISO/SAE
PAS 8477 (WIP) [4] that deals with verification and validation (V&V) meth-
ods. In order to include these concepts-in-development into security processes,
giving clarity to Original Equipment Manufacturers (OEMs) and suppliers, this
paper aims for giving suggestions how to align security testing on CALs and
TAFs originating from the earliest stages of the (security) engineering process.
Furthermore, the aim is to turn the overhead necessary for formalizing the com-
bined engineering and testing process into an advantage by automatizing them.
More specifically, these formalized processes can be used to automate test case
generation from threat models. As a result, test case blueprints can be gen-
erated during the modeling process, that can be later on (semi-)automatically
compiled into executable test cases. This allows for structured and efficient
testing of the fulfillment of the requirements stemming from the threat analy-
sis.

10.1.2 Contribution
This paper contributes mainly four things to the body of knowledge:

1. A structural concept how to incorporate CALs and TAFs into the cyber-
security engineering process.

2. A process to align testing on CALs and TAFs.

3. A method to generate attack trees from TARA.

4. A concept to transform attack trees into technology-agnostic test scenar-
ios automatically as a blueprint to verify and validate security claims and
requirements.

Item 1 explains the upcoming developments of ISO/SAE 8475 and describes
the usage of CALs and TAFs (Section 10.2.1). Item 2 discusses the merit of the
CAL/TAF usage in security testing (Section 10.2.1). Item 3 shows an approach
how the formalization necessary to include the first two items can be used
to increase the efficiency of testing by generating attack trees from a Threat

1Work-in-Progress
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Analysis and Risk Assessment (TARA) (Section 10.3.1). Item 4 provides a
method to transform attack trees into abstract test scenarios by labelling the
edges with actions from the alphabet of a domain-specific language (DSL) for
attack descriptions (see Section 10.4.2).

10.2 Automotive Security Communication
Effective communication plays a pivotal role in the automotive industry, par-
ticularly within the complex network of Original Equipment Manufacturers
(OEMs) and Tier 1 and 2 suppliers. Especially in the cybersecurity domain,
with interlocking layers of defense [5] the criticality of clearly communicating
expected requirements, is required for achieving optimal outcomes. By foster-
ing a shared understanding of risk mitigation strategies, OEMs and suppliers
can collaboratively address cybersecurity challenges, enhance product security,
and streamline operations. ISO/SAE 21434 defines here a framework in which
during the Threat Assessment and Risk Analysis cybersecurity goals are de-
fined. A cybersecurity goal is aimed at reducing the risk of threat scenarios
and realized by cybersecurity requirements (see Figure 10.1). This process can
be applied during all phases of the development, at item (see Section 10.2.3),
system, or component level. Cybersecurity goals can be defined by the OEM
and by the supplier. Cybersecurity requirements are assigned to components
and implemented.

10.2.1 Cybersecurity Assurance Level (CAL)

An important aspect is here on the interplay between customer requirements
and regulatory needs. As mentioned in the introduction, UNECE requires in the
new UN R155 [2] that cybersecurity in a vehicle has to be tested and demon-
strated during the type approval. With the complexity of modern vehicles, this
testing effort needs to be distributed through the supply chain. ISO/SAE 21434
already establishes as an informative part the concept of the Cybersecurity As-
surance Level (CAL). Inspired from assurance level schemes like the Common
Critiera Evaluation Assurance Levels (EALs) [6], the goal of CAL is to de-
scribe the expected level of assurance and rigor for a defined cybersecurity
goal. ISO/SAE 21434 defines an informative framework regarding the map-
ping of CAL to the impact and the attack vector. In addition, for concept and
product development potential aspects that can be adjusted by CAL like test-
ing effort or independence are given. CAL is assigned per cybersecurity goal
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and derived requirements inherit the CAL. If a requirement addresses multiple
cybersecurity goals, the highest CAL is inherited.

10.2.2 Target Attack Feasibility (TAF)
In practical applications of CAL and ISO/SAE 21434, there has been a no-
ticeable lack of clarity regarding the expected strength of security controls.
This ambiguity becomes particularly evident when suppliers attempt to trans-
late high-level security goals and requirements into technical specifications and
implementations. While CAL provides insights into the engineering rigor, it
falls short in communicating their actual strength. To address this gap, the con-
cept of Target Attack Feasibility (TAF) has been introduced. TAF is designed
to be associated with specific security controls, offering a measure of their ex-
pected strength. For instance, a security goal such as ”protect the integrity of
the message” could be interpreted through various security controls based on
their TAF levels:

• TAF1: cryptographic hash

• TAF2: symmetric encryption

• TAF3: asymmetric encryption

However, the temporal relevance of TAF is still a topic of debate. As more
TAF levels are designated to specific security control technologies, there’s an
increasing risk that these assignments might become obsolete over time. One
potential solution is to map TAF levels to Attack Feasibility, where, for exam-
ple, TAF1 would necessitate a specific level of expertise, equipment, and time
to breach. This approach, in contrast to a fixed technological assignment, offers
a more flexible interpretation, though it also introduces a degree of subjectivity.

10.2.3 Integrating CAL and TAF in security testing
Due to the impact of CAL and TAF on the overall process and especially on
the cybersecurity testing, a well-structured process is necessary. We adapt here
a testing process, presented in [7] and adapted to include CAL and TAF. The
process is aligned with ISO/SAE 21434 [8]. The activities are basically se-
quential, although some activities provide input for more than one subsequent
activity. Figure 10.2 provides an overview.

I Item Definition



10.2 Automotive Security Communication 155

Figure 10.2: Layout of the security testing process from [7].

II Risk and Threat Assessment

III Security Concept Definition (including the test targets)

IV Test Planning and Scenario Development

(a) Penetration Test Scenario Development

(b) Functional and Interface Test Development

(c) Fuzz Testing Scenario Development
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(d) Vulnerability Scanning Scenario Development

V Test Script Development

VI Test Script Validation

VII Test Case Generation

(a) Test Environment Preparation

VIII Test Case Execution

IX Test Reporting

In the item definition (i), the scope of the development is defined. This can
range from a complete car model to specific systems or combination of sys-
tems. Risk and threat assessment (ii) (e.g., TARA [9, 10]) identifies potential
vulnerabilities to be addressed and prioritizes them, focusing on certain threats
that are deemed graver, while neglecting others. Here CAL and TAF are as-
signed for each Cybersecurity goal. The security concept definition (iii) mainly
aims at anticipating measures to counter the threats from the previous activity.
Measures that should be present and effective to counter specific threats that
should be validated in the course of this process. TAF plays a major role in
the selection of suitable security measures, that achieve a sufficient level of
risk reduction. The test planning and scenario development (iv) derives an ab-
stract test plan, consisting of scenarios, based on the security targets from the
previous activity. The test plan should contain an overall test strategy. Tests
are based on threats and focus on risky areas, denoted by an increased CAL.
Test data inputs are selected based on threats from the risk analysis [11] and
match test patterns which represent abstract (symbolic) actions in a distinct se-
quence. The scenarios are categorized into four classes [8]: penetration testing,
functional and interface test, fuzz testing and vulnerability scanning. Although
derived from the analysis of a test item, the scenario description is used to be
generic: no specific information of an item on a lower technical level should be
incorporated for portability reasons. Sensibly, descriptions could be composed
in a domain specific language (DSL) for attack descriptions [12, 13, 14, 15].
Selection of scenarios and also independence of persons who test the SUT are
based on CAL. The test script development (v) turns the test patterns from the
scenarios into executable scripts. It should develop a script to match a test pat-
tern by either using an existing exploit from an available database or develop
an own attack on the system. This means that the pattern must be equipped
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Figure 10.3: Example Threat Model.

with specific information and brought in a form that it is executable on a test-
ing system, e.g., on a Linux shell. The test case generation (vi) assembles the
test scripts to a consistent test case (a full attack on an SUT) by processing
a DSL-based description (the generic test scenario) and using additional in-
formation from an SUT database, as well as using combinatorial methods to
economically increase the test coverage [16]. Lastly, the tests have to be exe-
cuted (vii) and their result reported (viii). These activities also include proper
feedback from the test. If the process is to be automated, proper information
for an autonomous test oracle has to be provided in the form of pre and post
conditions that have to be fulfilled in order to assess a positive or negative (or
even inconclusive) test result. Here the achievement of the intended TAF has
to be included.
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10.3 Threat Modeling

In this Section, we present an approach that generates test scenarios in a tech-
nology-agnostic manner out of a threat model. In the context of this paper,
we conceptualize threat modeling as an iterative process used to identify and
analyze potential threats in information technology (IT) systems. This iterative
process basically requires two major components as inputs [17]. The first com-
ponent is a threat model that summarizes the accumulated knowledge of known
and documented threats, vulnerabilities, and weaknesses for the domain under
study, such as automotive and IoT . It serves as a comprehensive repository of
potential threats that could compromise the system. The second component is a
systematic and abstract representation of the system under consideration. This
representation contains all the key information required for a thorough threat
analysis. Our approach uses an adapted version of the internal SysML block
diagram that facilitates the representation of the relationships and properties of
the system components, providing the basis for a comprehensive analysis.

The modeling process itself is the comparative analysis between the threat
model and the system model. This critical comparison helps derive a list of
existing threats, which is the completion of one cycle of the process. This
list is expanded by recognizing the intrinsic interdependencies of the identified
threats, which overcomes the limitation of looking at threats in isolation [18].
By leveraging the data revealed by the identified threats, we can explore the in-
tricacies of their interdependencies. It is worth noting that threats rarely occur
in a vacuum; they primarily build on previous steps and can trigger subsequent
events.

To map these interdependencies, we use the concept of pre- and post-
conditions. With this strategy, we can not only detect these dependencies, but
also visually represent this additional information using attack graphs and at-
tack trees to improve the understanding and analysis of potential threat inter-
actions. In Section 3, we elaborate on the intricacies of this enhanced process,
detailing the concept of threat interdependencies and the resulting strengthened
approach to threat modeling.

Figure 10.3 shows an example of a threat model based on [19]. In this
example, the electrical/electronic (E/E) architecture of an autonomous low-
speed shuttle is presented. This architecture was modelled in ThreatGet, a tool
for threat modelling and analysis, to facilitate automated security analysis and
demonstrate the process from TARA to CAL and TAF.

We denote here one of many potential assets, with is the integrity of the
Master Controller. If an attacker would be able to modify the firmware, he
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Figure 10.4: Example attack tree.

could send any command and cause potential safety and operational issues
(due to the low speed of the vehicle)

• Asset: Firmware of the Master Controller (Integrity)

• Damage Scenario: Unintended steering causing collision with an obsta-
cle ASIL C

An analysis shows a potential attack starting from an unencrypted wireless
connection between external services and the AI & Drive Algorithm (see Fig-
ure 10.4). This allows an attacker to reach the dashboard and manipulate data
on this element (=¿ violating the integrity of the displayed information).

In order to address this a security goal is defined, which states that the mas-
ter controller has to be protected and this security goal gets a CAL assigned,
based on the potential impact (CAL 3). This security goal is then mapped to a
security requirement, that encryption with at least TAF 3 is added to external
connections. TAF 3 could be mapped to asymmetric encryption.
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Figure 10.5: Example for a test scenario in the used attack description lan-
guage.

10.3.1 Threat-Interdependencies and Attack Trees

The Threat Analysis and Risk Assessment (TARA) process aims to identify
potential threats and assess the associated risks to ensure effective risk miti-
gation [9, 19]. It involves systematically investigating threats, assessing their
likelihood and impact, and developing strategies to address the identified risks
[20]. The first step of the TARA process is to analyse for potential threats.
This step is essential because only what has been identified can be assessed
later. It involves identifying vulnerabilities, weaknesses or potential attack
vectors [19, 21]. It is not advisable to look at threats solely in isolation as
part of the TARA process, as this approach ignores the interactions between
different threats. Threats often interact with or reinforce each other, resulting
in attack chains or paths. Failure to consider these interactions can result in
missing relevant risks and inadequate prioritization of resources for effective
risk mitigation [22]. The concept of pre- and post-conditions for threats can
be used to represent the interdependencies of threats within the TARA pro-
cess. Preconditions represent the necessary circumstances or events that must
be met for a threat to occur, while postconditions represent the possible con-
sequences or outcomes that result from the occurrence of a particular threat.
It should also be emphasized that the postconditions of some threats may be
the preconditions of others. By identifying and analysing these preconditions
and postconditions, we can better understand how threats are connected and
how they propagate or influence each other [18]. In an attack tree [23, 24], the
hierarchical structure illustrates the connections between threats, their relation-
ships, and the different attack scenarios. The root of an attack tree is usually
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connected to the attack target, which is the overall goal of an attacker. From
this attack target, a security objective can be derived, which represents the de-
sired outcome of the attack defence. By visualizing threats in an attack tree, we
can analyse the preconditions and postconditions associated with each threat.
Considering the interdependencies of threats within the attack tree not only
simplifies, but also improves, the assessment of target attack feasibility [25].
By visualizing the connections and dependencies between different threats, it
becomes easier to analyse the feasibility of attacking a particular target. Un-
derstanding how multiple threats contribute to a given postcondition provides
a more comprehensive view of the potential attack surface and the likelihood
of a successful attack [21]. Considering the inter-dependencies within the at-
tack tree improves understanding of the overall risk landscape and facilitates
more informed decision-making regarding resource allocation, security control
implementation, and mitigation prioritization. This approach improves the ac-
curacy and effectiveness of target attack feasibility assessments and results in
more robust and proactive security measures. In addition, consideration of de-
pendencies enables organizations to effectively prioritize remediation efforts.
By identifying critical paths and dependencies within the attack tree, resources
can be strategically allocated to protect the most vulnerable areas. While the
CAL can be easily derived based on the impact, the TAF can focus on elements
in the tree which have the highest contribution to the Attack Feasibility. In
summary, considering interdependencies in the TARA process and attack tree
not only simplifies but also improves threat assessment and increases overall
cybersecurity. By understanding the interrelationships and dependencies, or-
ganizations can effectively identify, prioritize, and mitigate risks, resulting in
higher CAL and greater confidence in the security of their systems.

10.4 Automated Testing

This section is concerned with the automated generation of security test cases
stemming from a TARA using attack trees (see Section 10.3.1). The princi-
pal idea is to use the resulting attack tree and create blueprints for testing in
the form of implementation-agnostic test scenarios, through mapping rule sets.
These agnostic test scenarios can later be concretized and executed on a spe-
cific system implementation.
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10.4.1 Security Tests and their relationship with the Security
Analysis

Following the method in Section 10.2.3, we store blueprints for test cases in
a system-agnostic manner in the ALIA DSL [12] as test scenarios (see Figure
10.5 for an example). These test scenarios are an abstract representation of
actions to be taken to execute a test case. The actions are accompanied by
preconditions that determine if an action is to be carried out (i.e., is the step
sensible in the current situation). Postconditions determine the expected result
and contain therefore information for a test oracle. The respective steps in
the scenarios (test patterns) use symbolic instructions. Concrete test cases are
compiled by augmenting the scenarios with concrete information about the
system-under-test (e.g., exploit code, or specific messages on the CAN bus that
would yield an expected result). This scenario can be seen as a recipe for an
attack with the concrete information as ingredients. The result is a concretely
executable set of instructions (in JSON format) to be ran on a Linux-based
attack system. To generate tests that would subsequently provide evidence
for the successful satisfaction of the requirements derived from the TARA,
taking CAL and TAF into account, we propose a flow that uses the attack tree
analysis’ results and transforms it into attack scenarios that can be augmented
with concrete implementation details in later phases of the development.

10.4.2 Security Test Generation

Using an attack graph (such as a tree, but also other structures like petri nets
[26] are thinkable) allows for closing the loop from TARA to testing through
an automated process. The missing link to achieve this pervasive chain is a
transform mechanism from paths in the generated attack graph structure to test
scenarios in the DSL. We therefore propose a mechanism that transforms a
specific path in an attack tree (see Section 10.3.1) into a test scenario. This is
achieved by mapping the edges of that path with actions in a DSL-based test
scenario. The basic idea is that an action is required to realize a threat. There-
fore, traversing trough a path in an attack tree requires a set of actions, each
action responsible getting from one node in the tree to another. As the test pat-
terns in the DSL principally consist of such (abstract) actions (accompanied by
optional sets of pre- and postconditions), the resolution is a rule-based transla-
tion function to simply map the tree edges to test patterns. Figure 10.6 gives
an overview of this process. Formally, the attack tree can be seen as a directed
graph with rules (sequencing and parallelization). This resembles a Transition
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Figure 10.6: Attack tree to Test Scenario transformation example.

System (TS), defined as a set of states (Q) and a transition relation (→∈ Q×Q,
with q, q′ ∈ Q; q → q′). In this case, Q is the set of nodes in the attack graph,
while → is determined by the edges and rules in the tree. A Labelled Transition
System (LTS) additionally possesses a set of labels (Σ), such that each transi-
tion is named with a label σ in Σ (q, q′ ∈ Q, σ ∈ Σ; q

σ−→ q′) [27]. The set of
labels is taken from the set of test patterns (i.e., possible actions) in the DSL. A
labeling function attributes a label σ to a transition using an associative array.
Once this LTS has been established, generating the abstract test case is trivially
conducted by traversing along the respective path in the LTS an collecting the
labels. The sequential set of collected labels (i.e., test patterns) automatically
constitutes a test scenario. In simple words, we use an attack tree to select ac-
tions needed for an test scenario out of the set of all available test patterns and
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brings them into sequence. The way the DSL is currently structured, an action
can be identified by the tuple keyword (currently one of scan, exploit, and exe-
cute - the first two are to detect and attack devices, while the latter is a generic
keyword for auxiliary tasks) and type (which defines the action closer). There
are other attributes like interface, target, and shell, that depend on the action
type. More than one action can be necessary to change the state in an attack
tree (i.e. to traverse from one node to another). In this case the label attributed
to the transition contains both actions. As an abstract example, the transition
from access to a system to control of a system could require execute, escalate
privilege as an action from the DSL. Therefore the resulting transition in the
LTS would be As

xcep−−−→ Cs with As is the system access, Cs system control
and xcpe the execute (xc) privilege escalation (pe). A more concrete example
follows in the case study in Section 10.5.

The course of action to use the TARA results for test cases also allows for
prioritizing test cases, as attack paths can have calculated path costs (based on
CALs and TAFs). As perfect security is infeasible, a sufficiently secure system
can be defined as a system that does not exhibit an attack path with a cost
below a certain threshold. Through the test case generation, it can be verified
that relevant attack paths discovered through the threat modeling are mitigated
through the measures in the security concept and effectively blocked in the
implementation later.

The reason for using an LTS as a transition model is that it can be regarded
as a more powerful structure than a tree (a tree can be viewed as a subset of
an LTS in this regard) and can be easily converted into other structures like
Directed Acyclic Graphs or even a general directed graph (in case of allowed
loops needed), which makes it suitable as an internal structure. It can also
be practically used in a three-layered process in this application. First, the
attribution between tree edges and DSL actions (i.e., the labelling function)
must be established only once initially and if the base set of node types in the
TARA process or the possible actions in the DSL change (this happens rarely).
Second, the LTS generation (low effort if the labelling function is present)
must be done once, when an attack tree is generated or updated. Thirdly, the
test cases have to be generated based on selection of paths, defining an origin
(i.e. an entry point into the system) and a target is trivial, just collecting labels.
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10.5 Case Study

To practically demonstrate the approach, we give an example of a realistic use
case scenario. This use case has been practically tested using our test system.
It consists of a standard car model that possesses a single can bus with an after-
market infotainment system, running on Android, built in. The conducted test
was to manipulate the speed gauge using a wireless access an entry point. We
first created an architecture model using ThreatGet. The critical components
for the attack are the infotainment system, the CAN bus the attacked dash board
(including a screen) and a smart phone that is under the attacker’s control (i.e.,
it is the attacker’s smartphone) – see Figure 10.3. The threat analysis using the
tool yielded a list of 103 threats (using the STRIDE methodology [28]). Us-
ing the methodology in Section 10.4.2, we generate attack trees and respective
paths using different origin and destination points in the architecture diagrams
and the threat attributions along the way. One specific result of this process
is the attack tree in Figure 10.4. In this sequence, access to infotainment is
followed by control of the infotainment, which is succeed by control (imply-
ing access) to the dashboard. This enables to corrupt the integrity of displayed
information. This in practice means e.g., fake readings on the speed and RPM
gauges or similar things - including potential safety implications – Table 10.1
provides an overview of threats applicable to the display. Please note that those
apply directly to the display, while the attack tree allows for applying threats in-
directly not requiring direct access to the system. The key element is the CAN
bus, any device (also the cabin master control unit) connected to the (right)
CAN bus (cf. Figure 10.3) that is taken control of could be used to gain access
to the dashboard and manipulate the display under certain circumstances mod-
eled in the threat model and attack tree. The transitions between these items
have been matched with fitting action items from the DSL. To reach access to
the Infotainment from an initial state in the LTS, a wireless scan and already
an exploit (labels sBlueBorne and xpBlueBorne for scanning and executing a
BlueBorne attack, with s for a scan and xp for an exploit) has to be take as
actions. Please note that this is one of more possibilities to gain access, there
could be others. To gain control, we use the actions of opening a connection to
a remote hotspot using the access (xpOpenAndroidHotspot) and opening an An-
droid Debug (ADB) shell (xpOpenADB). The rest of the tree is a special case,
as the access to the Dashboard, its control and the data manipulation can occur
in one step by sending fake CAN messages. These messages are represented
by the different step can attack in the DSL (xpCanAttack). Figure 10.5 shows
the resulting attack description in the DSL. The steps immediately preceding
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the CAN attack (install python env, install python lib, and attackScript) are
intrinsic, as these are just necessary steps to fulfill the last one. In that sense,
they can also be seen as part of gaining control over the infotainment, as it is
only after these three steps capable of carrying out the rest of the attack. The
concretization for a specific system eventually works by generating a JSON
code that contains executed environments and exploit code, as well as infor-
mation as CAN packet structures from a database or directly given information
from the tester as form of a grey-box test. This is out-of-scope of this paper and
already published elsewhere [12] in detail, but for the sake of the functioning
of the approach it should be briefly mentioned that the DSL items (i.e. Test
Patterns) are augmented with information from a systems database containing
information about the systems-under-test (partially pre-filled and completed by
a client in a grey box setting or penetration testers in a black box setting) with
the necessary information (e.g., pieces of code to exploit a certain software or
version, specific data of CAN messages to send, etc.). This is translated into
a JSON format containing an environment (e.g., BASH, Python, a framework
like Metasploit, etc.) and sent to an execution engine that is instrumented with
the SUT and calls the respective software tools tools to execute the concrete
attack.

10.6 Related Work

Threat modeling is an approach that responds to the increasing need to ad-
dress security concerns from the early phases of product development. The
popularity of threat modelling is reflected by a variety of available methods
and tools, ranging from open-source academic prototypes to full-fledged com-
mercial solutions. There are roughly speaking three categories of threat mod-
eling approaches. The first class of tools only allow manual modeling based
on Excel sheets and questionnaires [29]. Threat identification and mitigation
is identified without and automated reasoning support. The second class of
tools improves the modelling experience by providing a graphical modelling
environment but without a rigorous formal model [30, 31, 32, 33]. Finally,
the third class of tools are model-based system engineering solutions with an
underlying formal threat model and provide full support for automated threat
analysis [30, 31, 32, 33].

Attack trees [34] describe sophisticated attack patterns that capture se-
quences of basic attack steps and describe how these can be combined to reach
a target. Graphical modelling and analysis of attack trees is supported by sev-
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Table 10.1: Threats related to the display in the case study example
(MED=medium; MOD=moderate; SEV=severe)

Target Affected
Asset

Damage
Sce-
nario

Threat
Title

Category Impact
Cat.

Likel. Impact Risk

Touch-
screen

n/a n/a Tamper
through
ex-
ternal
ports

TAMPER-
ING

MED MOD 3

Touch-
screen

n/a n/a Physical
Tam-
per-
ing

TAMPER-
ING

MED MOD 3

Touch-
screen

Infor-
mation
Avail-
abil-
ity

Oper-
ational
im-
pact

Physical
Tam-
per-
ing

TAMP-
ERING

Oper-
ational

MED SEV 1

Touch-
screen

Infor-
mation
In-
tegrity

Oper-
ational
im-
pact,

Physical
Tam-
per-
ing

TAMP-
ERING

Oper-
ational

MED SEV 1

Touch-
screen

Infor-
mation
In-
tegrity

Safety
im-
pact

Physical
Tam-
per-
ing

TAMP-
ERING

Safety MED SEV 1

eral tools [35, 36]. Attack trees can be extended with additional attributes such
as possibility, cost, resources [34] or time [37]. Attack trees can be combined
with fault trees for a more integrated safety and security analysis or with de-
fender’s mitigation measures resulting in the attack-defence tree model [38].
Attack trees are complementary to the more static threat model and the rela-
tion between the two has been only seldomly investigated. Isograph Attack-
Tree [35] supports threat analysis and risk assessment from the attack tree,
following the relevant ISO standards. On the other hand, THREATGET allows
automatic generation of attack trees from threat analysis results [39].

The integration of the threat and attack tree modeling and analysis and test-
ing has not been sufficiently investigated in the literature. The only work that
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we are aware of on this topic is about test generation from attack trees has been
studied in the context of the vehicle security in the automotive domain [40]. In
this paper, we propose a methodology that goes from threat modelling to the
generation of test cases, where attack trees are used as an intermediate step in
this process.

10.7 Conclusion
We described a method to automatically generate abstract test scenarios out of
a TARA using attack trees and LTSs. The main improvement of this method
is that these test scenarios can be derived from a process that is mandated by
a CSMS in a simple, automated, and resource-efficient way, which surpasses
manual test case generation while still maintaining targeted tests as a result.
The resulting scenarios can be further compiled into executable test cases with
very low effort once the details of the implemenation are known. We also
showed incorporation of CALs and TAF into a security analysis and testing
pipeline. These concepts define the level of thoroughness of testing as well as
providing a metric for the effectiveness of included safeguards. The required
formalization in this manifestation of a testing process is used to increase com-
pleteness and efficiency in security testing by using the products of formalized
steps in an automated process. Overall, this paper demonstrates a workflow
originating from CALs and a TARA, which results are used to generate test
cases in an automated manner (via attack tree generation). These tests can be
used at various stages of the life cycle and also determine TAFs in the practi-
cal implementation stages. Future work includes to utilize machine learning to
attribute the test patterns to attack tree edges (instead of a fixed function). This
allows for more flexible and experience-based test case generation.
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Abstract

Passports are part of critical infrastructure for a very long time. They also have
been pieces of automatically processable information devices, more recently
through the ISO/IEC 14443 (Near-Field Communication – NFC) protocol. For
obvious reasons, it is crucial that the information stored on devices are suffi-
ciently protected. The International Civil Aviation Organization (ICAO) spec-
ifies exactly what information should be stored on electronic passports (also
Machine Readable Travel Documents – MRTDs) and how and under which
conditions they can be accessed. We propose a model-based approach for
checking the conformance with this specification in an automated and very
comprehensive manner: we use automata learning to learn a full model of pass-
port documents and use trace equivalence and primitive model checking tech-
niques to check the conformance with an automaton modeled after the ICAO
standard. Since the full behavior is underspecified in the standard, we compare
a part of the learned model and apply a primitive checking ruleset to assure
proper authentication. The result is an automated (non-interactive), yet very
thorough test for compliance, despite the underspecification. This approach
can also be used with other applications for which a specification automaton
can be modeled and is therefore broadly applicable.
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11.1 Introduction

Passports are among critical infrastructure and subject to forgery for a very
long time. This has been aggravated by the fact – it is even mandatory for
member states of the International Civil Aviation Organization (ICAO) that all
documents that are not machine-readable travel documents (MRTDs) are ex-
pired since 20151. More recently, passports have opened up for wireless read-
ing via Near-Field Communication (NFC). The NFC communication protocol
specified in the ISO/IEC 14443 standard series (most prominently in ISO/IEC
14443-4 [1] for data communications), while the respective commands for in-
teracting with integrated-circuit identification cards are defined in ISO/IEC
7816-4 [2]. The ICAO Doc 9303 series specifies a logical data structure and
further details regarding commands, as well as rule sets for accessing the data
inside the defined structure for MRTDs [3]. To sum it up, we use automata
learning with SELECT, READ, UPDATE and AUTHENTICATE (implement-
ing Basic Access Control - BAC [4]) symbols from the ISO/IEC 14443-4 pro-
tocol to infer an automaton and compare it using trace and bisimilarity equiv-
alence to an automaton modeled after the ICAO MRTD specification. The
remainder of this paper is structured as follows: Section 11.1.1 contains this
paper’s additions to the body of knowledge, Section 11.2 outlines the necessary
prerequisite knowledge, Section 11.3 describes the learning and conformance
checking setup, Section 11.4 gives evaluation results, Section 11.5 gives an
overview of important related work, and Section 11.6 concludes the paper with
a discussion and an outlook on further research directions.

11.1.1 Contribution

This paper outlines a process how to very thoroughly analyze passports and
automatically check their conformance with the ICAO MRTD specifications
using formal methods. The contribution to the body of knowledge is threefold.
The paper provides:

• A concise summary of the ICAO MRTD specification – this information
can be used by researchers to build compliance checking systems.

• A(n incomplete) state machine model of the specification.

1https://www.icao.int/Newsroom/Pages/Last-Week-for-States-to-Ensure-Expiration-of-Non-
Machine-Readable-Passports.aspx
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Figure 11.1: Overview of the approach. Green are processes and blue are
artifacts.

• An automata learning setup for ISO/IEC 14443-4, ISO/IEC 7816-4, and
ICAO Doc 9303 including an input alphabet definition and a practical
implementation.

• A practically implemented method for compliance checking based on
equivalence and primitive model checking for an underspecified stan-
dard.

The approach described in this paper can also be adapted, e.g., by using the
specification parts model (Sections 11.2.2, 11.3.3, and 11.3.4) to create model-
based tests from it (removing the learning part) or by using the learning part
only (Sections 11.3.1, 11.3.2, and 11.4) and creating rules for a model checker
to check the model for desired properties (removing the equivalence checking
part). Figure 11.1 provides an overview of this approach and its parts.

11.1.2 Limitations

Since the ICAO specification is not strict enough to build a feasible specifica-
tion automaton (through many optionalities, there could be many automata that
represent a valid model of the specification), the behavioral equivalence only
covers a part of the conformance checking. For other parts (namely, files should
not be read and/or writable if certain conditions are not met), we impose model
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checks. These are, however, pretty primitive and might be improved. Also,
with the lack of a Password Authenticated Connection Establishment (PACE)
and Terminal Authentication implementation, we do not check for these types
of authentication 2. Lastly, the case study is limited, as only Austrian passports
were available as examination objects.

11.2 Preliminaries
This section outlines the fundamentals of the NFC protocol family, the ICAO
MRTD specifications and the concepts of automata learning.

11.2.1 Near Field Communication
Near Field Communication (NFC), standardized in the ISO/IEC 14443 series,
is a wireless communications protocol that allows for reader devices (proxim-
ity coupling devices - PCDs) to communicate completely passive, powerless
devices (proximity integrated circuit cards - PICCs) at low data rates (up to
424 kbits/s). The PICCs are therby powered via an inductive field that also
transports the data. After a handshake [5], which is out of scope of this paper,
communications is standardized in ISO/IEC 14443-4 [1], which defines basic
types of messages for data transmission (information or I blocks), signaling
(supervisory or S blocks), and acknowledgements (receive-ready or R blocks),
along with protocol mechanisms like block numbering, chaining, error correc-
tion, etc. The actual data interchange format is defined in ISO/IEC 7814-4 [2],
including commands for data selection, data manipulation and security func-
tions. In general, data on NFC cards is segmented into different applications
(dedicated files - DFs), which are comparable to directories on file systems, that
contain data files (elementary files - EFs) as actual data storages. Both types are
selected using the SELECT command with different parameters. The standard
also defines manipulation operators that can be applied on EFs. One flavor are
the READ/WRITE/UPDATE/APPEND/SEARCH/ERASE/COMPARE BINARY
commands. These are for manipulating Data Units, which can inside the EF
be controlled by using offsets. Another set is the READ/WRITE/UPDATE/AP-
PEND/SEARCH/ERASE/ACTIVATE/DEACTIVATE RECORD commands for
manipulating Records, that can be addressed by record identifiers instead of
raw binary offsets. Under records reside Data objects (DOs), which can be

2A German passport was available, but supported PACE only. We could not include it in the
evaluation for the reason stated above.
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addressed with the GET/PUT/UPDATE/COMPARE DATA commands. Apart
from that, the standard defines security functions like the GETCHALLENGE
and different forms of AUTHENTICATE and verification commands. These
commands build the base of the input alphabet for learning NFC models, the
rest of the commands inside an abstraction layer will be defined by respective
identifiers defining the content.

The respective answers to these commands could consist of data (which can
be encrypted as well), but in any case contains two status bytes (as defined in
ISO/IEC 7816-4). These bytes are set to have a scheme distinguishing between
a completed process with normal processing (9000 and 61XX - the latter means
that are data bytes left to transmit) or warning processing (62XX and 63XX), as
well as aborted processing with execution error (64XX and 66XX) or checking
eroor (67XX and 6FXX). The most common codes encountered when working
with passports are (empirical :

• 9000 - OK

• 6300 - No information given (seen at authentication attempts with wrong
credentials)

• 6700 - Error with no information given (when trying to perform write
operations without authentication)

• 6982 - Security status not satisified (i.e., lack of authentication)

• 6985 - Conditions of use not satisfied (when trying to authenticate with-
out an application selected)

• 6986 - Command not allowed (when trying to read without a file se-
lected)

• 6988 - Insecure messaging DOs (when encrypting data with a wrong
key)

• 6A82 - File not found

• 6D00 - Instruction code not supported or invalid (when sending mal-
formed commands)
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11.2.2 Machine Readable Travel Document Specification
The International Civil Aviation Organization’s (ICAO) Doc 9303 series spec-
ifies the appearance and behavior of passports and machine readable travel
documents (MRTDs). Particularly Part 10 [3] specifies the logical data struc-
ture (LDS) of MRTDs and defines access rights (i.e. what authentication is
necessary to read or manipulate) for data.

The standard defines four applications, referenced by dedicated files:

• eMRTD (ID A0 00 00 02 47 10 01)

• Travel records (ID A0 00 00 02 47 20 01)

• Visa records (A0 00 00 02 47 20 02)

• Additional biometrics (A0 00 00 02 47 20 03)

The first (following the LDS1) is mandatory, while the latter three (follwing
the LDS2) are optional. The eMRTD application contains all of the data that
is normally on the main page of a passport (like number, name, birth date, ex-
piration date, etc.) plus additional data including electronic photos, finger and
iris scans. This application contains data that should be immutable in the doc-
ument and readable with authentication, namely with the older Basic Access
Control (BAC) or the newer Password Authenticated Connection Establish-
ment (PACE), with sensitive biometrics (fingerprints and iris scan) addition-
ally needs a terminal authentication to determine the reader is authorized. Due
to this is mandatory and the other applications are not implemented in many
(including EU) passports3, we concentrate on this part. The other applications
contain potentially mutable records, and certificates stored within the applica-
tion to display authenticity against a reader – assuring that visa and electronic
travel stamps are genuine. The applications require different levels of authen-
tication (see Section 11.2.2). Figure 11.2 gives an overview of the layout and
the different applications and Table 11.1 gives an overview of the defined EFs
with their IDs, DFs, requisiteness, and access requirements.

Electronic Machine Readable Travel Document Application

Concentrating on the Electronic Machine Readable Travel Document (eM-
RTD) application, ICAO Doc 9303 Part 10 defines various EFs that contain

3We also concretely tested an expired Austrian and a valid Austrian and German passport for
these applications. The answer was unanimously the status code 6A82 for File or application not
found.
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personal and document data, along with access requirements. In particular it
defines

• Common (EF.COM): containing metadata (version, encoding, etc.) of
the application

• Data Group 1 (EF.DG 1): containing the machine readable zone.

• Data Group 2 (EF.DG 2): containing the holder’s face image.

• Data Group 3 (EF.DG 3): containing the holder’s fingerprints image.

• Data Group 4 (EF.DG 4): containing the holder’s iris image.

• Data Group 5 (EF.DG 5): containing holders displayed portrait(s).

• Data Group 6 (EF.DG 6): is reserved for future use.

• Data Group 7 (EF.DG 7): containing the holder’s displayed signature.

• Data Group 8 (EF.DG 8): containing data features.

• Data Group 9 (EF.DG 9): containing structure features.

• Data Group 10 (EF.DG10): containing substance features.

• Data Group 11 (EF.DG11): containing additional personal details (e.g.,
localized name, place-of-birth).

• Data Group 12 (EF.DG12): containing additional document details (e.g.,
issuing authority, date-of-issue).

• Data Group 13 (EF.DG13): containing optional details.

• Data Group 14 (EF.DG14): containing data elements.

• Data Group 15 (EF.DG15): containing the public key info for active
authentication.

• Data Group 16 (EF.DG16): containing persons to notify.

• Document Security Object (EF.SOD): containing hash values of the data
group for integrity checking.

• Country Verifying Certification Authorities (EF.CVCA): containing pub-
lic keys of CVCA for teminal authentication (see Section 11.2.2).
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Name ID DF Mandatory SELECT READ WRITE APPEND
EF.ATR/INFO 2F01 Master No1 ALWAYS ALWAYS NEVER NEVER

EF.DIR 2F00 Master No1 ALWAYS ALWAYS NEVER NEVER
EF.CardAccess 011C Master No2 ALWAYS ALWAYS NEVER NEVER

EF.CardSecurity 011D Master No2 PACE PACE NEVER NEVER
EF.DG1,2 0101,02 LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER
EF.DG3,4 0103,04 LDS1.eMRTD No BAC/PACE+TA BAC/PACE+TA NEVER NEVER

EF.DG5,7-13,16 0105,07-D,10 LDS1.eMRTD No BAC/PACE BAC/PACE NEVER NEVER
EF.DG6 (RfFU) 0106 LDS1.eMRTD No - - - -

EF.DG14 010E LDS1.eMRTD No2 BAC/PACE BAC/PACE NEVER NEVER
EF.DG15 010F LDS1.eMRTD No3 BAC/PACE BAC/PACE NEVER NEVER

EF.COMMON 011E LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER
EF.SOD 011D LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER

EF.CVCA 011C LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER
EF.Certificates 011A All LDS2 No PACE+TA PACE+TA NEVER PACE+TA
EF.ExitRecords 0102 LDS2.Travel Records No PACE+TA PACE+TA NEVER PACE+TA

EF.EntryRecords 0101 LDS2.Travel Records No PACE+TA PACE+TA NEVER PACE+TA
EF.VisaRecords 0103 LDS2.Visa Records No PACE+TA PACE+TA NEVER PACE+TA

EF.Biometrics1-64 0201-0240 LDS2.Add. Biometrics No PACE+TA PACE+TA NEVER NEVER

Table 11.1: Files from ICAO Doc 9303-10 with their names, IDs, application,
requisiteness and access requirements.
1Conditional - required if LDS2 files are present.
2Conditional - required if PACE is implemented.
3Conditional - required if active authentication is implemented.

• Key files for authentication (see Section 11.2.2).

All of these files can be mandatory (DG1, DG2), optional (DGs 3-5, 7-13,
and 16), or conditional (DG14 - if PACE is implemented, DG15 - if AA is
implemented) and can be read if authenticated (via BAC or PACE), except for
DGs 3 and 4, which require additional terminal authentication (see Section
11.2.2) - none of these files should be manipulated (no write/append access).
Table 11.1 gives an overview of these files, along with those from the LDS2
applications.

Authentication

Since passports can considered critical infrastructure devices, authentication is
crucial. The ICAO defines two mechanisms for access to the MRTD chips in
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Figure 11.2: Locical Data Structure of Machine Readable Travel Documents.
Amber is the master file (MF), Cyan are dedicated files (DF), Blue are Elemen-
tary Files (EF), and Green are key files. Solid frames means mandatory files,
dashed ones optional files. Solid boxes donate the LDS contexts, dashed black
boxes requirements, and dashed red boxes necessary authentication.
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its Doc 9303-11 standard [4]:

• Basic Access Control (BAC) and

• Password Authenticated Connection Establishment (PACE).

BAC is the older one, it had known privacy issues [6, 7] and may become
deprecated in future. Currently an MRTD must implement one or both mecha-
nisms. Additionally LDS2 applications must and additional biometrics, LDS1
data groups 3 (fingerprints) and 4 (iris), may be secured by a terminal authen-
tication procedure.

Since we have a BAC, but not a PACE implementation available and our
available devices-under-test (see Section 11.4) all support BAC but only par-
tially PACE, we use BAC only for modeling and evaluation. BAC uses is
challenge-response by encrypting a received nonce (via a GETCHALLENGE
command) with a key derived from three components[4]: the passport num-
ber, the expiration date and the holder’s birth date. These can be obtained
from the machine readable zone or the main page of the passport. The en-
crypted nonce is subsequently sent through an EXTERNAL AUTHENTICATE
command to finish the authentication. The authentication answer contains ad-
ditional key material for establishing session keys. All instructions (and re-
spective responses) operating on data protected by this particular BAC are en-
crypted using these session keys. The rationale is to prevent unnoticed wireless
data extraction from an MRTD.

11.2.3 Automata Learning
Automata learning is a method to infer state machine models (originally deter-
ministic finite acceptors - DFAs) from a system using a learner-teacher frame-
work [8]. The learner may ask two kinds of questions: Membership queries and
Equivalence queries. The former is used to determine if an input (specifically
an input word, which is a combination of input symbols) is well-formed i.e., if
it is a valid word inside this language. The answer to this query is a yes or a
no from the teacher. The latter type of queries is to determine the correctness
of a learned automaton. The teacher answers with yes if a hypothesis (inferred
after a sufficient amount of membership queries) is correct or gives a counter
example the learner could use to improve the hypothesis until it is correct. To
apply this to real-world reactive systems (mostly software or cyber-physical
systems), we use Mealy machines (formally M = (Q,Σ,Ω, δ, λ, q0), with Q
being a set of states, Σ an input alphabet, Ω an output alphabet, δ a transition



186 Paper V

function (δ : Q × Σ → Q), λ an output function (λ : Q × Σ → Ω) and q0 an
initial state. This alters the framework in the sense that the membership queries
yield a Mealy output instead of a binary answer. In practice, the teacher is im-
plemented in a way that the membership queries deliver the (abstracted - see
Section 11.3.1) result directly obtained from the reactive system and the equiv-
alence queries are realized as set of conformance tests that deliver a positive
answer or a counterexample in the form of a failed test’s input. The respective
systems can also be viewed as labeled transition systems (LTS) [9]. We can
therefore use trace equivalence (Traces(LTS1) = Traces(LTS2)) to check
the behavioral equivalence with a specification automaton [10].

11.3 Learning Setup

We use the widely used Java library LearnLib [11] to mine (Mealy type) state
machine models of passports. This library provides classes for developing
adapters to a system-under-learning (SUL), as well as various learning algo-
rithms (L* [8] and variants thereof [12], KV [13], DHC [14] and TTT [15]).

The SUL classes interact with a C++ program that serves as an interface for
a Proxmark3 NFC adapter device [16], which allows for sending arbitrary NFC
commands to a device and process the respective responses. This program also
contains an abstraction layer (see Section 11.3.1).

11.3.1 Abstraction

Since, in principle, any combination of bytes can be sent to a SUL, the in-
put space is very large (only bounded by the maximum transmission units for
NFC). To keep the learning within a feasible time frame, the input must be lim-
ited to sensible set of discrete instructions i.e., the input alphabet for a Mealy
machine. The C++ adapter translates input symbols to data to be send. Simi-
larly, we abstract the output of the operations. This is a necessity, since some of
the commands yield a different output every time (e.g., through random cryp-
tographic nonces, session keys, etc.). However, conviently all of the answer
messages contain a status code (see Section 11.2.1), which is even in clear text
for encrypted messages. Also, the status code already contains the relevant in-
formation for checking ICAO conformance, since it determines whether a file
could be successfully read or manipulated. We therefore use the answer status
codes as abstracted outputs.
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11.3.2 Input Alphabet

The input alphabet in our case consists of a combination of instructions from
ISO/IEC 7816-4 (select DF, select EF, GETCHALLENGE, EXTERNAL AU-
THENTICATION, READ BINARY, and UPDATE BINARY) and the file struc-
ture with the DF and EFs outlined in Section 11.2.2. Except for the BAC,
all instructions are used in two forms: unencrypted and encrypted. The ra-
tionale is to check if after a successful authentication insecure access might
become possible. We use READ BINARY as representative for all reading op-
erations and UPDATE BINARY as representative for writing operations. As
stated above we concentrate on the LDS1 application, making this the only
select DF instruction. The codes for card access (CA) and (CVCA), as well
as for card security (CS) and the document security object (SOD) are iden-
tical (only executed in different context) yielding to only one encrypted and
unecrypted input symbol for each. The BAC is abstracted in to one input sym-
bol (combining the GETCHALLENGE and EXTERNAL AUTHENTICATE
instructions along with all necessary key calculations). The compelete input
alphabet is therfore ¡SEL EF.CA¿, ¡SEL DF.LDS1¿, ¡SEL EF.CM¿, ¡SEL -
EF.DG1¿, ¡SEL EF.DG2¿, ¡SEL EF.DG3¿, ¡SEL EF.DG4¿, ¡SEL EF.DG5¿,
¡SEL EF.DG6¿, ¡SEL EF.DG7¿, ¡SEL EF.DG8¿, ¡SEL EF.DG9¿, ¡SEL EF.DG10¿,
¡SEL EF.DG11¿, ¡SEL EF.DG12¿, ¡SEL EF.DG13¿, ¡SEL EF.DG14¿, ¡SEL -
EF.DG15¿, ¡SEL EF.DG16¿, ¡SEL EF.SOD¿, ¡SEL EF.ATR¿, ¡SEL EF.DIR¿,
¡RD BIN¿, ¡BAC¿, ¡SSEL EF.CA¿, ¡SSEL DF.LDS1¿, ¡SSEL EF.CM¿, ¡SSEL -
EF.DG1¿, ¡SSEL EF.DG2¿, ¡SSEL EF.DG3¿, ¡SSEL EF.DG4¿, ¡SSEL EF.DG5¿,
¡SSEL EF.DG6¿, ¡SSEL EF.DG7¿, ¡SSEL EF.DG8¿, ¡SSEL EF.DG9¿, ¡SSEL -
EF.DG10¿, ¡SSEL EF.DG11¿, ¡SSEL EF.DG12¿, ¡SSEL EF.DG13¿, ¡SSEL -
EF.DG14¿, ¡SSEL EF.DG15¿, ¡SSEL EF.DG16¿, ¡SSEL EF.SOD¿, ¡SSEL -
EF.ATR¿, ¡SSEL EF.DIR¿, ¡SRD BIN¿. Using this alphabet in the abstracted
learner yields models of passports (see Section 11.4). This model can be used
to compare with a specification automaton or to use with model checking.

11.3.3 Specification Automaton

Following the specification, we modeled a minimal automaton that is able to
behave a required by ICAO specification Doc 9303-10. This is not straight-
forward, since, compared with the possible NFC command alphabets, the ICAO
document is under-specified. Additional behavior is specified in Doc 9303-11
(particularly that the LDS1.eMRTD application must be selected before per-
forming BAC authentication). Since much of the behavior is not defined by
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Figure 11.3: Graph of the specification automaton. The diagram was simplified
for better readability.

ICAO (e.g., behavior on multiple authentications and selections), we modeled
the bare functional minimum. The automaton contains 5 states, which, for
better comprehensiveness, we label according to already happened events: the
initial state (ε), a state with a valid EF from the Master DF (EF ), the LDS1
application selected (DF ), the LDS1 application selected and authenticated
with BAC (DFAUTH), and the LDS1 application selected, authenticated
with BAC and a valid EF from the LDS1 application selected DFAUTHEF .
Since some files are optional we also leave out the selection transitions in the
state where they could be successfully accessed, since the respective transi-
tions could have a positive (9000) or negative (6a82) output. Figure 11.3 show
a graph of the specification automaton. Note that the automaton is not a com-
plete one, as not every input has a defined output and target state in the output
and transition relations, respectively. This yields a specification automaton
that can be used for either a learning and behavior comparison approach as
described in this paper, or to create model-based tests.

11.3.4 Simplification and Labeling
To allow for a sensible comparison of the learned model with the specifica-
tion, we want to identify the distinct states with a hard definition in the stan-
dard in order to separate it from not defined parts, as not the full behavior
but only the access rules and requiredness of files are prescribed (see Section
11.2.2). Also, semantically labeled states are more convenient for both the hu-
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man reader and electronic processing. We therefore use a simple algorithm that
accesses mandatory files in a specific order, namely:

• From the initial state, follow the select EF for CardAccess transition

• If output yields 9000, label this state as EF

• From the inital state, select the DF for LDS1.eMRTD tansition

• If output yields 9000, label this state as DF

• From DF, follow the BAC transition

• If output yields 9000, lable this state as DF—AUTH

• From DF—AUTH, follow the encrypted select Data Group 1 transition

• If output yields 9000, label this state as DF—AUTH—EF

• From the initial state, select the BAC transition

• If output yields 6985 label the state as FAILAUTH

• From FAILAUTH, follow the select LDS1.eMRTD transition

• If output yields 9000 label the state as FAILAUTH—DF

• From EF, select the BAC transition

• If output yields 6985 label the state as FAILAUTH—EF

• From the DF—AUTH—EF, select the unencrypted READ BINARY tran-
sition

• If output yields 6982 label the state as DEAUTH

This names the states after attributed properties: EF for a selected elemen-
tary file, DF for a selected decicated file (i.e. the LDS1.eMRTD application),
AUTH for a successful authentication (i.e., BAC), FAILAUTH for a failed au-
thentication (mainly happens because no file that needs authentication was se-
lected beforehand), DEAUTH for a revoked authentication (which occurs when
insecure – i.e., non-encrypted – commands are executed). This label states
where taken from different Austrian passports.
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11.3.5 Specification Conformance

As stated above, through underspecification there is room for diverse behav-
ior patterns. As only the access level and optionality of files is defined, we
created a minimal automaton that modeled the access rules for present files.
This automaton only contains the ε, DF, DF—AUTH, and DF—AUTH—EF
states. File operations (i.e. READ BINARY should only be possible in the
DF—AUTH—EF state. We therefore abstracted the output into successful op-
erations (9000) and unsuccessful operations (NOK) for optional files in the
other states. It is, however, not significant for an optional EF if access to it has
been denied because of lack of authentication or because the file is not present.
Since we identified 22 different non-mandatory EFs (all inside the Master and
the eMRTD DFs), that would otherwise have led to 222 possibilities equalling
just as many specification automata. Inside the DF—AUTH—EF we left the
transitions out for optional files (since, according to the specification, an op-
eration may or may not successful) and modeled successful read operations
for mandatory ones. For conformance checking, two steps were necessary: a)
positive checking and b) negative checking.

For a) we used a trace equivalence check with the specification automaton,
removing any states and transitions from the learned one that are not in the
specification. The pracical implementation is realized by removing all transi-
tions from a learned automaton that lead from or to a state that is not covered
within the specification automaton (which, again is not complete and is miss-
ing ambiguous transitions, i.e. such for optional files). For the remainder we
perform a trace equivalence check between the learned and the specification
automata. We realize this by converting the LearnLib output in the Graphviz
(.dot) format into the Aldebaran (.aut) format and feed it into the mCRL2 tool
[17] for trace equivalence checking. However, all non-covered transitions will
be removed in an examined learned automaton as well, so the trace equivalence
shall hold if the SUL conforms.

For b) we performed a primitive form of model checking using a simple
rule set:
(i) Since for all mandatory files reside in the LDS1.eMRTD application and au-
thentication is required for access, a READ BINARY must be secured (SRD -
BIN) and executed for from the DF—AUTH—EF state) to yield a positive result
(9000).
(ii) For DF—AUTH—EF to be in a guaranteed authenticated state, every tran-
sition targeting that state must come from DF—AUTH or come through a suc-
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cessful authentication (BAC / 9000) transition4. This enables for efficient, au-
tomatic conformance checking that is as comprehensive as the specification
allows.

Figure 11.4: Learned and labeled model of an Austrian passport. The diagram
was simplified for better readability.

11.4 Evaluation
We put the methodology to test at two different passports from the Republic
of Austria: one current and one expired 5 years ago. We were able to infer
models of these passports and observed subtle differences, particularly that the
elder one obviously does not support PACE (missing the respective CardAccess
and CardSecurity files in the master record). Figure 11.4 shows a diagram of
the automaton of the current passport, which is simplified for readability but a
full model in the sense that it is not the reduced version used for conformance
checking as outlined in Section 11.3.5. The model shows additional states

4While other possibilities are possible in principle, they cannot be guaranteed to be conform
with the standard; as a de-authentication might have occurred, the authentication can not be take
for granted.
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as compared to the (partial) specification, namely a de-authenticated state, as
well as failed authentications and combinations of this new and the other states.
Concretely, the additional states are EF (a selected Elementary File in the Mas-
ter file), FAILAUTH, FAILAUTH—EF, FAILAUTH—DF, and DEAUTH (a de-
authentication after a wrongly selected EF in the DF—AUTH—EF state. The
main task for a checker is to make sure that no illegal operation (i.e., reading or
manipulation operation) occurs in these states. Both examined objects passed
the conformation tests (equivalence and simple model checking) as outlined in
Section 11.3.5.

11.5 Related Work

We used the approach of using equivalence checking (bisimulation and trace
equivalence) with NFC before, particularly for an automatic compliance checker
for the ISO/IEC 14443-3 (the NFC handshake) protocol [9]). Apart from that,
usage of similar approaches for compliance checking is sparse. For Mealy Ma-
chines, Tappler et al. [18] used bisimulation for comparison and there is work
for a similar approach checking an embedded control software for its correct-
ness [19].

11.6 Conclusion

In this paper, we demonstrated the usage of automata learning to infer models
of passports and check whether they comply to international machine readable
travel document specification. We therefore distilled the relevant information
to create a specification automaton out of the relevant documents and modeled
a labeled transition system out of it, which contains the standard-compliant be-
havior. Since many of the files are not mandatory, we abstracted the output for
the comparison of optional files outside the state where a file was selected and
authentication successful. We therefore coped with an underspecified standard
using incomplete automata. This system was compared with a learned model of
an actual passport, using the input alphabet described in Section 11.3.2. Since
the models displayed equivalent behavior, evidence for conformance with the
ICAO standard was provided.
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11.6.1 Discussion
The current implementation is not complete and has therefore some limita-
tions. Most prominently, no other authentication mechanisms than BAC was
implemented, therefore parts of the specification (particularly PACE-related)
could not be tested – this also ruled out some newer passports, e.g., current
German ones, as systems-under-test, as BAC can be completely abandoned
as authentication mechanism in favor of PACE. Also, no systems containing
LDS2 applications were available, so these could also not be tested.

11.6.2 Outlook
The methods in this paper provide principally a very thorough method of NFC-
based data systems (particularly passports). This method can easily adapted to
be used with other systems and protocols, once provided with an adequate
specification, learner adapter and input alphabet. Another direction to move
forward is to test more specifically: instead of checking equivalent behav-
ior with a specification automaton, specific rules can be applied for a model
checker to check the system for certain properties (particularly, security prop-
erties). Looking in another direction, the specification models are created man-
ually so far. To further automate the process techniques like Natural Language
Processing (NLP) using small or large language models can be used to create
specifications automata from standards or specification documents. This also
facilitates the use case of Original Equipment Manufacturers (OEMs) being
able to very thoroughly examine the
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Abstract

Industrial and critical infrastructure devices should be scrutinized with rigorous
methods for inconsistencies with a specification. At the same time, this spec-
ification should also be correct, otherwise the specification conformance is of
little value. On the example of eMRTDs (electronic Machine-Readable Travel
Documents) we demonstrate an approach that combines model-checking a spec-
ification for correctness in terms of security with learning an implementation
model using automata learning. Once the specification is modeled, we auto-
matically mine a model of the implementation and check the model for com-
pliance with the verified specification using simulation and trace preorder. Un-
derspecification of the standard is in this setting modeled as non-deterministic
behavior, so one of the possibilities has to simulate the implementation in order
for the latter to be compliant. We also present a working tool chain realizing
this method. When adopting the tool chain accordingly, the method might be
used in practice for checking the correctness of any reactive system.
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12.1 Introduction

12.1.1 Motivation
Electronic Machine Readable Documents (eMRTDs) are critical infrastructure
and should therefore be correct and secure systems. This means that they
should be scrutinized with rigorous methods for inconsistencies with a specifi-
cation. At the same time, this specification should also be correct, otherwise the
specification conformance is of little value. We therefore strive for a method-
ology to automatically checking both a specification for its correctness and an
implementation to be compliant to the former. In practice we present a practi-
cal approach to connect model checking for a correct specification for eMRTD
communication (via Near-Field Communications – NFC) with automata learn-
ing to mine a model of an implementation to check its conformance with the
verified model. We thereby emphasize on security properties (i.e., protected in-
formation may only be read with proper authentication, etc.). With appropriate
adapter classes, the method might be used for checking the correctness of many
reactive systems. Having the interaction of two reactive systems (an eMRTD
and a reader device) as target of examination, we use the Rebeca modeling
language [1] (particularly Core Rebeca) to create a checkable specification
model, since modeling these kind of systems is the very purpose of Rebeca.
The latter, in conjunction with its Java-like syntax makes the modeling pro-
cess fairly easy (compared to the decription syntax of other model checking
systems) and, therefore, well-maintainable.

12.1.2 Contribution
This paper combines formal methods with systems engineering and testing to
create a tool chain for checking implementations for their correctness and se-
curity. Our main contributions are:

• An approach for combining model-checking a specification for correct-
ness with learning an implementation model

• An automated tool chain for the complete process, once a specification
is modeled

• A verified specification model for eMRTDs

We use three formal methods: automata learning, equivalence checking (par-
ticularly simulation and trace preorder), and model checking. We use these



202 Paper VI

methods in an automated tool chain and apply it to a practical use case, namely
checking eMRTDs for their specification conformance and verifying the spec-
ification for security properties. Relying on Rebeca to model the standard, we
produce a more secure (assured by model checking) and maintainable (through
the traits of Rebeca) specification model to be used for checking the behavioral
correctness of mined implementation models.

12.1.3 Approach

Starting from existing work on learning a behavioral model using automata
learning and comparing it with a (partial) specification [2, 3], we use Rebeca to
create a partial model of the International Civil Aviation Organization’s (ICAO)
Doc 9303 part 9 standard [4], which was done by hand in the contributions
mentioned before. This document defines the structure of an eMRTD (includ-
ing mandatory and optional elements, like stored document and personal data,
biometrics, etc.) and how to access this data via the NFC protocol (ISO/IEC
14443-4 [5]) and standardized integrated-circuit interfaces (ISO/IEC 7816-4
[6]). It is important to note that despite using the standard that defines the data
structure for eMRTDs, we actually model the behavior of inter-reacting sys-
tems: one hosting and one accessing the data structures defined in the standard.
We already outlined the specifics in another paper [3]. Rebeca’s integration
environment (Afra) comes with a specific model checker (Modere) [1]. This
allows to verify the model for properties using Linear Temporal Logic (LTL)
or Computational Tree Logic (CTL). The checker also creates a state space that
represents the model (based on two communicating reactive systems). On the
other hand we use active automata learning with the Learnlib library [7] to
mine Mealy machine models of eMRTD implementations (i.e., the electronic
representations of passports). We use a self-written converter to transform the
Rebeca state space model into a Mealy-styled LTS (see Section 12.4.3). We
can then check whether the learned implementation model is included (using
simulation or trace preorder – see Section 12.4) in the verified specification.
We use the MCRL2 toolset’s [8] ltscompare tool to perform this analysis. If
both the specification is successfully verified and the implementation is inside
the specified behavior (i.e., preorder is successful), we can claim that the exam-
ined system is assured to fulfill the verified properties. We modeled security
properties (e.g., authentication before access to sensitive data – see Section
12.4.2) and implemented this into a tool-supported process (see Figure 12.1).



12.2 Preliminaries 203

Figure 12.1: Overview of the approach. Green are processes, blue are external
inputs, and amber are outputs (i.e., results), the arrow labels are artifacts (input
artifacts for arrows from blue to green boxes, output artifacts from green to
amber boxes. The italic labels next to the green boxes denote the used tool
sets/frameworks.

12.1.4 Limitations

Due to a lack of an available implementation, the authentication method is
limited to Basic Access Control (BAC), while the other standardized methods,
namely Password Authenticated Connection Establishment (PACE) and Ter-
minal Authentication (TA) are not included in the models.

12.2 Preliminaries
Here we give a brief overview of some fundamental concepts used in this paper,
as well as some basic descriptions of used tools and methods. We also give
some definitions to well-known concepts to show our interpretation and avoid
ambiguities.

12.2.1 Labeled Transition Systems and Mealy Machines

There are some basic approaches to model reactive systems. We use two of
them, particularly Labeled Transitions Systems (LTS) and Mealy Machines.
Transition systems describe a system’s behavior in a graph-based manner by
defining a set of states the system is in and a set of transitions that realize
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changes of these states, normally denoted by actions (i.e., inputs) and a transi-
tion function, along with initial states and atomic propositions (i.e., properties
of the system in a certain state). An LTS contains also a labeling function
that assigns actions to transitions. Formally, an LTS is defined as LTS =
(Q,Act,→, I, AP,L), with Q being the set of states, Act a set of actions,
→ a transition function, I the set of initial states, AP a set of atomic propo-
sitions and L a labeling function [9]. Finite State Machines (FSMs), also
called automata, are similar to LTS, but their number of states and transitions
is finite (a restriction not applicable to LTS), often used in a deterministic ver-
sion, so called deterministic finite automata (or acceptor - DFA). This means
that every input must have exactly one result in each state whereas, LTS do
not have to be deterministic and can be seen as non-deterministic automata
[10]. To model real-world, reactive systems, automata types that provide in-
put and output are used. The two most common are Mealy [11] and Moore
machines [12], where the difference lies in the output being produced by tran-
sitions (Mealy) or by states (Moore). For easier access to learning algorithms,
we use Mealy machines. In a Mealy Machine, each input from a set (the al-
phabet) must be matched with a transition (i.e., change to a certain state, which
can also be the original one) and an output. A Mealy Machine is defined as
M = (Q,Σ,Ω, δ, λ, q0), with Q being the set of states, Σ the input alphabet, Ω
the output alphabet (that may or may not be identical to the input alphabet), δ
the transition function (δ : Q×Σ → Q), λ the output function (λ : Q×Σ → Ω)
– or a merger of both functions (Q×Σ → Q×Ω) – and q0 the initial state. The
transitions can be viewed also as tuples ⟨p, q, σ, ω⟩ with p, q ∈ Q, σ ∈ Σ, and
ω ∈ Ω as elements of the combined input/transition function. State machines
can be viewed as LTS by interpreting input/output pairs as labels of an LTS
[13].

12.2.2 Types of Equivalence

To check the conformity of a system with a standard, we look for standard
conform behavior of the system. The idea is to compare the behavior of a sys-
tem with a specification. Using formal methods, we use behavioral equivalence
checks of a learned (see Section 12.2.3) model of the implemented system with
a correct (see Section 12.2.5) specification model. Since we treat our models
as LTS, we concentrate on equivalences for LTS. There are different types of
formally defined equivalences, of which we use simulation and trace preorder,
as well as bisimulation and trace equivalence [9]. The difference between
preorder and equivalence relations is that preorder is reflexive and transitive,
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whereas equivalence is reflexive, transitive and symmetric (i.e., an equivalence
is a symmetric preorder) [14]. Formally defined:

Definition 4 (Simulation Preorder). Simulation preorder of two LTS (LTS1 ⪯
LTS2) is defined as exhibiting a binary relation R ⊆ Q×Q, such that [9]:

A) ∀s1 ∈ I1 · (∃s2 ∈ I2 · (s1, s2) ∈ R).

B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈
R

Where Post is the set of successor states of another state Post(s) =
⋃

α∈ACT Post(s, α)
and Post(s, α) = {s′ ∈ Q|s → s′} [9]. For preorder, the respective relation
may be unidirectional, whereas for equivalence, it is bidirectional. That means
that when comparing two LTS (LTS 1 and LTS2 ) with simulation preorder
(LTS1 ⪯ LTS2), LTS2 has to simulate every behavior of LTS1 , but not vice
versa; with bisimulation equivalence (LTS1 ∼ LTS2) LTS1 has to simulate
LTS2 ’s behavior and vice versa. For preorder, the behavior of a system LTS1

has to be included in another system LTS2 , but the latter might display addi-
tional behavior not included in the former. Additionally there is trace preorder,
which mandates that the set of traces of LTS1 has to be included in the one of
LTS2 , which might or might not contain additional traces:

Definition 5 (Trace preorder). Traces(LTS1) ⊆ Traces(LTS2)

For bidirectional relations, there are equivalence relations with the same
principles as preorder, namely bisimilarity and trace equivalence.

Definition 6 (Bisimilarity). of two LTS (LTS1 ∼ LTS2) has a binary relation
R ⊆ Q×Q, such that [9]:

A) ∀s1 ∈ I1∃s2 ∈ I2 · (s1, s2) ∈ R and ∀s2 ∈ I2(∃s1 ∈ I1 · (s1, s2) ∈ R.

B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈
R

3) if s2′ ∈ Post(s2) then there exists s1′ ∈ Post(s1) with (s1′, s2′) ∈
R
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Trace equivalence is the symmetric version of trace preorder, which means
that two transitions systems produce the same traces for each same input.

Definition 7 (Trace equivalence). Traces(LTS1) = Traces(LTS2)

12.2.3 Automata Learning
(Active) Automata Learning is a method of deriving a system model by query-
ing a system with input data. Originally, it was described by Angluin in her
work on learning regular sets [15], where she introduces the Learner-Teacher-
Framework. In this framework, a learning system might ask a teacher two kinds
of questions about the scrutinized system (System-under-learning – SUL):

• Membership queries and

• Equivalence queries.

Thereby, it is assumed that the teacher possesses a correct automaton of the
SUL. The naming stems from the original purpose of learning Deterministic
Finite Acceptors (DFA), a state machine type that describe regular languages.
The DFA does or does not accept (hence acceptor) arbitrary sequences of sym-
bols from a specific alphabet by deciding if the sequence (i.e., word) is a well-
formed part of the respective language. Therefore, membership queries denote
such input words, where the teacher answers whether or not they are accepted.
The learner uses the respective output in a systematic way to infer a state ma-
chine. This also works for real-world reactive systems, but instead of generat-
ing queries to learn a DFA, the target is usually to learn a Mealy or Moore type
automaton. Given the nature of these, the answer to membership queries is not
yes or no, but rather the output of the automaton according to the output func-
tion, i.e. a query consists of an input word Wσ that consists of symbols from
the input alphabet (σ ∈ Σ|Wσ = ⟨σ1, σ2..σn⟩) and delivers an output word Wω

consisting of symbols from the output alphabet (ω ∈ Ω|Wω = ⟨ω1, ω2..ωn⟩)
according to the output function λ (simultaneously traversing through the sates
according to δ). If there is enough data to construct a state machine, the learner
might ask the teacher whether the constructed state machine (hypothesis) cor-
responds to the actual system. This type of question is called equivalence
query. The teacher answers with yes, if the hypothesis is correct (i.e., the
hypothesis automaton is equivalent to the SUL automaton). Otherwise, the
answer is a counterexample in form of an input word and the respective output
word from the SUL automaton, that deviates from the hypothesis automaton’s
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output word. Since the original L* algorithm, many improvements in learn-
ing methodologies have been developed, most notably the closure strategy of
Rivest and Schapire [16]. More recent improvements include the replacement
of the originally used observation tables by tree structures that represent dis-
tinctive features between states and allow for more efficient membership query
generation. Notable algorithms using trees include Kearns-Vazirani (KV) [17],
Direct Hypothesis Construction (DHC) [18], TTT [19], and L# [20]. When
learning real-world systems, the assumption of possessing a correct SUL au-
tomaton is not feasible, especially for black-box learning settings (which is
one of the main use cases for automata learning). Therefore, generally equiv-
alence queries are replaced by conformance tests, i.e. a sufficient1 amount of
(potentially long) queries after a certain strategies, e.g., random walks [21].

12.2.4 LearnLib

Learnlib [7] is arguably the most widely used library for automata learning
(however, there are others, e.g., AALpy [22] or Libalf [23]). Written in Java,
It features the most used automata learning algorithms (L*, Rivest-Schapire,
AAAR, ADT, KV, DHC and TTT) and an addon L# implementation is avail-
able [24]. Also, it contains classes for conformance testing strategies (com-
plete depth-bounded exploration, random words, random walk, W-method,
Wp-method) and interfaces for providing connectors to SULs. It further con-
tains AutomataLib, which contains tools for automata analysis and manipula-
tion (e.g., minimizing automata).

12.2.5 Model Checking

Model checking is an automated methodology that (efficiently) explores all
states (i.e., system scenarios) of (state-based) system model. Traversing through
the states, it can check if certain system properties are satisfied in a certain state
based on a sound fundament of graph theory, data structures, and logic [9]. The
checkable properties can be stated in different kinds of logic like Linear Tem-
poral Logic (LTL) or Computation Tree Logic (CTL), or the branching-time
logic CTL* that encompasses both of the former. For its availability in the
used model checker, we concentrate on LTL formulas. These are propositional
logic [25] formulas with temporal modalities. Those modalities are

1What is sufficient heavily depends on the specific use case and cannot be determined gener-
ally.
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• always (□): the proposition must hold in any state

• eventually (♢): the proposition must hold in some subsequent state (could
hold before)

• next (⃝): the proposition must hold in the immediately subsequent state
and

• until (U): the proposition A1 must hold until another defined proposition
A2 occurs (A1UA2).

The respective proposition is embedded in a propositional formula. LTL for-
mulas can also be nested. This allows for describing state conditions that must
and must not occur in any state-based model. We use model checking in LTL
for verifying the security properties (particularly authentication) of a specifica-
tion model.

12.2.6 Rebeca
Rebeca is a modeling language that can be used to model reactive systems with
a Java-like syntax [1]. It possesses its own modeling IDE (Afra [26]), which
has also a built-in model checker (Modere [27]) that uses LTL statements for
checking Rebeca models. A Rebeca model mainly consists of reactive classes,
which model the behavior of a specific actor. These classes can have (internal)
functions and (externally callable) message servers. Both allow local variables
and basic statements like arithmetic and logic operations, assignments, condi-
tionals, comparisons, casting, and instance operators that work like in the Java
programming language. Additionally, it has non-deterministic assignment op-
erator to model behavior that may take one of multiple paths. Additionally, a
reactive class can have state variables that are maintained in any state of the
model. These state variables can also be checked with Modere. Instances of a
class are called reactive actors or Rebecs. Each class can have a list of known
Rebecs with which its instances can interact by sending messages to its mes-
sage servers. A class has also a message queue of defined size that holds (and
sequences) messages for its specific server functions. This queue is also used
for checking purposes like deadlock detection – if the system reaches a state
where the message queue of the Rebec that is to take action at that point is
empty, the system stalls in a deadlock. For model checking, a property file
is defined that contains property definitions (i.e. atomic propositions that are
statements formed from state variables of Rebecs), assertions (simple logic
formulas that are always checked in any model checker execution) and LTL
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formulas (that can be executed one-by-one). The model checker also creates
a state space of all visited states in an XML format, which is also convertible
to the Graphviz format. The model checker thereby creates a state for every
execution of a message server. This means that for a model of two interacting
reactive systems, the resulting state machine shows mutual calling of the two
Rebecs, with the possibility of a Rebec also calls its own message server (i.e.,
a self-loop). The state variables referenced in the property file are included as
atomic propositions of the sate (they show up in the state if they are true and
do not show up if they are false). Local functions and variables are not part of
LTS generated from the state space.

12.2.7 Near Field Communication
Near Field Communication (NFC) is a wireless communication standard for
passive (powerless), small embedded devices such as Radio-Frequency Iden-
tification (RFID) and chip cards (also known as smart cards). A proximity
coupling device (PCD) creates an induction field that powers up a proximity
integrated circuit card (PICC) and modulates the communication signals onto
the induction field for transfer between PCD and PICC. ISO/IEC 14443-4 [5]
defines the messages types for data transmission (information or I blocks), sig-
naling (supervisory or S blocks), and acknowledgements (receive-ready or R
blocks), along with protocol mechanisms like block numbering, chaining, er-
ror correction, etc.

12.2.8 Integrated Circuit Access
ISO/IEC 7816-4 [6] defines data structures for transmission (both wired and
wireless) to and from integrated circuit cards, including PICCs in the NFC pro-
tocol. Potential defined operations are data access, reading and writing data,
as well as administrative and security functions, including authentication. For
data access, PICCs are usually segmented into different applications (compa-
rable to directories in a file system) that can be accessed via Dedicated Files
(DFs). The actual data resides in Elementary Files (EFs). Both are usually
accessed through a SELECT command. Once (potentially a DF and) an EF
is (successfully) selected it can be manipulated via READ, WRITE and simi-
lary commands. Since the access to certain data should be protected, also the
GETCHALLENGE and AUTHENTICATE commands are defined. The former
is to initiate an authentication process, while the second concludes it. How that
authentication works in particular is subject to the respective application and
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out of scope of the standard, usually some cryptographic operation based on
a (symmetric or asymmetric) secret is conducted on the value obtained with
the GETCHALLENGE command and returned in the AUTHENTICATE com-
mand. It is also expected that, after the authentication process, the commands
for file selection and manipulation are secured (i.e., usually encrypted). It is
also common that a successful authentication is tied to the application (i.e., DF)
and could also differ on different applications on the same PICC.

The answer to any request contains the (encrypted or unencrypted) return
data and a (always unencrypted status code, consisting of two bytes. In our
work with eMRTDs, we have learned (and modeled) the following status codes
as answers to specific queries:

• 9000 - OK

• 6300 - No information given (seen at authentication attempts with wrong
credentials)

• 6700 - Error with no information given (when trying to perform write
operations without authentication)

• 6982 - Security status not satisfied (i.e., lack of authentication)

• 6985 - Conditions of use not satisfied (when trying to authenticate with-
out an application selected)

• 6986 - Command not allowed (when trying to read without a file se-
lected)

• 6988 - Insecure messaging DOs (when encrypting data with a wrong
key)

• 6A82 - File not found

• 6D00 - Instruction code not supported or invalid (when sending mal-
formed commands)

12.2.9 Electronically Machine-Readable Travel Documents
Electronically Machine-Readable Travel Documents (eMRTDs) refer to the
data stored on passport integrated circuits, accessible via NFC. The data struc-
ture is standardized in ICAO Doc 9303 part 9 [4]. It defines four applica-
tions: eMRTD, travel records, visa records, and additional biometrics. They
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are grouped into LDS1 (only the eMRTD application) and LDS2 (all other ap-
plications). Only the first is mandatory. Since we found only LDS1 on ex-
amined passports, we concentrate on this group. In the common area of the
device (i.e., the area without selecting an application), the standard defines the
following files to be (mandatorily or optionally) present:

• Attributes/Info (ATTR/INFO): containing the card capabilities (only manda-
tory if LDS2 is present).

• Directory (DIR): containing a list of supported applications on the device
(only mandatory if LDS2 is present).

• Card Access (CA): containing security infos required for PACE authen-
tication (only mandatory if PACE is implemented).

• Card Security (CS): containing chip and terminal authentication (only
mandatory if PACE with chip authentication mapping is implemented).

• Common (EF.COM): containing metadata (version, encoding, etc.) of
the application

• Data Group 1 (EF.DG 1): containing the machine readable zone (manda-
tory).

• Data Group 2 (EF.DG 2): containing the holder’s face image (manda-
tory).

• Data Group 3 (EF.DG 3): containing the holder’s fingerprints image
(optional).

• Data Group 4 (EF.DG 4): containing the holder’s iris image (optional).

• Data Group 5 (EF.DG 5): containing holders displayed portrait(s) (op-
tional).

• Data Group 6 (EF.DG 6): is reserved for future use (optional).

• Data Group 7 (EF.DG 7): containing the holder’s displayed signature
(optional).

• Data Group 8 (EF.DG 8): containing data features (optional).

• Data Group 9 (EF.DG 9): containing structure features (optional).
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• Data Group 10 (EF.DG10): containing substance features (optional).

• Data Group 11 (EF.DG11): containing additional personal details (e.g.,
localized name, place-of-birth – optional).

• Data Group 12 (EF.DG12): containing additional document details (e.g.,
issuing authority, date-of-issue – optional).

• Data Group 13 (EF.DG13): containing optional details (optional).

• Data Group 14 (EF.DG14): containing data elements (only mandatory
if PACE is implemented).

• Data Group 15 (EF.DG15): containing the public key info for active
authentication (only mandatory if active authentication is implemented).

• Data Group 16 (EF.DG16): containing persons to notify (optional).

• Document Security Object (EF.SOD): containing hash values of the data
group for integrity checking (mandatory).

• Country Verifying Certification Authorities (EF.CVCA): containing pub-
lic keys of CVCA for terminal authentication (mandatory).

• Key files for authentication.

The elementary files inside applications need, according to the standard,
authentication. The LDS1 authentication needs Basic Access Control (BAC)
or the newer Password Authenticated Connection Establishment (PACE), and
data groups 3 and 4 additionally needs Terminal Authentication (which is, in
contrast to the other methods, based on a public key infrastructure). LDS2 ap-
plications (travel records, visa records, additional biometrics) need PACE and
Terminal Authentication. All of these methods are defined in the standard. For
the lack of a usable implementation of others authentication methods, we are
limited to BAC. This method performs cryptographic operations based on a
challenge with the passport number, expiration date, and the owner’s date of
birth as key material. This information is readable on the main page of the pass-
port, but the accessible information is basically just an electronic version of the
former (except for DG 3 and 4, which requires additional authentication). The
purpose is not to completely shield this information, but to prevent bystanders
of a person to obtain its personal information by just reading it out from the
passport. In contrast to LDS2, the elementary files in the LDS1 application are
defined to be read-only. Note that, due to many optional elements, the standard
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Figure 12.2: Logical Data Structure of Machine Readable Travel Documents
from [3].
Amber is the master file (MF), Cyan are dedicated files (DF), Blue are Elemen-
tary Files (EF), and Green are key files. Solid frames means mandatory files,
dashed ones optional files. Solid boxes donate the LDS contexts, dashed black
boxes requirements, and dashed red boxes necessary authentication.
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is underspecified. This means that more than one implementation is correct,
which makes the standard non-deterministic from a modeling perspective.

12.3 Learning
We use Learnlib (see Section 12.2.4) to create a setup to learn NFC-based eM-
RTDs. This section covers the details on the interface, abstraction layer and
alphabets. To learn the models we relied on the TTT algorithm and random
walks as conformance testing algorithm. We learn the behavior of an eMRTD
device with regard to the ICAO Doc 9303 part 9 (file structure and access
rules), ISO/IEC 7816-4 (file access and security commands), and ISO/IEC
14443-4 (command and data transmission) standards. The learning setup is
based on a previous paper [3], which we extend with the aspect of checking
the specification model.

12.3.1 NFC Interface
To interact with eMRTDs, we created an NFC interface for Learnlib [2]. We
connect the developed SUL class via a Socket to an API (based on C++) that
operates a Proxmark3 device [28], running a custom firmware enhanced to
support automata learning.

12.3.2 Abstraction
As usual with learning real-world systems, we use an abstraction layer to limit
the potentially very large input space. This means that we reduce the input
alphabet to sensible commands targeting the data structures from the ICAO
standard. Since this includes secure communications, we use the commands
(except for authentication-related) in encrypted and unencrypted versions. We
also abstract the output to the status code, since it does not contain data and is
also always unencrypted. This avoids non-determinism.

12.3.3 Input Alphabet
The input alphabet consist of the data structure from ICAO Doc 9303 part 9
accessed with ISO/IEC 7816-4 commands over the ISO/IEC 14443-4 protocol.
Concretely, we use the select DF, select EF, GETCHALLENGE, EXTERNAL
AUTHENTICATION, READ BINARY, and UPDATE BINARY commands.
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Limiting to LDS1 (i.e., the eMRTD application), the full alphabet consists of
SELECT DF LDS1 (SEL DF.LDS1) and SELECT EF for the files mentioned
(e.g., SEL EF.CM) in Section 12.2.9, as well as READ BINARY to perform
a read operation on selected files. Each of these inputs is used in a plain,
unencrypted and a secure, encrypted version (e.g., SSEL EF.CM for securely
accessing the Common file). Additionally, we use a BAC symbol that issues
the correct sequence (consisting of a GETCHALLENGE and an EXTERNAL
AUTHENTICATION command based on the former) for performing this type
of authentication. This also yields a session key that is used for performing the
encryption operations in secure commands.

Output Alphabets

The output alphabet does not have to be defined beforehand, but is discovered
in-situ by the received answers. However, since we are not interested in the
actual data, but rather want to prevent non-determinism (which the learner re-
quires for proper functioning), we abstract the answers by using just the status
code as an output. This is enough information to create a model for checking
the security properties, mainly to check the proper authentication of data ac-
cess. This eases also handling the answers of secure commands, as otherwise
their data would need to be decrypted first. Using always-unencrypted status
codes only, this is not needed.

12.3.4 Labeling and Simplification
Based on the (by the standard) known status codes, we can issue a simple
labeling of the states, that also correspond to atomic propositions if the learned
Mealy Machine is seen as an LTS [3]:

• From the initial state, follow the select EF for CardAccess transition

• If output yields 9000, label this state as EF

• From the inital state, select the DF for LDS1.eMRTD tansition

• If output yields 9000, label this state as DF

• From DF, follow the BAC transition

• If output yields 9000, lable this state as DF—AUTH

• From DF—AUTH, follow the encrypted select Data Group 1 transition
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• If output yields 9000, label this state as DF—AUTH—EF

• From the initial state, select the BAC transition

• If output yields 6985 label the state as FAILAUTH

• From FAILAUTH, follow the select LDS1.eMRTD transition

• If output yields 9000 label the state as FAILAUTH—DF

• From EF, select the BAC transition

• If output yields 6985 label the state as FAILAUTH—EF

• From the DF—AUTH—EF, select the unencrypted READ BINARY tran-
sition

• If output yields 6982 label the state as DEAUTH

The propositions are: EF for a selected elementary file, DF for a selected
dedicated file (i.e. the LDS1.eMRTD application), AUTH for a successful au-
thentication (i.e., BAC), FAILAUTH for a failed authentication, DEAUTH for
a revoked authentication.

12.4 Compliance Evaluation
To determine an implementation’s compliance with the standards, we compare
a learned implementation model from previous works [3] with a specification
model derived from the standards (see Section 12.4.1). As the ICAO standard
is underspecified, the results of access operations on (dedicated or elemen-
tary) files may have more than one legit result. This means that we cannot
model a properly defined Mealy Machine from the standard (since it is non-
deterministic), but rather a Mealy-styled LTS (or pseudo-Mealy), with more
than one transition target and/or output label for a given input in a given state.
However, since we make the comparison operations on LTS with the input/out-
put pair being a combined label, the restriction to a deterministic model does
not apply in practice. Due to multiple legit (i.e., standard-compliant) transi-
tions for the same state/input pair, we cannot check for full equivalence. The
learned model is a proper (and, thus, deterministic) Mealy Machine (other-
wise the learner would crash for failing to handle non-deterministic behavior).
Therefore, our learned model can always only cover one (of potentially mul-
tiple) state/input transitions. This makes it very likely that the specification
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displays extra behavior in comparison. For this reason we use preorder instead
of simulation for compliance checking – the (learned) implementation model’s
behavior should stay inside the boundaries of the (modeled and checked) spec-
ification behavior.

12.4.1 Specification Model
We model the eMRTD specification as outlined in Section 12.2.9 in Rebeca
by defining two reactive classes: a PCD class that is instantiated with a Rebec
called reader and a PICC class that is instantiated with a Rebec called PP (short
for passport). Each of the inputs (e.g., SELECT DF LDS1) is a message server
of the PICC, while the respective answers (OK or respective error codes) are
message servers of the PCD. Inside the PICC servers, we define the behavior
according to the standard given the state variables (e.g., return OK for a secure
select of a present file in an authenticated state, while returning an error in
an unauthenticated). Listing 12.1 gives an example of the secure SELECT
EF CA and CVCA command2. It checks (via state variables) if there was a
successful authentication. If that is the case it sets the EF selected state variable
and calls the reader message server for ok (the integer parameter identifies
the secure SELECT EF CM as originator of the call). Otherwise, it calls the
message server for a missing authentication (since the secure command is out-
of-context outside of the LDS1 application) or a not found error if the file is not
present (which is selected by a non-deterministic assignment). This includes
the optionality of files having multiple possible answer paths even if the state
(determined by the set state variables) is the same.

Listing 12.1: Exemplary message server for the secure SELECT EF CM com-
mand
msgsrv SSEL EF CA CVCA ( ) {

b o o l e a n p r e s e n t =?( t r u e , f a l s e ) ;
i f ( !AUTH) {

i f ( p r e s e n t ) r e a d e r . F a i l S e c ( ) ;
e l s e r e a d e r . NoFind ( ) ;

}
e l s e {

EF= t r u e ;

2The command is the same for the optional CA file in the common area and the mandatory
CVCA file in the LDS1 application area. The difference is just whether the DF LDS1 is selected
or not.
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r e a d e r .OK( 6 0 0 1 ) ;
}

}
The reader possesses a message server for every (standard-defined) answer

code and a reset server that resets intermediately used state variables and is
called at the beginning. Except for the message server for an OK message, ev-
ery answer server and the reset function has local integer variable that is non-
deterministically filled with an identifier and an according switch/case state-
ment to determine the function to call next (the default is an error function
that should never be reached, which is checked as an assertion by the model
checker). This way, all of the possible combinations for inputs are invoked by
the model checker. The message server for OK is different, as it sets some
intermediate state variables that are used by the model checker to determine
whether some specific operations are successfully executed. These intermedi-
ate state variables are reset by the reset message server. Listing 12.2 gives an
example for the OK and reset servers (note that the list of called functions is
arbitrarily truncated for the sake of brevity.

Listing 12.2: Exemplary message server for the OK answer followed by a reset.
[ . . . ]
msgsrv r e s e t ( ) {

OK= f a l s e ;
rdBinOK= f a l s e ;
srdBinOK= f a l s e ;
ERROR = f a l s e ;
sselEFOK= f a l s e ;
i n t d a t a = ? ( 1 0 0 1 , 2 0 0 1 , 2 0 0 2 , 2 0 0 3 , 3 0 0 1 , 4 0 0 1 , 6 0 0 1 , 6 0 0 2 , 6 0 0 3 , 7 0 0 1 ) ;
s w i t c h ( d a t a ){

c a s e 1001 : PP . SEL DF LDS1 ( ) ; b r e a k ;
c a s e 2001 : PP . SEL EF CA CVCA ( ) ; b r e a k ;
c a s e 2002 : PP . SEL EF CM ( ) ; b r e a k ;
c a s e 2003 : PP . SEL EF CS SOD ( ) ; b r e a k ;
c a s e 3001 : PP . RD BIN ( ) ; b r e a k ;
c a s e 4001 : PP .BAC ( ) ; b r e a k ;
c a s e 6001 : PP . SSEL EF CA CVCA ( ) ; b r e a k ;
c a s e 6002 : PP . SSEL EF CM ( ) ; b r e a k ;
c a s e 6003 : PP . SSEL EF CS SOD ( ) ; b r e a k ;
c a s e 7001 : PP . SRD BIN ( ) ; b r e a k ;
d e f a u l t : s e l f . ERR ( ) ;
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}
}

msgsrv OK( i n t d a t a ){
s w i t c h ( d a t a ){

c a s e 1001 : b r e a k ;
c a s e 2001 : b r e a k ;
c a s e 2002 : b r e a k ;
c a s e 2003 : b r e a k ;
c a s e 3001 : rdBinOK= t r u e ; b r e a k ;
c a s e 4001 : b r e a k ;
c a s e 6001 : sselEFOK= t r u e ; b r e a k ;
c a s e 6002 : sselEFOK= t r u e ; b r e a k ;
c a s e 6003 : sselEFOK= t r u e ; b r e a k ;
c a s e 7001 : srdBinOK= t r u e ; b r e a k ;
d e f a u l t : s e l f . ERR ( ) ;

}
OK= t r u e ;
r e s e t ( ) ;

}
[ . . . ]

Figure 12.3 shows a simplified state model of a small part of the specified
standard, including just selecting the CM elementary file, the LDS1 application
and an authentication. The full standard contains far too many states (134) to
display here.

12.4.2 Model Checking
Before using the specification model for compliance checking, we assure its
correctness with regard to some basic security properties, as stated below, us-
ing model checking. For checking the model, we defined six different rules in
LTS that assure the correctness of the security properties of the modeled spec-
ification. In particular these rules are:
NoXStates: □(¬ (¬DF ∧ AUTH));
PlainRead: □(¬ (READOK ∧ (¬EF ∨ DF)));
ReadFollowsSelect: (¬READOK U EF) ∨ □(¬READOK);
SecureRead: □(¬ (SREADOK ∧ ¬(DF ∧ AUTH ∧ EF)));
SecureSelect: □(¬ (SSELEFOK ∧ ¬(DF ∧ AUTH)));
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reader.NOFIND

reader.NOFIND

S7: 
 DF

reader.OK

S8: 
 DF

reader.RESET

S9: 
 DF

reader.RESET

S10: 
 DF

reader.RESET

PP.SEL_DF_LDS1 PP.SEL_DF_LDS1 PP.SEL_DF_LDS1 PP.SEL_DF_LDS1

S16: 
 DF

PP.SEL_EF_CM PP.SEL_EF_CM PP.SEL_EF_CM PP.SEL_EF_CM

S11: 
 DF 

 AUTH

PP.BAC

S12: 
 DF 

 AUTH

reader.OK

S13: 
 DF 

 AUTH

reader.RESET

S14: 
 DF 

 AUTH

reader.RESET

S15: 
 DF 

 AUTH

reader.RESET

PP.SEL_DF_LDS1PP.SEL_DF_LDS1

S18: 
 DF 

 AUTH

PP.SEL_DF_LDS1 PP.SEL_DF_LDS1

PP.SEL_EF_CM PP.SEL_EF_CM

S17: 
 DF 

 AUTH

PP.SEL_EF_CM PP.SEL_EF_CM

PP.BAC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.OK

Figure 12.3: Example of a simple Rebeca model. It only covers selecting one
EF (CM), one DF (LDS1) and a BAC authentication command.
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SecureReadFollowsSecureSelect: (¬SREADOK U SSELEFOK) ∨□(¬SREADOK);
Apart from obvious atomic propsitions like EF, AUTH, and DF, we use READOK,
SREADOK, and SSELEFOK, which stand for successful operations and are
only set for one state before being unset in the reset message server. NoXS-
tates contains a check for illegal states where authentication is true without
an LDS selected (which should not happen because of lacking context for au-
thentication). Plainread says that a (plain EF) READ should not be successful
without selected EF or with selected DF (in the latter case, only secure READs
should be successful), ReadFollowsSelect sayst that a READ should only be
successful when a file is selected or not successful at all. SecureRead says that
a secure READ should only successful in an authenticated, DF and EF selected
state, SecureSelect says that a successful secure SELECT should only occur in
an authenticated and DF-selected state, while SecureReadFollowsSecureSelect
says that a secure READ can only occur after a secure SELECT (implying au-
thentication).

12.4.3 Converting the Specification Model

A full state space export (see Section 12.4.2) comes in an XML format, that can
be converted into the Graphviz (DOT) format. However, displaying two com-
municating reactive systems (see Section 12.3), the format is not compatible
with the learned implementation automata, which are Mealy Machines. The
Mealy Machines combine the two systems into a single combined state, where
the two communication directions are visible in the input/output dualism of the
transitions.

We therefore wrote an automated conversion tool that removes the states
and transitions concerning the reset function and the respective states for unset-
ting the successful operation propositions (READOK, SREADOK, and SSE-
LEFOK), as those are just used for checking the model (if certain operations
succeed only if certain conditions are met) and should not show up in the spec-
ification automaton. Then, it determines the mergable states by first building
equivalence classes based on the states’ propositions and remove redundant
ones. In our case, it is possible to form equivalence classes for merging states
this way, because the Rebeca model sets the states’ propositions according
to system properties relevant for the comparison with a learner, reducing the
possible set of remaining ones to the relevant ones, i.e., the set of possible
equivalence classes is predefined by the possible combinations of propositions
in the model. This was also the motivation of writing a dedicated converter
instead of relying on established toolsets. Lastly, for each equivalence class, it
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S0: 
  

PP_BAC / NOUSEPP_SEL_EF_CM / NOFIND

S1: 
 DF

PP_SEL_DF_LDS1 / OK

PP_SEL_EF_CM / NOSECPP_SEL_DF_LDS1 / OK

S2: 
 DF 

 AUTH

PP_BAC / OK PP_SEL_EF_CM / NOSEC PP_SEL_DF_LDS1 / OK

PP_BAC / OKPP_SEL_EF_CM / NOSECPP_SEL_DF_LDS1 / OK

S0: PP_SEL_EF_CM / NOFINDPP_BAC / NOUSE

S1:

PP_SEL_DF_LDS1 / OK

PP_SEL_DF_LDS1 / OKPP_SEL_EF_CM / NOSEC

S2:

PP_BAC / OK PP_SEL_DF_LDS1 / OK PP_SEL_EF_CM / NOSEC

PP_BAC / OK

Figure 12.4: Simplified example of a Rebeca model converted in a non-
deterministic Mealy-style LTS compared to a learned MRTD Mealy model.
Note that the difference lies in additional transitions in the Rebeca version,
modeling optional behavior. The Rebeca model shows the same behavior as
the one in Figure 12.3.

replaces reader/PP state pairs with single states and take the transitions from
reader to PP as input part and from PP to reader as output part of the resulting
combined transition label. This eventually creates a Mealy-styled LTS with the
transitions labeled with input and output. The difference to an actual Mealy
Machine is, again, that the we can have more than one transition for the same
input in the same state (making the LTS effectively a non-deterministic pseudo-
Mealy Machine). This is, however, not a concern for the compliance checking
procedure, as we treat the learned implementation (a Mealy Machine) and the
specification automaton (a pseudo-Mealy Machine) as LTS with the input/out-
put pairs as labels. This makes the automata comparable by diverse kinds of
equivalence relations using standard methods.

Figure 12.4 shows a comparison of the specification pseudo-Mealy Ma-
chine with the learned passport model. For readability, just to demonstrate the
concept, we shrinked the showed model the operations SELECT EF CM, SE-
LECT DF LDS1 and BAC. The evaluation, however, covers the full standard
specification (see Section 12.5).

12.5 Evaluation

In this section we briefly outline the achieved results with the described meth-
ods. We used the described model-checked ICAO standard’s specification
model and used trace and simulation preorder to check a learned model of
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an Austrian passport for its compliance with the specification model. We ob-
tained the learned model in Graphviz format from our Learnlib-based NFC
learner (see a labeled, simplified version in Figure 12.5), created the specifica-
tion model using Rebeca in the Afra IDE and verified it with the Modere model
checker. We then converted the verified model into a pseudo-Mealy Machine in
Graphviz format (see Figure 12.6 for a simplified, consolidated version). The
full pseudo-Mealy has 6 states and 662 transitions, whereas the original state
model from Rebeca has 134 states and over 5300 transitions. This shows the
significant decrease of complexity through the Rebeca state model’s conversa-
tion into a Mealy-styled LTS. The learned model has 6 states and 342 transi-
tions. We converted both Graphviz models into the Aldebaran format and used
it as an input for mCRL2’s [8] ltsccompare tool, with which we performed
simulation and trace preorder checking. The result showed a positive check,
i.e. it showed that a simulation preorder relation between the learned model
and the specification exists. Hence, the learned model behavior is included in
the behavior of the specification. We were therefore able to demonstrate the
passport’s compliance with the ICAO standard and, through the model check-
ing, we were able to demonstrate the security of the standard specification (in
terms of the data being securely stored on the eMRTD device).

12.6 Related Work

There are approaches for combining automata learning and bisimulation al-
gorithms [29, 30]. However, to the best of our knowledge, there are no ap-
proaches for combining model checking, learning and preorder checking as
ours. We funded this approach on our method on partly specifying the ICAO
eMRTD specification [3] and used the learned model from that work. How-
ever, in the former approach we manually modeled the specification pseudo-
Mealy Machine using pure graphical notation (i.e, we hand-modeled it in the
graphviz format) and did not use a modeling language nor model checking.
Using Rebeca and Modere in the present work, we expanded the approach by
formally verifying the specification model and, through the automatic conver-
sion to the specification LTS, eliminated sources of error in the specification
modeling. We also used the approach of using equivalence checking (bisim-
ulation and trace equivalence) with NFC before, particularly for an automatic
compliance checker for the ISO/IEC 14443-3 (the NFC handshake) protocol
[2]).
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ε (S)SEL_EF.- / 6a82(S)*_BIN / 6986SSEL_EF.DIR / 6a82

DF

SEL_DF.LDS1 / 9000 SSEL_DF.LDS1 / 9000 FAILAUTH

BAC / 6985

EF

(S)SEL_EF.+ / 9000

(S)SEL_* / 6982(S)SEL_DF.LDS1 / 9000(S)*_BIN / 6986

DF|AUTH

BAC / 9000

BAC / 9000SSEL_DF.LDS1 / 6a82SSEL_EF.NoPres / 6982SRD_BIN / 6986

FAILAUTH|DF

SEL_EF.* / 6982SEL_DF.LDS1 / 9000 *_BIN / 6986 SUP_BIN / 6700

DF|AUTH|EF

SSEL_EF.Pres / 9000

BAC / 9000

SEL_EF.* / 6982SEL_DF.LDS1 / 9000*_BIN / 6986SSEL_* / 6988SRD_BIN / 6988SUP_BIN / 6700

SEL_DF.LDS1 / 9000

SEL_EF.- / 6a82*_BIN / 6986BAC / 6985SSEL_EF.* / 6988SRD_BIN / 6988SUP_BIN / 6700

FAILAUTH|EF

SEL_EF.+ / 9000SEL_DF.LDS1 / 9000SSEL_DF.LDS1 / 9000

(S)SEL_EF.+ / 9000(S)SEL_EF.- / 6a82RD_BIN / 9000UP_BIN / 6982SRD_BIN / 9000SUP_BIN / 6982

BAC / 6985

SEL_EF.+ / 9000SEL_EF.- / 6a82RD_BIN / 9000UP_BIN / 6982BAC / 6985SSEL_* / 6988SRD_BIN / 6988SUP_BIN / 6700

SEL_DF.LDS1 / 9000

BAC / 9000SSEL_EF.+ / 9000SSEL_DF.- / 6a82SRD_BIN / 9000

DEAUTH

SEL_EF.CA / 6982 SEL_EF.+ / 6982 SEL_EF.- / 6a82 *_BIN / 6982SUP_BIN / 6700

SEL_DF.LDS1 / 9000

BAC / 9000

SEL_EF.* / 6982*_BIN / 6982SSEL_* / 6988SRD_BIN / 6988SUP_BIN / 6700

Figure 12.5: Labeled model of an Austrian passport learned with TTT from
[3].

ε SRD_REC, S*_BIN / NOINFSSEL_EF_*, SSEL_DF_LDS1, SRD_BIN / FAILSECBAC / NOUSERD_REC, *_BIN / NOSUP, NOEFSEL_EF_* / NOFIND

EF

SEL_EF_ATR, SEL_EF_DIR, SEL_EF_CS_SOD, SEL_EF_CA_CVCA / OK

DF

SEL_DF_LDS1 / OKSRD_REC, S*_BIN  / NOINFSRD_BIN, SSEL_DF_LDS1 / FAILSECSEL_EF_*, SSEL_EF_* / NOFINDBAC / NOUSERD_REC, *_BIN / NOSUPUP_BIN / NOSECRD_BIN / OKSEL_EF_DIR, SEL_EF_ATR, SEL_EF_CS_SOD / OK

SEL_DF_LDS1 / OK

S*_BIN,SRD_REC / NOINFSSEL_EF_*, SSEL_DF_LDS1, SRD_BIN  / FAILSECSSEL_EF_CA_CVCA / NOFIND*_BIN, RD_REC / NOSUPUP_BIN, RD_BIN / NOEFSEL_EF_* / NOSEC, NOFINDSEL_DF_LDS1 / OK

DF 
 AUTH

BAC / OK S*_REC / NOINF SRD_BIN / NOEF *_BIN, RD_REC / NOSUP SEL_EF_* / NOSEC, NOFIND SEL_DF_LDS1 / OK

S*_REC / NOINFSRD_BIN / NOEFSEL_EF_*, SSEL_EF_*, SSEL_DF_LDS1 / NOFINDSEL_DF_LDS1, BAC / OK*_BIN, RD_REC / NOSUP

EF 
 DF 

 AUTH

SSEL_EF_* / OK

SEL_EF_* / NOFIND, NOSEC SEL_DF_LDS1 / OK

SEL_EF_* / NOSEC, NOFIND SEL_DF_LDS1 / OK

S*_BIN, SRD_REC / NOINFSSEL_EF_* / NOFIND, OKSSEL_DF_LDS1 / NOFINDSEL_DF_LDS1, BAC / OK*_BIN,RD_REC / NOSUPRD_BIN, UP_BIN / NOSEC

EF 
 DF

S*_BIN, SRD_REC, SER_BIN / NOINF *_BIN,RD_REC / NOSUP SEL_EF_*, RD_BIN, UP_BIN / NOSE, NOFINDC SEL_DF_LDS1 / OK

SEL_EF_* / NOSEC, NOFIND SEL_DF_LDS1 / OK

BAC / OK

S*_BIN, SRD_REC / NOINFSSEL_EF_*, SRD_BIN, SSEL_DF_LDS1 / FAILSECSSEL_EF_CA_CVCA / NOFINDRD_BIN / NOSECSEL_EF_* / NOFIND, NOSECSEL_DF_LDS1 / OK

Figure 12.6: Example of the modeled ICAO specification. Please note that we
simplified the transitions because of the complexity. Solid lines are transitions
towards more elevated access rights, light lines are transitions leading towards
the same or lower access privileges.
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12.7 Conclusion
In this paper, we demonstrated an approach and a tool chain of automata learn-
ing to infer models of systems under test and evaluate their compliance with a
specification model in Rebeca, that is formally checked for security properties.
We used this approach in practice to automatically mine a Mealy model of an
eMTRD device (an Austrian passport). We further created a Rebeca model of
the ICAO Doc 9303 part 9 standard and verfied it for security properties (par-
ticularly, proper authentication for access to restricted files). We then used the
mCRL2 toolset to check the compliance of the mined model with the spec-
ification model using simulation and trace preorder, for which we converted
the specification model into a Mealy-styled LTS. This way we could show the
compliance of the SUT with the verfied standard.

12.7.1 Discussion
We have limited the current approach LDS1 application of eMRTDs. Further-
more, we were unable to learn another passport (particularly a newer German
one), because it uses the more recent PACE authentication for which we do not
have a working implementation. Nevertheless, the approach is scalable and can
be expanded to cover these areas. Furthermore, the process is transferrable to
other systems, mainly depending on the availibility of a learner.

12.7.2 Outlook
To generalize the approach, we plan to use the vice-versa method, namely con-
verting learned Mealy machines into Rebeca code. This way we can mine
models of arbitrary systems automatically, which is very tedious to do manu-
ally. Once having these models in Rebeca, we can use Modere for checking
them for security and other correctness properties.
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(H. Hojjat and E. Ábrahám, eds.), (Cham), pp. 72–87, Springer Nature
Switzerland, 2023.

[27] M. M. Jaghoori, A. Movaghar, and M. Sirjani, “Modere: The model-
checking engine of Rebeca,” in Proceedings of the 2006 ACM Symposium
on Applied Computing, SAC ’06, (New York, NY, USA), pp. 1810–1815,
Association for Computing Machinery, Apr. 2006.

[28] F. D. Garcia, G. de Koning Gans, and R. Verdult, “Tutorial: Proxmark, the
swiss army knife for rfid security research: Tutorial at 8th workshop on
rfid security and privacy (rfidsec 2012),” tech. rep., Radboud University
Nijmegen, ICIS, Nijmegen, 2012.

[29] Y.-F. Chen, C.-D. Hong, A. W. Lin, and P. Rümmer, “Learning to prove
safety over parameterised concurrent systems,” in 2017 Formal Methods
in Computer Aided Design (FMCAD), pp. 76–83, Oct. 2017.

[30] C.-D. Hong, A. W. Lin, R. Majumdar, and P. Rümmer, “Probabilistic
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Abstract

This paper presents a method and a practical implementation that comple-
ments traditional conformance testing. We infer a Mealy state machine of the
system-under-test using active automata learning. This automaton is checked
for bisimulation with a specification automaton modeled after the standard,
which provides a strong verdict of conformance or non-conformance. We fur-
ther present a method to learn models of multiple communication protocols
running on the same device using a dispatcher system in conjunction with the
same automata learning algorithms. We subsequently use similar checking
methods to compare it with separately learned models. This allows for deter-
mining whether there is some interference or interaction between those proto-
cols. In the practical execution of the system, we concentrate on lower levels
of the Near-Field Communication (NFC, ISO/IEC 14443-3) and the Bluetooth
Low-Energy (BLE) protocols. As a by-product, we share some observations of
the performance of different learning algorithms and calibrations in the specific
setting of ISO/IEC 14443-3, which is the difficulty to learn models of systems
that a) consist of two very similar structures and b) timeout very frequently,
as well as the role of conformance testing for compound models and speed
optimizations for time-sensitive protocols.
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13.1 Introduction

This article is based on a paper [1], in which we describe an approach for eval-
uating the compliance of Near-Field Communications (NFC)-based chip sys-
tems with the ISO/IEC 14443-3 NFC handshake protocol [2] using automata
learning and equivalence checking. In this paper, we presented a tool chain that
is easy to use; both the learning and the equivalence checking can run fully au-
tomatic. A complete protocol implementation automaton of the system-under-
test (SUT), in the context of this paper called system-under-learning (SUL),
compared with a specification automaton modeled after the protocol’s stan-
dard, provides a complement to conformance testing.

In this paper, we expand the scope of our previous work by learning a
compound-protocol automaton of multiple protocols running on the same de-
vice. In particular, we learn Bluetooth Low-Energy (BLE) [3] alongside with
NFC. We also learn separate models of both protocols from the same device
and subsequently compare them with the compound automaton. The individu-
ally learned automata are used as a specification with which we compare the be-
havior of the learned compound-protocol automaton using the same technique
as described above. By comparing the compound automaton with the sepa-
rately learned, we can check if the two protocols influence each other, whether
intentionally or not, potentially uncovering unintended system states. This de-
termines if device behaves differently when we stimulate both protocols. In
theory, the approach can also be used to learn compound-protocol automata of
even higher numbers of protocols. In practice, however, inherent complexity
makes it more unlikely to yield different results and the practical feasibility
is limited by timing constraints that are aggravated with more complex stack-
ing of inputs from different protocols. The remainder of this paper structures as
follows. First we provide its motivation and contribution. Section 13.2 gives an
overview of basic concepts in this paper, including a formal definition of bisim-
ulation for Mealy Machines as used in this paper. Sections 13.3.1, 13.3.2, and
13.3.3 describe the developed interfaces for automata learning of NFC sys-
tems, BLE systems, and compound-protocol learning, respectively. Sections
13.4.1, 13.4.2, and 13.4.3 describe the learning setups including a comparison
of different algorithms and calibrations to be most suitable for the specifics
of the NFC handshake protocol, while Section 13.5 describes the methods for
conformance checking and the respective protocols’ specifics in this regard.
Section 13.6 shows real-world results, while Section 13.7 compare them to the
works of others. Section 13.8, eventually, concludes the paper and gives and
outlook on future work.
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13.1.1 Motivation
Both the NFC and BLE protocol are widely adopted protocol in a broad vari-
ety of different systems. NFC is used in often security-critical, chip systems
like banking cards, passports, access systems, etc. BLE is used in potentially
privacy- and security-sensitive applications like healthcare, fitness, audio, and
car access systems.

While there are many works about security weaknesses in NFC (e.g., [4,
5]), also specifically regarding the ISO/IEC 14443-3 handshake (e.g., [6, 7]),
and BLE (e.g., [8]) there are few works on comprehensive testing (see Section
13.7). Assuring the correctness of the system is a principal step in the quest to
trustworthy systems. As a specific application we aim for a strong verdict of
ISO compliance for NFC systems. There is, to the best of our knowledge, no
comprehensive work regarding assessment of the handshake protocols, which
is the fundament of secure protocols built atop. To make this verdict more scal-
able than manual modeling, yet strongly verified, we choose automata learning
to automatically infer a formal model of the implementations under scrutiny.
For the actual compliance checking, we use bisimulation and trace equivalence
checks against a specification automaton from the ISO/IEC 14443-3 standard
(a rationale is given in Section 13.2.2).

13.1.2 Contribution
Overall, this paper is on the interface between communications protocols, em-
bedded systems and formal methods. This work provides the following contri-
butions for people with scholarly or applied interest in this approach of com-
pliance checking:

• Insights regarding the specifics of learning an NFC implementation us-
ing (active) automata learning

• An evaluation on the performance of different learning algorithms in
systems containing two structures that are very similar to each other

• Developing an NFC interface for a learning system

• Utilizing bisimulation and trace equivalence in a combined approach for
automated compliance checking

• A novel approach for learning compound automata of implementations
of multiple protocols
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• A method to compare this compound automaton with the individually
protocol implementations using different methods, uncovering any po-
tential cross-influences of multiple protocols running on the same de-
vice.

We saw the NFC handshake to be specific in two aspects: a) it consists of two
parts that are very similar and hard to distinguish for Learners and b) the vast
majority of outputs from a SUL are timeouts. This has severe impact on the
learning where we examined different algorithms and configurations. The max-
imum word length has an impact on correctly inferring an automaton: too short
yields incomplete automata, too long seemed to have a negative performance
impact. Surprisingly the L* algorithm [9] with Rivest/Schapire (LSR) closure
[10] surpassed more modern ones in learning performance. For discovering
deviations from the standard, the minimum word length was found to have an
impact. Here, the TTT algorithm [11] performed best, also followed by LSR.
We further created a concrete hardware/software interface using a Proxmark
device and an abstraction layer for NFC systems. We also integrated bisimula-
tion and trace equivalence checking into the learning tool chain, which enables
completely automated compliance checking with counterexamples in the case
of deviations from the standard. Lastly, we developed an approach to learn
a compound automaton of multiple protocols using a specialized SUL class
working as a dispatcher. We subsequently use similar equivalence checking
techniques to uncover any interferences among these protocols by comparing
the compound automaton with standalone automata of the protocols (see Sec-
tion 13.5.2).

13.2 Preliminaries
This section outlines the theoretical fundamentals of state machines and au-
tomata learning in the context of this paper and describes the used framework
and the basics and characteristics of the scrutinized protocol.

13.2.1 State Machines
A state machine (or automaton) is a fundamental concept in computer sci-
ence. One of the most widely used flavors of state machines are Mealy ma-
chines, which describe a system as a set of states and functions of resulting
state changes (transitions) and outputs for a given input in a certain state [12].
More formally, a Mealy machine can be defined as M = (Q,Σ,Ω, δ, λ, q0),
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with Q being the set of states, Σ the input alphabet1, Ω the output alpha-
bet (that may or may not be identical to the input alphabet), δ the transition
function (δ : Q × Σ → Q), λ the output function (λ : Q × Σ → Ω),
and q0 the initial state. The transition and output functions might be merged
(δ × λ : Q × Σ → Q × Ω). An even simpler type of automaton is a deter-
ministic finite acceptor (DFA) [13]. It lacks of an output (i.e., no Ω and no
λ), but instead it has a set of accepted finishing states F , which are deemed as
valid final states for an input word (i.e., sequence of input symbols), resulting
in a definition of D = (Q,Σ, δ, q0, F ). The purpose is to define an automaton
that is capable of deciding if an input word is a valid part of a language. A
special subset are combination lock automata (with the same properties) but
the additional constraint that an invalid symbol in an input sequence would set
the state machine immediately back into the initial state [14].

13.2.2 Transitions, Equivalence and Preorder

An element of the combined transition/output function can be defined as 4-
tuple (⟨p, q, σ, ω⟩) with p ∈ Q as origin state of the transition, q ∈ Q as desti-
nation state, σ ∈ Σ as input symbol and ω ∈ Ω as output symbol. Generally, to
conform to a standard, a system must display the behavior defined in that stan-
dard. The ISO 14443-3 standard [2] describe the states of the NFC handshake
with their respective expected input and result. That means one can derive an
automaton from this specification. The problem of determining NFC standard
compliance can therefore be seen as comparing two (finite) automata. There
is a spectrum of equivalences between Labeled Transition Systems (LTS) in-
cluding automata. For being compliant with a standard, not necessarily every
state and transition must be identical as long as the behavior of the system
is the same. There might be learned automata that deviate from the standard
automaton and still be compliant, e.g., if they are not minimal (the smallest au-
tomaton to implement a desired behavior). There are some efficient algorithms
for automata minimization e.g., by Hopcroft [15], and by Paige and Tarjan
[16]. Fig. 13.1 shows a very simple example of a three-state automaton and its
behavior-equivalent (minimal) two-state counterpart.

To compare this type of equivalence between two LTS, LTS 1 and LTS 2,
usually (various degrees of) simulation, bisimulation (noted as LTS 1 ∼ LTS 2)
and trace equivalence is used. Simulation (as used in the simulation preorder,
see below) means that one automaton can completely reproduce the behavior

1It is common to use ε to denote empty sets in this context.
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Figure 13.1: Example for a partial automaton and its minimal counterpart.

of the other, for the bisimulation, this relation becomes bidirectional (i.e. func-
tional). Because the states have to be directly related, bisimulation is a stronger
relation than mutual simulation. Even if it is not common, there are cases where
two LTS can simulate each other, but are still not bisimilar [17]. Trace equiva-
lence compares the respective input/output sequences of automata (see below).
Just uni-directional simulation alone is not sufficient, as this would only in-
dicate the presence or absence of a certain behavior with respect to the spec-
ification, while the standard compliance mandates both. Bisimilarity of two
transition systems is originally defined for labeled transition systems (LTS),
defined as LTS = (Q,Act,→, I, AP,L), with Q being the set of states, Act a
set of actions, → a transition function, I the set of initial states (I ⊆ Q), AP a
set of atomic propositions and L a labeling function.

Definition 8 (Bisimilarity). Bisimlarity of two LTS (LTS 1 ∼ LTS 2) is defined
as exhibiting a binary relation R ⊆ Q×Q, such that [18]:

A) ∀s1 ∈ I1∃s2 ∈ I2 · (s1, s2) ∈ R and ∀s2 ∈ I2(∃s1 ∈ I1 · (s1, s2) ∈ R).

B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈
R

3) if s2′ ∈ Post(s2) then there exists s1′ ∈ Post(s1) with (s1′, s2′) ∈
R
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Condition A of Definition 8 means that all initial states must be related,
while Condition B means that for all related states the labels must be equal
(1) and their successor states must be related (2-3). Formally the succes-
sion (Post) is defined as Post(q, α) = {q′ ∈ Q|q α−→ q′} and Post(q) =⋃

α∈Act Post(q, α), meaning the union of all action successions, which again
are again the result the transition function with a defined action and state as
input [18]. As this is recursive, a relation of the initial states implies that all
successor states are related. Since all reachable states are (direct or indirect)
successor states of the initial states, this definition encompasses the complete
LTS. We interpret Mealy machines as LTS using the output functions as la-
beling functions for transitions and the input symbols as actions, similar to
[19]. Based on this, we define Mealy bisimilarity (M1 ∼ M2) for our purpose
follows:

Definition 9 (Mealy Bisimilarity). Bisimliarity of two Mealy Machines (M1 ∼
M2) is defined as exhibiting a binary relation R ⊆ Q×Q, such that

A) q01 ∈ Q1, q02 ∈ Q2 · (q01 , q02) ∈ R.

B) for all q1 ∈ Q1, q2 ∈ Q2 · (q1, q2) ∈ R must hold

1) σ ∈ Σ · λ1(q1, σ) = λ2(q2, σ)

2) σ ∈ Σ· if q1′ = Post(q1, σ) then there exists q2′ = Post(q2, σ)
with (q1′, q2′) ∈ R

3) σ ∈ Σ· if q2′ = Post(q2, σ) then there exists q1′ = Post(q1, σ)
with (q1′, q2′) ∈ R

As the transition function is dependent on the input, we define Post(q, σ) =
δ(q, σ), which is essentially the same as for LTS brought into the notation of
Section 13.2.1, with the constraint that the same input on a pair of related states
must lead to another pair of related states. There are some different bisimula-
tion types that differentiate by the handling of non-observable (internal) tran-
sitions (ordinarily labeled as τ transitions), e.g., strong and weak bisimulation,
and branching bisimulation to give a few examples [18]. This distinction is,
however, theoretical in the context of this paper. The reason is that we intend
to compare a specification, which consists of an automaton that does not con-
tain any τ transitions, with an implementation that is externally (black box)
learned, rendering τs unobservable. Therefore, two automata without any τs
are compared directly, which makes this distinction not applicable. More pre-
cisely, from a device perspective, the type of bisimulation equivalence cannot
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be determined, as the SULs are black boxes, which means that internal state
changes (commonly denoted as τ ) are not visible. From a model perspective,
the chosen comparison implies strong bisimulation, i.e., the initial state is re-
lated (formally, q0Ml

= q0Ms
) and all subsequent states are related as well

(formally Q = QMl
= QMs

;n = |Q|;∀n ∈ Q|qnMl
= qnMs

). We, however,
use a τ function for hiding (see Section 13.2.3) to restrict the input alphabet
of a compound-protocol automaton to one of its single component automata
and compare it to a separately learned version (see Section 13.5.2) with weak
bisimulation.

Trace equivalence, on the other hand, means that two transitions systems
produce the same traces for each same input.

Definition 10 (Trace equivalence). Trace equivalence of two LTS (LTS 1 ∼
LTS 2) is defined as
Traces(LTS 1) = Traces(LTS 2)

In an LTS, a trace is a sequence of labels of path (or path fragment) π =
q0, q1, ...|trace(π) = L(q0), L(q1), .. [18]. Since in a Mealy machine, we
use the output function as a labeling function, traces are sequences of outputs
trace(π) = λ(q0, σ0), λ(q1, σ1), ... As only the input and output is directly
observable (not the states themselves), we use an input/output as notion in the
form ⟨σ0/ω0⟩, ⟨σ1/ω1⟩, .. with σ ∈ Σ and ω ∈ Ω.

Both bisimulation and trace equivalence might be principally capable of
comparing a specification with an implementation automaton for determining
the standard compliance. Both determining bisimulation and trace equivalence
are problems to be solved efficiently [20, 16, 21]. In any case, bisimulation
implies trace equivalence (LTS 1 ∼ LTS 2 =⇒ Traces(LTS 1) = Traces
(LTS 2)), but is finer than the latter [18]. For the purpose of this paper, we
consider two automata equivalent if they are trace or bisimulation equivalent.
In practice, we have obtained positive results with both bisimulation and trace
equivalence (see Section 13.5.1).

Simulation preorder means that only one system has to be able to simulate
the other. Informally, that means that the behavior of a system LTS 1 has to
be included in another system LTS 2, but the latter might display additional
behavior not included in the former. Formally, it is defined as:

Definition 11 (Simulation Preorder). Simulation Preorder of two LTS (LTS 1

⪯ LTS 2) is defined as exhibiting a binary relation R ⊆ Q×Q, such that [18]:

A) ∀s1 ∈ I1 · (∃s2 ∈ I2 · (s1, s2) ∈ R).
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B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈
R

.
This basically means a not (necessarily) symmetric bisimulation relation.

Analogously, this means for trace preorder that the set of traces of LTS 1 has to
be included in the one of LTS 2, which might or might not contain additional
traces:

Definition 12 (Trace preorder). Trace preorder of two LTS is defined as
Traces(LTS1) ⊆ Traces(LTS2)

13.2.3 Hiding Operation
We can use hiding to restrict a compound-protocol automaton to transitions
from a certain part of its input alphabet (particularly, one of the protocol’s input
alphabet). Groote and Mousavi [22] define a hiding operator (τI ) that removes
any actions in certain set of actions (I) and labels them as non-observable (τ )
transitions. For Mealy Machines, we use input symbols as (part of) label sets
for the hiding operator. This alters the combined output and transition function
as follows:

I ⊆ Σ|τI(δ × λ) : Q× Σ

{
Q× Ω if σ ∈ Σ \ I
Q× τ if σ ∈ I

The result is a subtraction of the automata parts included in the set I from the
observable behavior, which we can use for comparison with weak bisimulation.
This is also similar to the restriction operator from Hoare (↾), only that this
operator is defined for traces where parts of a trace included in a given subset
are ignored [23].

13.2.4 Automata Learning
The classical method of actively learning automata of systems, was outlined
in Angluin’s pivotal work known as the L* algorithm [9]. This work uses a
minimally adequate Teacher that has (theoretically) perfect knowledge of the
SUL behind a Teacher and is allowed to answer to kinds of questions:
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• Membership queries and

• Equivalence queries.

The membership queries are used to determine if a certain word is part of the
accepted language of the automaton, or, in the case of Mealy machines, which
output word will result of a specific input word. These words are noted in an
observation table that will be made closed and consistent. The observation ta-
ble consists of suffix-closed columns (E) and prefix-closed rows. The rows
are intersected in short prefixes (S) and long prefixes (S.Σ). The short pre-
fixes initially only contain the empty prefix (λ), while the long ones and the
columns contain the members of the input alphabet. The table is filled with the
respective outputs of prefixes concatenated with suffixes (S.E or S.Σ.E). The
table closed if for every long prefix row, there is a short prefix row with the
same content (∀s.σ ∈ S.Σ∃s ∈ S : s.σ = s). The table is consistent if for any
two equal short prefix rows, the long prefix rows beginning with these short
prefixes are also equal (∀s, s′ ∈ S∀a ∈ Σ : s = s′ → s.a = s′.a). A com-
plete, closed and consistent table can be used to infer a state machine (set of
states Q consists of all distinct short prefixes, the transition function is derived
by following the suffixes). Even though this algorithm was initially defined
for DFAs, it has been adapted to other types of state machines (e.g., Mealy or
Moore machines) [24]. Alternatively, some algorithms use a discrimination
tree that uses inputs as intermediate nodes, states as leaf nodes, and outputs
as branch labels, with a similar method of inferring an automaton. One of
these algorithms, TTT [11], is deemed currently the most efficient [25]. Other
widely used algorithms include a modified version of the original L* with a
counterexample handling strategy by Rivest and Schapire [10], or the tree-
based Direct Hypothesis Construction (DHC) [26] and Kearns-Vazirani (KV)
[27] algorithms.

Once this is performed, the resulting automaton is presented to the Teacher,
which is called equivalence query. The Teacher either acknowledges the cor-
rectness of the automaton or provides a counterexample. The latter is incor-
porated into the observation table or discrimination tree and the learning steps
described above are repeated until the model is correct. To allow for learning
black box systems, the equivalence queries in practice often consist of a suf-
ficient set of conformance tests instead of a Teacher with perfect knowledge
[28]. Originally for Deterministic Finite Automata, this learning method could
be used to learn Mealy Machines [29]. This preferred for learning black box
reactive systems (e.g., cyber-physical systems), as modeling these as Mealy is
comparatively simple.
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13.2.5 Abstraction

Ordinarily, when applying automata learning to real-world systems, the input
and output spaces are very large. To reduce the alphabets’ cardinalities to a
manageable amount, an abstraction function (∇), that transforms the concrete
inputs (I) and outputs (O) to symbolic alphabets (Σ and Ω) using equivalence
classes. Of all possible combinations of data to be send, we therefore concen-
trate on relevant input for the purpose of compliance verification. In the fol-
lowing we present some rationales for the chosen degree of abstraction through
the input and output alphabets. These alphabets’ symbols are abstracted and
concretized via an according adapter class that translates symbols to data to be
send (see section 13.3.1).

13.2.6 LearnLib

To utilize automata learning we use a widely adopted Java library called Learn-
Lib [30]. This library provides a variety of learning algorithms (L* and vari-
ants thereof, KV, DHC and TTT), as well as various strategies for membership
and equivalence testing (e.g., conformance testing like random words, random
walk, etc.). The library provides Java classes for instantiating these algorithms
and interfaces SULs. The interface classes further allow for defining the input
alphabets that the algorithm routines uses to factor queries used to fill an obser-
vation table or tree. Depending on the used algorithms, the library is capable
of inferring DFAs, NFAs (Non-deterministic finite acceptors), Mealy machines
or VPDAs (Visibly Pushdown Automata).

13.2.7 Near Field Communication

Near Field Communication (NFC) is a standard for simple wireless communi-
cation between close coupled devices with relatively low data rates (106, 212,
and 424 kbit/s). One distinctive characteristic of this standard (operating at
13.56 Mhz center frequency) is that it, based on Radio-Frequency Identifica-
tion (RFID), uses passive devices (proximity cards - PICCs) that receive power
from an induction field from an active device (reader or proximity coupling de-
vice PCD) that also serves as field for data transmission. There are a couple of
defined procedures that allow for operating proximity cards in presence of other
wireless objects in order to exchange data [31]. One standard particularly de-
fines two handshake procedures based on cascade-based anti-collision and card
selection (called type A and type B), one of which NFC proximity cards must
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be compliant with [2]. This handshake is the particular target SUL of this pa-
per, with the purpose of providing very strong evidence for compliance. Due
to the proliferation and the nature of the given SUL, this paper concentrates on
type A devices. Therefore, all statements on NFC and its handshake apply for
type A only.

13.2.8 The NFC Handshake Automaton

ISO 14443-3 contains a state diagram that outlines the Type A handshake
procedure for an NFC connection (see Fig. 13.2). This diagram is not a state
machine of the types described in Section 13.2.1, for it lacks both output and fi-
nal states. As we learn Mealy machines, we augmented it with abstract outputs
(see Sections 13.4.1 and 13.5.1) to get a machine of the same type. The goal of
the handshake is to reach a defined state in which a higher layer protocol (e.g.,
as defined in ISO 14443-4 [31]) can be executed (the PROTOCOL state). The
intended way described in the standard to reach this state is: when coming into
an induction field and powering up, the passive NFC device enters the IDLE
state. After receiving a wake-up (WUPA) or request (REQA) message it enters
the READY state. In this state, anti-collision (AC, remaining in that state) or
card selection (SELECT going to the ACTIVE state) occur. In the latter state,
the card waits for a request to answer-to-select (RATS), which brings it into
said PROTOCOL state. In all of these states, an unexpected input would return
the system to the IDLE state, no giving an answers (denoted as NAK). Based
solely on ISO 14443-3 commands, the card should only leave this state after
a DESELECT command, after which it enters the HALT state. Apart from a
complete reset, it only leaves the HALT state after a wake-up (WUPA) signal
(in contrast to the initial IDLE state, which also allows a REQA message). This
brings it into the READY* state, which again gets via a SELECT into the AC-
TIVE* state that can be used to get to the PROTOCOL state again. The only
difference between READY and READY*, as well as ACTIVE and ACTIVE*
state is that it comes from the HALT instead of IDLE state. Similar to the first
part of the automaton, an unexpected answer brings the state back to HALT
without an answer (NAK).

Apart from the commands stated above that are expected by a card in the
respective state, every other (i.e., unexpected) command would reset the hand-
shake if its not complete (i.e., wrong commands from IDLE, READY, and AC-
TIVE states would lead back to the IDLE state, while HALT, READY*, and
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Figure 13.2: NFC handshake automaton after ISO 14443-3 [2] augmented
with abstract outputs. Note: star (*) as input means any symbol that is not
explicitly stated in another outbound transition of the respective state.
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Figure 13.3: Learner interface setup.

ACTIVE* lead back to the HALT state and unexpected commands in the PRO-
TOCOL state let it remain in that state). Even though this behavior of falling
back into a base state resembles a combination-lock automaton or generally
an accepting automaton, we model the handshake as a Mealy Machine for the
following reasons:

a) As we observe a black box, input/output relations are easier to observe
than not intrinsically defined accepting states

b) The states are easier distinguishable: a variety of input symbols with the
corresponding output may represent a broader signature than just if a
state is accepting (apart from the transition to other states)

c) The output may processed at different level of abstraction (see Section
13.2.5)

There is also one specific feature to the NFC handshake protocol: unlike most
communication protocols, an unexpected or wrong input yield to no output.
This has an implication to learning, as a timeout will be interpreted as a general
error message.

13.2.9 Bluetooth Low-Energy
Bluetooth Low-Energy (BLE) is a standard for mid-ranged wireless communi-
cations optimized for low power consumption (through long sleep phases and
relatively small active periods). It operates at data rates up to 2 Mbps in the
2.4 GHz band (for devices supporting version > 5.0). It is divided in four
layers: application, middleware, data link, and physical. In the data link and
middleware layers, basic connection [3].
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13.3 Learning Interfaces
As a learner, we use the algorithm implementations in the Learnlib Java library
(see Section 13.2.6). This section outlines the details for the setup for NFC,
BLE and compound learning, and the respective teacher and SUL interfaces.

13.3.1 NFC Interface
The learner is configured as outlined in Section 13.4.1 using an adapter class
(cf. 13.3.1). To interact with the NFC SUL, a Proxmark RFID/NFC device (see
Section 13.3.1) is used that works with an adapter written in C++ (see Section
13.3.1). The l Fig. 13.3 provides an overview of the setup.

Learner Interface Device

The interface with an NFC SUL is established via Proxmark3. Proxmark3 is
a pocket-size NFC device capable of acting as an NFC reader (PCD) or tag
(PICC), as well as sniffing device [32]. Proxmark3 can be controlled from a
PC, as well as allowing firmware updates. Thus, it allows us to construct the
NFC frames needed for learning and establishing a connection to the learning
library via a software adapter (see Section 13.3.1).

Adapter Class

The Java learner communicates with the SUL via a distinctive class that han-
dles input, reset, etc. The actual access to the NFC interface runs over a C++
program, running on a PC, based on a provided application that comes with
the Proxmark device. As this application is open source, it was possible to
modify it in order to adapt it for learning. The main interface to the Java-based
Learner is a Socket connection that take symbols from the Learner (see Sec-
tion 13.2.5) and concretizes them by translating the symbols into valid NFC
frames utilizing functions from the SendCommand and WaitForResponse fam-
ilies. These functions send and receive, respectively, command data (i.e., con-
crete inputs, symbol for symbol) to the Proxmark device where the firmware
translates it into frames and sends them to the SUL and proceeds vice versa
for the response. This, however, turned out to create an error prone bottleneck
at the connection between the PC application and the Proxmark device run-
ning over USB. Due to round-trip times and timeouts, the learning was slowed
down and occasional non-deterministic behavior was introduced, which jeopar-
dized the learning process and made it necessary to repeat the latter (depending
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on the scrutinized system, multiple times, which hindered the overall learning
greatly). Therefore, the Learner was re-implemented to send bulk inputs (i.e.
send complete input words instead of single symbols), which improved the
throughput significantly and solved non-determinism.

Firmware Modifications

In order to be able to transfer traces word-wise instead of symbol-wise, sig-
nificant modifications of the device’s firmware were necessary. The standard
interface of the device is designed for sending a single packet at one time (via a
provided application on a PC) and delivering the answer back to the application
via a USB interface. This introduces latency, which through the sheer amount
of symbols sent in the learning process, has a significant performance impact.
To reach the device’s firmware with multiple symbols at once, we modulate the
desired inputs into one sent message in Type-Length-Value (TLV) format (im-
plemented types are with or without CRC and a specialized type for SELECT
sequences) and modify the main routine of the running firmware to execute a
custom function if a certain flag is set. This custom function de-serializes the
sent commands and sends them to the NFC SUL. Answers are modulated into
an answer packet in length-value format, followed by subsequent answer mes-
sages containing precise logging and timestamps, if used. As NFC is a protocol
that works with relatively low round-trip times and time outs these modifica-
tions, eliminating a great portion of the latency times of frequently used USB
connections, boost the performance of the learning using different learning al-
gorithms significantly (for a performance evaluation see Section 13.4.1).

13.3.2 BLE Interface

For BLE, we use the same learner as for NFC (based on LearnLib), but with
some distinct SUL classes for Bluetooth. Particularly, we developed distinct
classes for Input and Output packets to configure the sent data [33]. We use
an identical socket construction like in the NFC interface to communicate with
the adapter class that handles the actual BLE connection (see Fig. 13.3).

Learner Interface Device

For learning BLE systems, we used a Nordic nRF52840, which is a multi-
protocol SoC that supports most of the defined hardware functionalities in the
Bluetooth Core Specifications 5.3 [34]. It comes with the ability to update the
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and upload custom firmware. This allows for making the necessary modifica-
tions for BLE learning, including the ability to craft link layer packets, which
is not possible on off-the-shelf adapters.

Adapter Class

The BLE adapter is written in Python 3.10 and makes use of a modified ver-
sion of Scapy 2.4.5 2. We use Scapy to generate packets and to parse packets
received by the firmware. It supports most of the specified packets by default
but was missing some of the newer packets and some fields were not updated
with the changes of Bluetooth 5.0 [3].

The communication with the firmware is split into two kind of messages:

• Packet transmitted or received

• Commands to change connection parameter

The Interface will communicate with the firmware in case packets are sent and
received, or if the Interface wants to change some aspects of the firmware, like
physical connection parameters of the BLE link. The communication with the
learner works in a similar manner. The Learner will query the Interface with a
trace of packets. In this setting, generating packets that depend on previously
transmitted packets is challenging, as the trace generated by the learner may
not include these prerequisite packets. To address this issue, we decided that
the default value of a field is either the lowest value in a range or zero. This
decision has been made to improve predictability and prevent nondeterminism.
The learning cache uses a prefix tree (trie) data structure for caching and error
correction. All the queries to the system will be saved in this trie. This helps to
prevent re-querying the system with duplicate traces for the equivalence oracle
and allows to resume learning.

Firmware Modifications

In BLE, the controller and link layer is separated from the host via a Host
Controller Interface (HCI) from the Host System. The controller is closed
source. An off the shelf BLE controller would restrict the packets we are able to
send and remove the ability to introduce faulty packets. Therefore we needed a
custom controller and Host Controller Interface (HCI) that does not have these
limitations. Based on the Firmware for SweynTooth [35], we re-implemented

2https://scapy.net/
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Figure 13.4: Compound protocol interface setup. Amber is the Learner class,
turquoise the SUL adapter classes, and blue the actual SUL.

the BLE controller to have an open access to all link layer functions necessary
for proper learning.

13.3.3 Compound Protocol Interface

To learn multiple protocols at once, we created an adapter that can act as a
SUL interface to the learner and serves as a dispatcher to actual SUL classes
for different single-protocol SULs. It receives the respective input alphabet and
labels each – when receiving an input symbol it dispatches it to the respective
protocol SUL (see Fig. 13.4).

Adapter Class

The class caring about addressing multiple SULs (compoundSUL) at once is
actually a container. It provides the same functionalities as other sul classes, but
can have other SULs as child SULs. Technically, each added SUL is equipped
with an identifier (sequential number) as a prefix and its input alphabet is added
to the one of the compoundSUL (more formally IMult =

⋃
j∈n Ij with j being

identifiers of child SULs and IMult = ε for a childless compoundSUL). Addi-
tionally the identifier of a child SUL is added as a prefix to each element of its
input alphabet upon adding it to the compoundSUL alphabet (i ∈ Ij | i = j i).
The learner uses the joint alphabet including the prefixes as input symbols (as
the compoundSUL presents the full joint alphabet as possible input). When re-
ceiving an input trace from the learner, the compoundSUL sequentially hands
each input symbol to the child SUL with the respective index and removes the
prefix (sending each consecutive sequence of inputs for the same child SUL
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as a bulk sequence) and queues the output. When the complete trace has been
processed by the child SULs it hands the concatenated output trace back to the
learner. This makes the internal structure of the compoundSUL (or even the
fact that it is a composite SUL) completely opaque to the learner.

13.4 Learning Protocols
In this Section we discuss the characteristics of learning communication pro-
tocols, particularly NFC and BLE, as well as of learning compound-protocol
automata.

13.4.1 Learning NFC

One distinctive attribute of ISO14443-3 with respect to learning is that it spec-
ifies to not give an answer on unexpected (i.e. not according to the standards
specification) input. Ordinarily, the result of such a undefined input is to drop
back to a defined (specifically the IDLE or HALT) state. In this sense, the
NFC handshake resembles a combination lock automaton. A positive output
on the other hand, ordinarily consists of a standardized status code or infor-
mation that is needed for the next phase of the handshake, e.g., parts of a
card’s unique identifier (UID). The non-answer to undefined is a character-
istic feature of the NFC standard. This directly affects the learning because it
yields many identical answers and efficient time-out handling is essential. It
is therefore necessary to evaluate different state-of-the-art learning algorithms
for their specific fitness (see Section 13.4.1), as well as determining the optimal
parameter set (Section 13.4.1). We scrutinize the main algorithms supported
by Learnlib: classical L*, L* with Rivest/Schapire counterexample handling,
DHC, KV and TTT - the latter two with linear search (L) and binary search (B)
counterexample analysis.

Comparing Learning Algorithms and Calibrations

All of the algorithms can be parameterized regarding the membership and
equivalence queries. The former are mainly defined via the minimum and max-
imum word length, while the equivalence queries (lack of a perfect Teacher), is
determined by the method and number of conformance tests. Generally speak-
ing, a too short (maximum) word length results in an incompletely learned
(which, if the implementation is correct, should contain seven states). The
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Max. Word Length Algorithm
L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

10 5.92 5.05 6.00 4.38 4.38 5.45 5.37
20 20.08 9.34 10.93 12.24 11.65 7.66 7.40
30 41.90 12.92 9.82 12.19 11.47 10.67 10.04
40 68.17 8.54 11.16 15.56 12.89 10.87 9.49
50 34.75 7.87 11.02 15.60 12.53 11.29 9.91
60 77.33 17.15 12.98 17.16 13.37 13.04 10.85
70 134.65 11.34 14.46 17.68 14.81 13.06 11.32

Table 13.1: Runtime (minutes) per algorithm and maximum word length.

maximum length, however, has a different impact on the performance for ob-
servation and tree-based algorithms: table-based are quicker with a short max-
imum word length, whereas for tree-based ones there seems to be a break-even
point between many sent words and many sent symbols in our specific set-
ting. Table 13.1 shows a comparison of the runtime of different algorithms
with different maximum word lengths (in red the respective algorithm’s short-
est runtime that learned the correct 7-state model). Some of the non-steadiness
in the results can be explained by the fact that some calibrations with shorter
word lengths required more equivalence queries and, thus, refinement proce-
dures. Table 13.2 shows the results with the best performing (correct) run of
the respective algorithm. This, however, only covers the performance of learn-
ing a correct implementation. The opposite side, discovering a bug, shows a
different picture. We therefore used a SUL with a slightly deviating behavior
(see Section 13.6.2). This system is much more error-prone, needing signif-
icantly higher timeout values, resulting in higher overall runtimes. One key
property in this case seems to be the minimum word length. Some of the algo-
rithms by their require a lower minimum word length to discover than others.
This has a significant impact with the special setting of getting relatively many
timeouts, which is greatly aggravated by the necessary long timeout periods.
With a minimum word length of 10 symbols, again the original L* with the
Rivest/Schapire closing strategy was performing quickest, but discovered only
7 out of 10 states of the deviating implementation. DHC yielded a similar re-
sult. Both needed a word length of 20 to discover the actual non-compliant
model, which was significantly less efficient in terms of runtime. The TTT
and KV algorithms needed a minimum length of 10, however with quite some
deviation in efficiency. While TTT was the best performing algorithm to learn
the SUL’s actual behavior model, KV was performing worst. The runtimes
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Algorithm L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B
(20) (10) (30) (30) (30) (30) (40)

States 7 7 7 7 7 7 7
Runtime (min) 20.08 5.05 9.82 12.19 11.47 10.67 9.49

Words 1137 282 539 496 451 468 382
Symbols 10192 2588 5124 7932 7607 6628 6213

EQs 2 3 2 5 5 4 4

Table 13.2: Performance evaluation of different algorithms for a compliant
system with their respective fastest calibration in the given setting.

roughly correspond with the amount of sent symbols, in this case the a very
long timeout has to be set to avoid non-determinism. The classical L* is not
in the list, as the algorithm crashed after more than 24 hours of runtime. Table
13.3 provides an overview of minimum word lengths, run time, words, symbols
and equivalence queries. Lower minimum word lengths yielded false negatives
(i.e. the result showed a correct model with the deviation not uncovered).

Input and Output Alphabets

For the input alphabet we use the one needed for successfully establishing a
handshake (cf. Fig. 13.2), according to the state diagram for Type-A cards in
the ISO 14443-3 standard [2]:

• Wake-UP command Type A (WUPA)

• Request command, Type A (REQA)

• Anticollision (AC)

• Select command, Type A (SELECT)

• Halt command, Type A (HLTA)

• Request for answer to select (RATS)

• Deselect (DESEL)

The last two commands are actually defined in the ISO 14443-4 standard [31].
However, as the handshake’s purpose is to enter and leave the protocol state,
they are included in the 14443-3 state diagram and, consequentially, in our
compliance verification.
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Algorithm L*-RS DHC KV-L KV-B TTT-L TTT-B
Min Length 20 20 10 10 10 10

Runtime (min) 309.81 328.83 520.34 423.27 277.67 131.43
Words 575 855 952 679 688 616

Symbols 14637 15262 23867 19241 13353 11769
Eqs 5 3 6 6 5 5

Table 13.3: Performance evaluation of different algorithms for a non-compliant
system with their respective fastest calibration in the given setting.

In general, the output alphabet does not need to be defined beforehand. It
simply consists of all output symbols observed by the Learner in a learning
run. The Learner can derive the output alphabet implicitly. This means that
if a system behaved non-deterministically, the output alphabet could vary –
although when learning Mealy machines, which are deterministic by defini-
tion, nondeterminism would jeopardize the Learner. The output alphabet has
obviously to be defined (in the abstraction layer) when abstracting the output.
Therefore, using raw output has the benefit of not having to define the alpha-
bet beforehand. The raw method has one drawback: there are cards that use
a random UID (specifically, this behavior was observed in passports). Every
anti-collision (AC) and SELECT yields a different output, which introduces
non-deterministic behavior. This is not a problem with abstract output, as the
concrete answer is abstracted away. We therefore tried a heavily abstracted
output consisting of only two symbols, namely ACK for a (positive) answer
and NAK for a timeout, which in this case means a negative answer (see Sec-
tion 13.2.7). This solves the problem, but degrades the performance of the
Learner, since states are harder to distinguish if the possible outputs are lim-
ited to two (aggravated by the similar behavior of certain states - see Section
13.2.8). This idea was therefore forfeit in favor of raw output for the learning.
We still maintained this higher abstraction for the equivalence checking (see
Section 13.5.1 for the reasoning). Raw output, however, retains this problem-
atic non-determinism. We therefore introduce a caching strategy to cope with
this issue. Whenever a valid (partial) UID is received as an answer to an anti-
collision or select input symbol, we put it on one of two caches (one for partial
UIDs from AC and one for full ones from SELECT sequences). The Learner
will subsequently only be confronted with the respective top entries of these
caches. We therefore abstract away the randomness of the UID by replacing it
with an actual but fixed one. This keeps the learning deterministic while saving
the other learned UIDs for analysis, if needed.
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Labeling and Simplification

An implementation that conforms to the standard will automatically labeled
correctly, as the labeling function follows a standards-conform handshake trace:

a) label the initial state with IDLE,

b) from that point, find the state, where the transition with REQA as an input
and a positive acknowledgment as an output ends and label it as READY,

c) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE,

d) from that point, find the endpoint of a positively acknowledged RATS
transition and label it as PROTOCOL,

e) from that point, find the endpoint of a positively acknowledged DESE-
LECT transition and label it as HALT

f) from that point, find the endpoint of a positively acknowledged WUPA
transition and label it as READY*

g) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE*

If the labeling algorithm fails or there are additional states (which are out of
the labeling algorithm’s scope), this is an indicator for the learned implemen-
tation’s non-compliance with the ISO 14443-3 standard (given that only the
messages defined in that standard are used as an input alphabet - see Section
13.4.1).

To simplify the state diagram for better readability and analysis, we cluster
the transitions of each states for output/target tuples and label the input for that
mostly traveled tuple with a star (∗). Normally that is the group of transitions
that mark an unexpected input and transitions back to the IDLE or HALT state.
This reduces the diagram significantly. Therefore, in those simplified diagrams,
all inputs not marked explicitly in a state can be subsumed under the respective
star (∗) transition.

13.4.2 Learning BLE
Like many network protocols, but in contrast to NFC, BLE is time sensitive
with regard to answers to requests within a reasonable time frame. In prac-
tice, we observed the importance of timing within BLE through the necessity
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of swift message processing to generate inputs quick enough for learning be-
fore timeouts occur. In order to yield good results, many optimizations were
necessary that front-load operations from the learner into the adapter includ-
ing caching functionalities to achieve the speed needed for proper commu-
nications. Tests with this optimized BLE adapter yielded a model with 33
states – but only four output symbols (LL VERSION IND, LL UNKNOWN -
RSP(code=12), ATT Exchange MTU Response, and ATT Error Response). The
relatively high number of states (given such few input symbols) can be ex-
plained by a narrow margin of time windows to hit. This results in different
states to be detected upon timeout occurrences. When using the BLE learner
without optimizations (which is a necessity for compound-protocol learning),
the automaton becomes much simpler (three states). With this configuration,
only two packets (maximum, for ATT Exchange MTU REQ only one) can be
sent in time before the connections times out and we end in a non-responsive
sink state (while such restrictions do not apply for the optimized version). This
means that we get only one non-timed-out answer per trace, greatly simplify-
ing the automaton (see Fig. 13.6). This observation is specific to the used SUL,
namely a Tesla key fob (see Section 13.6.2). The optimized learner, configured
with more input symbols, yielded different results with other systems [36],
which also applies to an updated version of the compound learner (see Section
13.6.2).

Input and Output Alphabets

To both reduce the resulting model’s complexity and the effort of learning, we
do not use connection requests as a dedicated input, but as part of the reset
procedure. Therefore, our learner is intrinsically built to connect with the SUL
before using any explicit input symbols. Also, For the sake of simplicity, we
use a small set of low-level messages that are used to establish BLE connec-
tions. This reduced set consists of

• LL VERSION IND

• LL FEATURE RSP and

• ATT EXCHANGE MTU REQ

Like in NFC, the output consists on the system’s reaction to the input sym-
bols. We therefore do not need to explicitly define an output alphabet. This
is arguably only a small subset of the outputs defined in the standard. The
reason is not only the small input alphabet, but also timing issues. Due to
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creating the necessary interlace between NFC and BLE symbols for learning
compound-protocol automata, we were forced to deactivate some efficiency
and caching procedures, which results in a lower overall performance. This is
because the front-loaded optimizations directly in the adapter cannot be trans-
ferred to the learner, which would be necessary to allow for the intertwining of
symbols from different protocols. For the sake of comparability we used the
low-performing methodology to learn the BLE-only automaton as well.

13.4.3 Learning Compound-Protocol Automata

For compound protocols, we use a container SUL that de-serializes and dis-
patches SULs to child SULs that handle the interface to the protocols present
in the compound SUL (cf. Section 13.3.3 and Fig. 13.4). The actual protocol
SULs are invisible to the learner.

Abstraction

The abstraction layer for compound SUL containers mainly consists of han-
dling the dispatcher. The container can be equipped with one or more protocol
SULs (which we do with NFC and BLE SULs – see Section 13.6.2). On adding
a protocol SUL, it’s respective input alphabet will be added to the compound’s
(which is just ε for an empty compound SUL) with an identifier as a prefix.
When the learner sends a trace it will be de-serialized and distributed to its
child SULs according to the respective identifiers. The answers will be assem-
bled again in the same sequence and sent back to learner as output word.

Input and Output Alphabets

We used the input alphabets for NFC and BLE described above. It was neces-
sary to deactivate some performance features for each protocol to successfully
intertwine the alphabets.

13.5 Equivalence Checking
We mainly use the two mentioned methods of compliance checking (bisim-
ulation and trace equivalence) to check the compliance of an implementa-
tion with a system specification. Additionally, for our proposed method of
multi-protocol learning, we can also use the method set to detect deviations
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of a compound-protocol automaton from its separately learned single-protocol
counterparts, indicating cross-protocol influences.

13.5.1 Compliance Evaluation

Proving or disproving compliance needs a verdict if a potential deviation from
the standard violates the (weak) bisimulation relation. We use mCRL2 with
the Aldebaran (.aut) format for bisimilarity and trace equivalence checking (as
described in Section 13.2.2) [37]. As the Learnlib toolset provides the possi-
bility to store the learned automata in a couple of formats, including Aldebaran,
setting up the tool chain is easy, even though some re-engineering was neces-
sary. Learnlib’s standard function for exporting in the Aldebaran format does
not include outputs. We therefore rewrote this function to use the transition’s
in the label of an LTS as well. mCRL2 comes with a model comparison tool
that uses, among others, the algorithm of Jansen et al. [38] for bisimilarity
checking. For NFC, we therefore simply model the specification in form of the
handshake diagram (see Fig. 13.2) as an LTS with the corresponding Mealy’s
input and output as a label in the Aldebaran format and use the mCRL2 tool to
compare it to automata of learned implementations.

NFC Specifics

In NFC, the models of SULs, could look very different, even if the behavior is
equal . Due to different UIDs the outputs to legit AC and SELECT commands
would ordinarily differ between any two NFC cards. Also most other outputs
might differ slightly. E.g., we observed some cards to respond to select with
4800, others with 4400. We therefore use the higher abstraction level as de-
scribed above and use only NAK and ACK as output, circumventing this prob-
lem. This way, inequalities as detected by the tool indicate non-compliance to
the ISO 14443-3 standard of the scrutinized implementation. A trace of the
non-compliant state/transition is trivial to extract from the automaton (see the
example in Section 13.6.2). If that trace is executed on the SUL and actually
behaves like predicted in the model, we have found the actual specification
violation in the real system, disproving the compliance.

BLE Specifics

One specific of the BLE handshake is that the first request always has to be
connection request in order to leave the initial state. To boost efficiency, we
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included this request in the reset procedure. Therefore, a connection request
is implicit in our model and included as a distinct input symbol. Also, like
many other communication protocols but in contrast to NFC, timing has an
influence on the states. Sessions time out after a specific period. The impact
of this circumstance is that (with our learner’s used timing) the SUL’s state
machine enters a non-responsive sink state after two to four sent messages, if
the timeout is not reset through a message.

13.5.2 Compound Protocol Comparison

It is one of the main motivations of this paper to determine if different proto-
cols running on the same device influence each other. To determine this, the
described equivalence checking methods compare a compound-protocol au-
tomaton with the separately learned automata of each individual protocol in
two different ways: a) based on preorder and b) based on hiding. The preorder
method (see Section 13.2.2), checks for each of the single protocol automata if
it is included in the compound automaton using simulation or trace preorder.
Included in this context means that the including automaton can simulate the
complete behavior of the included one, but not (necessarily) vice versa. The
hiding method creates multiple automata (one for each protocol) from the com-
pound one, by hiding (see Section 13.2.3) transitions from the alphabets of all
other protocols (i.e., replacing them with τ transitions). It then checks the
equivalence of each automaton generated this way with its separately learned
single-protocol counterpart using weak trace equivalence or weak bisimulation.
Each of the methods generate counterexamples on deviations. If counterexam-
ples are found, they indicate that the joint behavior is different. This then sug-
gests that an interference between these protocols on the device has occurred
or an application on the examined systems uses both protocols in conjunction.
However, the checks based on hiding are stronger – as preorder just checks if
the compound automaton can simulate the single-protocol, it does not discover
extra behavior. Using both methods in concatenation can automatically deter-
mine if a deviation indicates lack of or extra behavior: if the preorder check
fails, the compound automaton does not fully simulate the single protocol; if it
succeeds but the hiding-based (weak bisimulation or weak trace) equivalence
checks fail, it provides extra behavior; if both succeed, the single protocol is
exactly reproduced in the compound automaton.
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13.6 Evaluation
In this section we briefly outline the achieved results with the described tool
chain. We used several different NFC card systems for testing, which are de-
scribed below. All of these systems have shown to be conform to the ISO14443-
3 standard, except for the Tesla key fob. This key fob was also the main system
examined using the dual learning approach, for it displays both protocols (NFC
and BLE), which are used for its proper functioning: while open/close signals
come via BLE, NFC is used as an out-of-band method during the pairing pro-
cess for exchanging key material to secure the BLE connection.

13.6.1 Test Cards, Credit Cards, and Passports
We used five different NFC test cards by NXP (part of an experimental car ac-
cess system) to develop and configure the Learner. Furthermore, we used two
different banking cards, a Visa and a Mastercard debit. All of these cards are
conform to the standard, with only minor differences. One of these differences
is replying with different ATQA to REQA/WUPA messages with 4400 and
4800 respectively. Overall, the results with these cards are very similar. Fig.
13.5 shows an example of a learned automaton (left side). We also examined
two different passports from European Union countries: one German and one
Austrian. The main noticeable difference (at ISO 14443-3 levlel) to other sys-
tems is that these systems answer to AC and SELECT inputs with randomly
generated (parts of) UIDs. This implements a privacy feature to make pass-
ports less traceable. Without accessing the personal data stored on the device
the passport should not be attributable. This, however, requires authentication.
We also scrutinized the upper-layer passport protocol in another publication
[39].

13.6.2 Tesla Key Fob
Apart from significantly slower answers than the other devices, which required
to adapt the timeouts to avoid nondeterministic behavior, the learned automa-
ton slightly differs when learned with the TTT algorithm. Fig. 13.5 (right side)
shows a model of a Tesla car key fob learned with TTT. The (unnamed) states
3,4 and 6 are very similiar to the HALT, READY* and ACTIVE* states, re-
spectively. Apart from the entry points (HALTA from the ACTIVE state for
the first and DESEL from the PROTOCOL state, respectively) these two struc-
tures are identical and in the reference model, those two transitions lead to the
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* / NAK

READY*

WUPA / 4800 * / NAK

AC / 8804161288

ACTIVE*

SELECT / 0416123a946e80

RATS / 05787771024c5f

DESEL / ca007a29 * / NAK

Figure 13.5: NFC automaton of an NXP test card (left) and a Tesla car key fob
(right) learned with TTT.

same state. However, the ACTIVE* transition allows for issuing a DESELECT
command that actually returns a value (i.e. an ACK in the higher abstraction),
which does not correspond to the standard. The mCRL2 comparison tool right-
fully identifies this model not to be bisimilar and trace equivalent with the spec-
ification. Using the according option, the tool also provided a counterexample
in the form of the trace (⟨REQA/ACK⟩, ⟨SELECT/ACK⟩, ⟨RATS/ACK⟩, ⟨DE
SEL/ACK⟩, ⟨WUPA/ACK⟩, ⟨SELECT/ ACK⟩, ⟨DESEL/ACK⟩). According to
the specification, the last label should be ⟨DESEL/NAK⟩. We also learned a
BLE automaton with a reduced set used for comparison with the compound-
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s0

s1

VERS_IND() / []

s2

ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()] s3

FEAT_RSP() / []

τ

τ

VERS_IND() / [] FEAT_RSP() / [LL_VERSION_IND()] ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()]

VERS_IND() / []FEAT_RSP() / []ATT_EXCHANGE_MTU_REQ() / []

VERS_IND() / [LL_VERSION_IND()] FEAT_RSP() / [] ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()] VERS_IND() / [] FEAT_RSP() / [] ATT_EXCHANGE_MTU_REQ() / [ATT_Exchange_MTU_Response()]

Figure 13.6: Automaton of a Tesla key fob’s BLE interface, learned with TTT
without BLE optimizations (in blue), added (in light gray) are the additional
state class when learning a compound model (see Section 13.6.2).

protocol automata (see also Section 13.4.2). Fig. 13.6 shows this automaton,
including the deviations from the compound automaton.

Compound Protocol Automaton

We also learned a compound automaton of the Tesla key fob (since it sup-
ports both NFC and BLE). We used the same input alphabets as for the NFC
and BLE learning, respectively. The result is a 20 states automaton that com-
bines both protocols (see Fig. 13.7). We subsequently used the equivalence
checks described in Section 13.5.2. For NFC, we found some deviations with
both checking methods, because in the compound setting, the learner failed
to spot the non-compliance with the ISO/IEC standard (see above in 13.6.2).
We subsequently compared it with the standard’s specification automaton (cf.
Section 13.5.1) and both methods rendered it to be included or (weakly) equiv-
alent, respectively. An interesting detail is that in a failed learning attempt
with an early error in BLE (trace #233, that produced a non-determinism in
trace #1391), the learning took a different path, which resulted in the discovery
of the non-compliant transition. For BLE, the preorder checks were positive,
meaning that the compound automaton includes the behavior of the standalone
BLE automaton. However, the hiding-based method yielded that they are not
equivalent. This means that there is extra BLE behavior by using NFC input in
parallel.

Compound Protocol Deviation Analysis

We therefore manually analyzed the compound automaton with hidden NFC
further. First, we built equivalence classes of states according to labels of
outgoing transitions (which we name λ analysis after the labeling function).
This yielded 4 equivalence classes (i.e., four different types of states, which
corresponds to the standalone BLE model). Then, we checked the transitions
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for all states, if the respective target state is in the same equivalence class as
the respective state in the BLE-only model (δ analysis, named after the tran-
sition function). With this, we identified four states (s2, s11, s15, and s16 in
Fig. 13.7) that differ, i.e., their successor states do not belong to the same
label equivalence classes as in the standalone BLE model (Fig. 13.6). This
means that these four states form their own class and are not mergeable with
the other – hence the two models cannot be equivalent. This class is charac-
terized by a) having the output functions as s0 in BLE model, but b) all have
the transition functions just as s1, s2, and s3 (they are not distinguishable, as
all transitions from these classes lead to s2) and c) they are only reachable via
τ transitions. This indicates that this behavior is NFC-induced, since the states
are unreachable from BLE transitions alone (black in Fig. 13.7). An analysis
of the traces yielded that all of them undergo NFC connections with timeouts,
procrastinating the connection. This leads to a very simple explanation: the
NFC transitions use up a good amount of the timer that checks for BLE con-
nection timeouts. That way, they deliver an output from the s0 class (just as it’s
the first BLE input symbol), but then immediately jump to the BLE s2 class
without giving s1 or s3 output, because the timer runs out and s2 is a sink state
that does not give BLE output (BLE s2 is the timed-out state – see the τ state
in Fig. 13.6). As a result, we found some optimization potential in the learner
code to quicken the send/receive process. This yielded a more complex model
that is subject to future works.
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Figure 13.7: Compound NFC/BLE Tesla key fob model learned with TTT.
Transitions in black are NFC and blue BLE, pale lines are without output (i.e.,
timeouts). We also used NFC* and BLE* for all other BLE and NFC inputs
for better readability.
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13.7 Related Work

There are other, partly theoretic, approaches of inferring a model using au-
tomata learning and comparing it with other automata using bisimulation al-
gorithms. However, they target DFAs [40] or probabilistic transition systems
(PTS) [41]. Neider et al. [42] contains some significant theoretic fundamen-
tals of using automata learning and bisimulation for different types of state
machines, including Mealys. It also contains the important observation that
(generalized) Mealy Machines are bisimilar if their underlying LTS are bisim-
ilar. Tappler et al. [19] used a similar approach of viewing Mealy Machines as
LTS to compare automata regarding their bisimilarity. Similarly, bisimulation
checking was also used to verify a model inferred from an embedded control
software [43]. There is also previous work on using automata learning for in-
ferring models of BLE systems, with the main target of fuzzing [44]. Another
approach that targets compliance checking based on model checking that also
sequences the sub-protocol of BLE is from Karim et al. [45]. There is also
working on learning NFC card models [46], which concentrates on the upper
layer (ISO/IEC 14443-4) protocol, dodging the specific challenges of the hand-
shake protocol. Also there is no mentioning of automatic compliance checking
in this approach. To the best of our knowledge, there is no comprehensive ap-
proach for compliance verification of the ISO/IEC 14443-3 and also no work
on compound-protocol learning.

13.8 Conclusion

In this paper, we demonstrated the usage of automata learning to infer mod-
els of SULs and evaluate their compliance with the ISO 14443-3 protocol by
checking their bisimilarity with a specification. We described a learning in-
terface setup, showed practical results and made interesting observations on
the impact of the protocol specifics on learning algorithms’ performances. We
further demonstrated the practical ability to learn a compound automaton of
two protocols running on the same device (particularly using BLE symbols
in the input alphabet) using a dispatcher SUL adapter. We then used similar
techniques to determine differences between the sum (a compound automaton)
and its parts (separately learned automata): preorder checks if the parts are
included in the compound automaton and dissecting the compound automa-
ton and comparing it with the parts. The results showed the compound and
separately learned automata to be very similar. However, the added complex-
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ity made it more difficult to learn. The same learner configuration failed to
spot the NFC non-conformance of the Tesla and showed a standard-conformant
system instead. We also found extra states for BLE in the compound automa-
ton: preorder yielded a positive result, while the hiding-base weak equivalence
demonstrated that the automata are not equal. This means that those two checks
combined (or two vice versa executed preorder checks) can determine if devi-
ations are additional or missing behavior. The hiding-based method eases the
root cause analysis what causes these deviations.

13.8.1 Discussion
Examining pure NFC, we found little differences between the SULs – all ex-
amined systems but the Tesla key fob were compliant to ISO/IEC 14443-3.
However, the scrutinized NFC handshake protocol has two characteristics that
are distinct from other communications protocols: a) it does not send an an-
swer on unexpected input and b) the automaton has two almost identical parts
that pose challenges in learning. Supposedly these characteristics are responsi-
ble for the somewhat surprising finding that the L* algorithm with the Rivest/
Schapire improvement surpasses more modern tree-based algorithms for cor-
rect systems. Still, TTT performed best in finding a non-compliant system and
the minimum word length has an impact on the ability to find non-compliances.
This helps learning similar structures. When looking at compound automata,
we saw that two things were crucial: conformance testing and timing. Since the
input alphabets of compound automata were bigger and combined words more
complex, the possibility of missing subtle deviations like in the Tesla key fob
is bigger. This induced the need of more conformance testing. Also, for time-
sensitive (like most network) protocols it was important to optimize speed to
avoid extra behavior stemming from timeouts. Since timing also played a role
when learning deterministic machines, corner cases were important. We eas-
ily got a deterministic result if a session timeout was far away or long passed.
But if input symbols were (coincidentally) sent near the timeout, they par-
tially yielded a different result even in the same sequence (producing a non-
determinism): one in-time and one timed-out. This issue might be overcome
by using timed automata, but this is a complex solution.

13.8.2 Outlook
The compliance checking is but a first step towards assuring correctness and,
subsequently, cybersecurity for NFC systems. Concretely, further research di-



13.8 Conclusion 265

rections include test case generation using model checking and targeting upper
layer protocols (partly addressed in [39], but to be further extended). The
compound learning yielded promising results, but their significance can be im-
proved with speed optimizations in the learner as mentioned above. To over-
come problems with timing-induced non-determinism, we would need the abil-
ity to recognize time properties. Timed automata, however, are hard to create
[47]. To avoid this burden, while still considering timing, Mealy Machines
with one [48] or multiple timers [49] could be used. This could contribute
towards a general solution of learning system models with multiple protocols.
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[33] D. Schögler, “An Automata Learning Framework for Bluetooth Low En-
ergy,” Master’s thesis, Graz University of Technology, Graz, Austria,
2023.

[34] J. Ribas Sobreviela, Bluetooth Low Energy Based on the nRF52840 USB
Dongle. Bachelor thesis, Universitat Politècnica de Catalunya, Oct. 2019.
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Abstract

In modern automotive development, security testing is critical for safeguarding
systems against increasingly advanced threats. Attack trees are widely used to
systematically represent potential attack vectors, but generating comprehensive
test cases from these trees remains a labor-intensive, error-prone task that has
seen limited automation in the context of testing vehicular systems. This paper
introduces STAF (Security Test Automation Framework), a novel approach to
automating security test case generation. Leveraging Large Language Mod-
els (LLMs) and a four-step self-corrective Retrieval-Augmented Generation
(RAG) framework, STAF automates the generation of executable security test
cases from attack trees, providing an end-to-end solution that encompasses
the entire attack surface. We particularly show the elements and processes
needed to provide an LLM to actually produce sensible and executable auto-
motive security test suites, along with the integration with an automated test-
ing framework. We further compare our tailored approach with general pur-
pose (vanilla) LLMs and the performance of different LLMs (namely GPT-4.1
and DeepSeek) using our approach. We also demonstrate the method of our
operation step-by-step in a concrete case study. Our results show significant
improvements in efficiency, accuracy, scalability, and easy integration in any
workflow, marking a substantial advancement in automating automotive secu-
rity testing methods. Using TARAs as an input for verification tests, we create
synergies by connecting two vital elements of a secure automotive develop-
ment process.
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14.1 Introduction

Security testing is a crucial component of modern software and system devel-
opment. With the increasing sophistication of attacks, ensuring the robustness
of systems against such threats is critical. Attack trees form a convenient way
to systematically categorize the different ways in which a system can be at-
tacked [1]. An attack tree is a hierarchical diagram that represents the various
ways an attacker might compromise a system. The root node represents the
ultimate goal of the attacker, and the child nodes show the steps or sub-goals
required to achieve it. These trees are instrumental in both the identification
of system threats and the generation of test cases that simulate potential attack
paths. Despite its importance, security test case generation often consumes sig-
nificant time and resources, potentially overlooking critical details in complex
systems. As a result, automation in this process has emerged as a critical area
of research to ensure comprehensive coverage of potential attack vectors. This
research addresses the challenge of automating security test case generation
from attack trees using Large Language Models (LLMs) and a novel Retrieval-
Augmented Generation (RAG) framework [2]. LLMs offer promising oppor-
tunities for automating security test generation, as demonstrated by recent re-
search in generating test programs for compiler bug isolation [3]. However,
they often face challenges in generating reliable and accurate test scripts, par-
ticularly in areas like security evaluation [4, 5]. To address these limitations,
we propose Security Test Automation Framework (STAF), a novel solution us-
ing a custom multi-step self-corrective RAG framework specifically designed
for automotive security test case generation from attack trees. By combining
LLMs’ code generation capabilities with this framework, we enable the au-
tomated generation of comprehensive and executable security test in Python
as well as model checking properties in Linear Temporal Logic (LTL). Un-
like traditional methods that focus on either attack tree analysis [6, 7] or test
generation [8, 9, 10] in isolation, our approach integrates both aspects. This
integration provides a complete workflow from threat identification to secu-
rity testing, representing a significant advancement in the field. We also show
the necessary adjustments that are needed to enable general-purpose LLMs to
generate sensible, tailored automotive test cases. The key contributions of our
work are:

• A method for generating security test cases from attack trees.

• An approach to create sensible executable tests for automotive systems.
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• Integration with an existing system analysis tool for practical demonstra-
tion.

• Derivation of linear temporal logic (LTL) properties for model checking.

The remainder of this paper is organized as follows: Section 14.2 reviews re-
lated work in the field of automated security testing; Section 14.3 describes our
proposed Security Test Automation Framework (STAF) in detail; Section 14.4
present the experimental setup and results; Section 14.5 provides a real-world
scenario-based case study, and Section 14.6 concludes the paper.

14.2 Related Work
This section reviews and synthesizes recent research on attack tree analysis,
security-focused test case generation, and the application of Large Language
Models (LLMs) in software testing and evaluation. We identify key advances
and limitations in these areas, highlighting the gaps that our work addresses.

14.2.1 Advancements in Automotive Attack Tree Analysis
Modern vehicles are increasingly characterized by their complexity as cyber-
physical systems, incorporating numerous electronic control units (ECUs), di-
verse communication protocols (e.g., CAN, Ethernet [11, 12]), and increasing
connectivity, all of which expand the attack surface [11, 13, 14]. To help man-
age these growing cybersecurity risks, standards like ISO/SAE 21434 and UN
Regulation No. 155 emphasize the importance of structured threat modeling.
As part of this process, Threat Analysis and Risk Assessment (TARA) plays
a key role, with attack trees often used to map out potential paths an attacker
might take [13, 14]. Despite their utility, the manual construction and main-
tenance of attack trees remain labor-intensive and susceptible to human error,
particularly given the scale and dynamic nature of modern vehicle architec-
tures [11, 14]. This has driven the development of tools that automate attack
path identification using threat anti-patterns and system model analysis [14].
Such tools support ISO/SAE 21434-compliant TARA processes by generating
attack graphs and trees that help identify threats early in the design phase. Al-
though progress has been made, a critical gap remains: the transformation of
attack trees into executable security test cases is still largely manual. Bridging
this gap is essential for validating system resilience in practice. Large Lan-
guage Models (LLMs) have shown promise in parsing structured data [15], but



14.2 Related Work 277

their application to generating test cases from attack trees (especially in the
automotive domain) remains underexplored. Our proposed framework, STAF,
addresses this challenge by automating the generation of security test cases
from attack trees, enabling scalable and context-aware security validation for
automotive systems.

14.2.2 Works addressing the problem end-to-end
Recent research has explored the use of attack trees for security analysis in au-
tomotive systems. Umezawa et al. [16] applied attack trees to systems like the
Tesla Model S, integrating threat databases to map attack vectors. Mishina et
al. [17] combined fault tree and attack tree analysis to enhance security assess-
ment. Cheah et al. [18] formalized systematic security evaluations using attack
trees for automotive applications, while dos Santos et al. [19] proposed a for-
mal model to facilitate security testing in modern automotive systems. While
these studies advance attack tree modeling and threat analysis, they primarily
focus on static analysis or threat documentation without automating test case
generation; especially for general software systems. This highlights a critical
gap; the lack of automated, adaptable security test case generation from attack
trees for broader software applications.

14.2.3 LLMs in Test Case Generation
The application of large language models (LLMs) in software testing, particu-
larly for test case generation, has garnered increasing attention in recent years.
However, their use in security testing remains relatively underexplored. Plein
et al. [20] investigated the use of LLMs, specifically ChatGPT, to generate
test cases from bug reports. Their findings indicated that LLMs could pro-
duce executable test cases for approximately half of the bugs in their dataset.
Nonetheless, the study also highlighted key limitations, including difficulties
in achieving completeness and maintaining contextual accuracy, particularly
for complex or domain-specific issues. Yu et al. [21] examined LLM-driven
test script generation for mobile applications, identifying challenges related
to cross-platform compatibility and the handling of platform-specific features.
These findings underscore the need for more sophisticated approaches when
generating test cases for security-critical systems, where interactions are often
complex and context-dependent. Wang et al. [22] conducted a broader evalua-
tion of LLMs across various software testing tasks. While their results demon-
strated the potential of LLMs in generating unit tests and identifying bugs, they
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also revealed persistent challenges. Specifically, LLMs struggled to produce
comprehensive test suites and to manage the intricacies of security-sensitive
scenarios. Although progress has been made in attack tree analysis and LLM-
based test generation, several critical gaps remain. Existing approaches often
lack the adaptability and depth required to address rapidly evolving security
threats. The potential of LLMs to parse and analyze attack trees for security
testing purposes has yet to be fully realized. Moreover, current methods fre-
quently fall short in generating complete and context-aware test cases, partic-
ularly in domains with stringent safety and security requirements. These lim-
itations are especially pronounced in the automotive sector, where embedded
systems, real-time constraints, and regulatory compliance introduce additional
complexity. To address these challenges, we propose the Security Test Au-
tomation Framework (STAF), which leverages LLMs within a self-corrective
retrieval-augmented generation pipeline. STAF automates the generation of
executable security test cases from attack trees, offering a scalable and domain-
adapted solution for security validation in automotive systems.

14.3 Method
The goal of STAF is to create test cases from threat models. Our used threat
modeling tool, AVL ThreatGuard1, is capable of creating attack trees from
TARAs. We use these attack trees as an input for STAF to create test cases
in the form of executable Python scripts from that TARA. As an alternative,
we use queries that create LTL properties to check implementation models in
a model checker [23]. STAF then streamlines the process of generating secu-
rity test cases directly from attack trees. For that, we build a RAG architec-
ture. RAGs usually consist (apart from orchestration and user interface) of a
source module, a retriever, a generator, and an evaluator/re-ranker [24]. For the
source, we provide the LLM with a closed-loop knowledge base and, alterna-
tively, a web search. The closed-loop information contains specific automotive
cybersecurity knowledge and consists of a vectorized database containing a va-
riety of specific automotive cybersecurity sources, particularly the Automotive
ISAC Automotive Threat Matrix (ATM)2, and the test libraries included in our
automotive testing platform, AVL TestGuard3. To further improve the qual-
ity of the scripts, we include behavioral models (particularly Mealy machines)

1https://experience.avl.com/products/avl-threatguard
2https://atm.automotiveisac.com/
3https://experience.avl.com/products/avl-testguard
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Figure 14.1: Workflow of STAF’s self-corrective information retrieval mecha-
nism. This process ensures the relevance and timely updates of the knowledge
base by combining vector data store retrieval with web queries when necessary,
enhancing the accuracy of generated security test cases. If applicable protocol
Mealy models in DOT format are provided in the initial test generation prompt.

of tested protocols that improves the LLM’s context knowledge of the proto-
col (see Section 14.5 for an example). We automatically inferred the models
using automata learning [25]. We then implement a customized retriever that
also contains an iterative grading loop. The grading consists of customized in-
put prompts providing guidance for the LLM to evaluate the relevance of the
retrieved documents. If the number of relevant documents exceeds a defined
threshold, they serve as an input for the generator. The generator is another
customized prompt that uses the retrieved inputs (and, if applicable, Mealy
models) to generate actual test scripts. These test scripts will be evaluated and
regenerated, by another prompt. The test generation process can be split in four
interconnected stages: 1) Attack-tree Analysis, 2) Adaptive Information Re-
trieval, 3) Test-case Generation, and 4) Iterative Refinement (see Figure 14.1).
Each stage contributes to the overall goal of translating complex attack tree
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data into actionable security test cases. The process begins with LLM-guided
attack tree analysis to extract threats. The framework then employs adaptive
information retrieval to gather relevant knowledge, which informs the gener-
ation of structured test cases. Finally, an iterative refinement process ensures
the quality and relevance of the generated test cases. We will discuss individual
components in sections below.

14.3.1 Analyze Threats
The first stage of the framework involves analyzing attack trees encoded in a
structured JSON format to interpret relationships among threats, attack vec-
tors, and system weaknesses. STAF employs an LLM to extract insights from
the attack tree through a carefully structured prompting strategy. This strat-
egy guides the LLM in identifying individual threats, including the affected
components and potential impacts, and extracting associated attributes such as
preconditions, required access levels, and exploit complexity. For example, in
the case of an attack tree node representing a threat in the Unified Diagnostic
Services (UDS) protocol, the LLM would extract details about UDS services,
sessions, seed-key, etc. This detailed analysis not only allows the framework
to understand individual threats but also reveals their inter-dependencies and
potential sequences of compromise.

14.3.2 Self-corrective Information Retrieval
The adaptive information retrieval component, illustrated in Figure 14.1, en-
sures that the system maintains a current and contextually relevant knowledge
base for analyzing identified threats. Initially, the system formulates a query
using keywords and threat attributes extracted during attack tree analysis. This
query is used to perform a semantic search within a vectorized data store, which
contains preprocessed documents represented as vectors. The semantic capa-
bilities of the data store enable contextual matching, allowing the system to re-
trieve documents that are relevant beyond simple keyword overlap. To enhance
the automotive relevance of the retrieval process, the vector store is enriched
with domain-specific sources. These include the AUTO-ISAC Automotive
Threat Matrix, which provides structured threat intelligence tailored to vehicle
systems; a proprietary test case database from AVL’s internal testing platform,
which offers real-world examples of security validation procedures; and au-
tomata models of ECU Unified Diagnostic Services (UDS) stacks, which rep-
resent the behavioral logic of diagnostic protocols in modern vehicles. These
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resources collectively improve the system’s ability to retrieve and reason over
automotive-specific threats and test scenarios. Once candidate documents are
retrieved, an LLM-based grading mechanism evaluates their relevance based
on contextual alignment, technical depth, and applicability to the identified
threats. If the retrieved documents are insufficient or misaligned, the system
initiates a self-corrective feedback loop. This involves refining the query and
performing a web search using the Tavily API 4, aiming for targeted, use-case
relevant sources such as vendor advisories, automotive security bulletins, and
technical documentation. The results from both the vector store and web search
are then integrated to form a comprehensive and up-to-date knowledge base for
the subsequent test case generation phase.

14.3.3 Generate Test Cases
Building upon the accumulated knowledge from the previous stages, STAF
generates structured test cases in JSON format. We employ domain adap-
tation through the strategic use of threat information and in-context learning
capabilities of LLMs. This is done by structuring the prompt. This prompt in-
cludes threat analysis and the retrieved documents to ensure LLMs understand
the underlying context. Additionally, the prompt has instructions to ensure
LLMs include essential elements such as a descriptive title, an overview of the
test scenario, setup instructions for preparing the environment, executable test
scripts, tear-down procedures to restore the system to its original state, and
expected outcomes indicating successful test results. For example, a test for
authentication mechanism, would try to perform an action on usually protected
resources without authentication. A success would indicate a vulnerability.

14.3.4 Chain of Improvement
For iterative refinement we use an LLM-as-a-judge approach [26]. This stage
ensures that the generated test cases align with the original attack tree and
conform to established security testing standards. The framework employs an
LLM with specialized instructions to evaluate each test case across various
metrics, including alignment with the attack tree, completeness of the test case
components, runnability without additional modifications, and overall quality,
clarity, and effectiveness. It also identifies any threats that are inadequately
addressed and provides specific recommendations for refining the test cases.
Lastly, it gives improvement suggestions to regarding error-free, runnable and

4https://tavily.com/
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sensible code for regeneration. If a test case does not meet the quality bench-
marks, the framework adjusts or regenerates the test case based on the sug-
gested improvements and then re-evaluates it against the established criteria.
This cycle continues until the test case achieves satisfactory scores across all
metrics or a predefined number of iterations is reached. By incorporating this
dynamic refinement process, the framework ensures high levels of precision
and coverage in addressing potential vulnerabilities, thereby adding a layer of
quality assurance to the testing process.

14.4 Evaluation
The evaluation of our proposed Security Test Automation Framework (STAF)
is crucial to demonstrate its effectiveness in automating the generation of high-
quality security test cases from attack trees. By conducting comprehensive
tests, our aim is to show how STAF enhances the performance of the model in
terms of alignment with identified threats, runnability of the generated code,
and completeness of test cases.

14.4.1 Evaluation Criteria
Apart from the number of tests (with and without redundancies), we manually
assessed each test case based on three key metrics, each evaluated on a scale of
0 to 10. Below is a detailed overview of the judgment criteria:

Alignment (0-10 points) : This metric measures the degree to which the
generated test cases align with the identified threats present in the attack tree.
A rating of 0 points is given if the test case does not address a threat present
in the attack tree; we only want to test what is present in the attack tree. Up to
5 points are awarded for quality and specificity of the test case to address the
target threat. Up to 3 points are awarded if the test case addresses advanced
or subtle aspects of the threat, reflecting a higher level of depth and nuance.
Showing deeper knowledge about the protocols/systems available. Up to 2
points are awarded for the variety of testing a threat, e.g., by trying different
inputs or approaches to test the threat.

Runnability (0-10 points) : This criterion assesses the practical executabil-
ity of the generated test code. A rating of 0 points is given if the test is not
runnable for whatever reason. A deduction of 2 points for every placeholder
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Model #Tests #Unique Alignm. Runnab. Completen. Overall

GPT (vanilla) 9 9 7.00 9.00 5.50 7.17
GPT (STAF) 60 22 9.80 9.00 8.50 9.11
GPT (STAF&MM) 65 27 9.00 9.67 7.33 8.67
DeepSeek (vanilla) 5 5 6.50 4.17 4.67 5.11
DeepSeek (STAF) 21 18 8.83 0.00 7.67 5.50
DeepSeek (STAF&MM) 30 14 9.33 0.00 9.00 6.11

Table 14.1: This table presents a detailed comparison of STAF’s and
STAF&MM’s performance using GPT (4.1) and DeepSeek (V3) against their
pure versions. For each category three scripts were analyzed.

or implicit assumption that will lead to a silent failing of tests (e.g., usage of
unconfirmed CAN IDs). A deduction of 2 points for every case where the test
might fail based on conditions (e.g. if the branch would execute successfully
but the other branch would fail).

Completeness (0-10 points) : This metric evaluates how thoroughly the gen-
erated test cases cover all facets of the identified threats. Up to 4 points are
awarded for including all the necessary external files, data, or resources re-
quired for the test cases. Up to 3 points can be earned by providing com-
prehensive setup and tear-down procedures, ensuring that the test environment
is correctly initialized and cleaned up. An additional 3 points are given for
well-documented test cases that clearly specify their purpose, procedures, and
expected outcomes, thereby facilitating reproducibility and understanding.

An overall score is calculated as the arithmetic mean of these three metrics,
providing a single comprehensive measure of the model’s performance in gen-
erating security test cases. The LLM evaluator provides a detailed breakdown
of how each score was calculated, along with a brief explanation of the eval-
uation. This approach ensures a transparent and consistent evaluation process
across different models and methodologies.

14.4.2 Results
We selected two recent state-of-the-art models, GPT-4.1 and DeepSeek-V3-
0324, as the backbone for STAF and STAF incl. Mealy Models (STAF&MM).
As shown in Table 14.1, we compared their individual performance with their
vanilla versions to highlight the enhancements achieved through STAF and
STAF&MM. The results indicate that integrating STAF leads to significant im-
provements across all metrics for both models. The most obvious difference
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is the rise in the number of generated tests (#Tests) and tests after removing
redundant ones (#Unique). It gradually rose with STAF and MM introduction,
with the exception that with deepseek, STAF alone generates more uniques
than with MMs. The addition of learned protocol models as additional context
for the models also increases the alignment and completeness of the generated
test cases. This effect is more observable for DeepSeek-V3, while GPT-4.1
seems to inherently better understand certain protocols such as UDS out of
the box. For GPT-4.1, the overall score increased from 7.17 to 9.11 upon
integrating STAF, reflecting an improvement of 1.94 points. The most no-
table enhancement is in the Alignment metric, which rose from 7.00 to 9.80,
indicating that STAF effectively helps the model to generate more relevant
test cases and supports addressing the threats in the attack trees more effec-
tively. The Completeness score also improved from 5.50 to 8.50, demonstrat-
ing more comprehensive test case generation. The Runnability score stayed
at 9.00 for both, the overall improvement suggests that there are consider-
able benefits in appyling the STAF approach. Similarly, DeepSeek-V3-0324
experienced an overall score increase from 5.11 to 5.50 (STAF), and 6.11
(STAF&MM), marking an enhancement of up to 1.0 points. The Complete-
ness metric showed a substantial rise of up to 3.00 points, from 4.67 to 7.67
and respective 9.00 if the protocol model was applied. The Alignment score
also saw an increase from 6.50 to 8.83 (STAF) and 9.33 (STAF&MM). These
gains highlight STAF’s ability to considerably supplement the models perfor-
mance for this task. The Runnability was evaluated as 0.0 for half of the test
cases generated by DeepSeek-V3 vanilla and all of the test cases generated with
DeepSeek-V3 STAF and DeepSeek-V3 STAF&MM, since the model would al-
ways include natural language placeholders and comments within the Python
scripts, which yielded them unusable without modification. In terms of indi-
vidual metrics:

• Alignment: GPT-4.1 (STAF) achieved the highest score of 9.80, indicat-
ing excellent adherence to the identified threats. DeepSeek-V3 (STAF&MM)
also performed well with a score of 9.33. GPT-4.1 (STAF&MM) placed
third with a score of 9.00.

• Runnability: GPT-4.1 (STAF&MM) achieved the highest runnability
score of 9.67, indicating that its generated test cases are highly exe-
cutable without additional modifications. GPT-4.1 (STAF) and GPT-4.1
vanilla performed also well with a score of 9.00.

• Completeness: The STAF and STAF&MM models significantly out-
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performed the vanilla models in completeness. This suggests that the
STAF framework enables the models to generate more comprehensive
test cases that cover all critical aspects of the threats.

These results demonstrate that STAF and STAF&MM outperform even GPT-
4.1, in crafting effective test cases. This outcome demonstrates the importance
of a structured approach in security testing. STAF’s well-defined framework
and targeted protocols ensure the retrieval and application of highly relevant
data. This focus enables STAF to generate more precise, context-specific,
and robust test cases. The framework’s ability to filter, process, and apply
domain-specific knowledge effectively translates into superior test case quality,
even when compared to models with wider information access. The addition
of the protocol Mealy models provides accurate knowledge of the commu-
nication rules, increasing the quality of interaction with a system under test.
This finding emphasizes that in specialized tasks like security test case gen-
eration, a tailored approach with domain-specific protocols can yield better
results than general-purpose models with broader but less focused information
sources. Qualitatively, we saw not only improvements in the scoring itself, but
also the appearance of certain traits – for instance, the introduction of a UDS
mealy model induced the LLM to use session changes in test cases, which did
not appear without the models. Besides, all versions considered a comparable
amount of infeasible tests (e.g., physical bypass5), written in a Python pseudo
code. We have seen similar results for LTL properties (see Section 14.5), but
the refinement process in the RAG was more extensive.

As an example for the improvements possible by using GPT 4.1 STAF&MM
versus GPT-4.1 (vanilla) consider the following code listings 14.1 and 14.2.
While GPT-4.1 (vanilla) without a learned protocol model of the devices UDS
was only able to create a test by sending a too short message, the 14.2 shows
specific, targeted test content utilizing undocumented sub-functions.

1 import can
2 import time
3

4 can_interface = ’can0’
5 bus = can.interface.Bus(channel=can_interface, bustype=’socketcan

’)
6

7 # Malformed UDS message: too short (only 1 byte)
8 malformed_uds_data = bytes([0x10])

5This test involves physical tampering with the system. This is not feasible to test in a pure
digital manner. We therefore exclude this from test sets, since the goal is to perform automated
cybersecurity testing, which intrinsically does not involve physical attacks.
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9

10 # test code
11 """
12 Purpose: Send a malformed UDS message and observe ECU behavior

for secure error handling.
13 Attack Steps:
14 1. Send the malformed UDS message onto the CAN bus.
15 2. Listen for a response or observe for any abnormal behavior (e

.g., ECU crash, diagnostic session reset).
16 Expected Secure Behavior: ECU should respond with a negative

response (e.g., 0x7F) or ignore the message, without crashing
or leaking information.

17 """
18 tx_msg = can.Message(arbitration_id=0x7DF, data=

malformed_uds_data, is_extended_id=False)
19 bus.send(tx_msg)
20

21 response = None
22 start_time = time.time()
23 while time.time() - start_time < 5:
24 msg = bus.recv(timeout=1)
25 if msg and msg.arbitration_id == 0x7E8:
26 response = msg
27 break
28 if response:
29 if response.data[0] == 0x7F:
30 print(’[PASS] ECU responded with negative response to

malformed message.’)
31 else:
32 print(’[WARNING] ECU responded with unexpected data: {}’.

format(response.data.hex()))
33 else:
34 print(’[PASS] No response to malformed message. ECU may be

securely ignoring invalid input.’)
35

36 # Teardown: Close the CAN bus interface
37 bus.shutdown()

Listing 14.1: GPT-4.1 (vanilla) - Test error handling of Malformed UDS
Messages

1 # [...] definitions and imports skipped
2

3 if __name__ == "__main__":
4 CAN_IFACE = ’can0’
5 TX_ID = 0x7E0
6 RX_ID = 0x7E8
7 try:
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8 sock = ISOTPNativeSocket(CAN_IFACE, rx_id=RX_ID, tx_id=
TX_ID, basecls=UDS, padding=True)

9 except Exception as e:
10 print(f"[ERROR] Failed to open ISOTP socket: {e}")
11 assert False, "ISOTP socket unavailable."
12 # Rare/undocumented subfunctions
13 rare_subfunctions = [0x7F, 0x99, 0xFE]
14 for sub in rare_subfunctions:
15 send_multiframe(sock, 0x10, sub, payload_len=32)
16 # Malformed multi-frame (fragmentation)
17 send_multiframe(sock, 0x2E, 0x01, payload_len=64)
18 # Check ECU is still alive
19 try:
20 resp = sock.sr1(UDS()/UDS_TP(), timeout=2, verbose=False)
21 assert resp is not None, "ECU did not respond after

protocol-specific attack (possible crash)!"
22 print("[PASS] ECU is still operational after advanced

protocol-specific attack.")
23 except Exception as e:
24 print(f"[ERROR] Scapy operation error during post-attack

check: {e}")
25 assert False, "ECU not responsive after protocol-specific

attack!"

Listing 14.2: GPT-4.1 (STAF&MM) - Protocol Specific Attacks - UDS
Subfunctions and Multi-Frame Fragmentation

14.5 Case Study
We conducted a case study using STAF with an attack tree Battery Manage-
ment System (BMS). The purpose of this case study is to evaluate how well
STAF can automatically generate security test cases derived from attack trees.
By leveraging a realistic application, we provide a practical demonstration of
the framework’s potential and its current limitations when tested in a real-world
scenario.

14.5.1 Setup
We used the TARA of a Battery Management System (BMS) as a basis. Figure
14.2 shows the architectural layout of the BMS’ components as designed in a
threat model. With the help of the threat modeling tool (see Section 14.3), we
analyze the system and create several attack trees. For this case study, we par-
ticularly use an attack tree that targets Man-in-the-Middle Attack via UDS Mes-
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Figure 14.2: Architecture of the Battery Management System used as system
under test.

sage Collection, which has the following attack vectors: Intercept UDS Com-
munication (subvector Exploit Unencrypted Communication Channel), Inject
Malicious UDS Messages (subvector Replay or Modify Captured Messages,
and Bypass Physical and Logical Protections (subvector Exploit Lack of En-
cryption and Trust). These are described with attack steps for message replay:
1. Use previously captured UDS messages as a template, 2. Modify message
parameters to target specific ECUs or functions, 3. Inject modified messages
into the communication channel, and 4. Observe vehicle response to determine
success of injection. This attack tree provides the main input to STAF.

14.5.2 Walk Through
STAF is based on LangChain and is running on a server behind a FastAPI ap-
plication. The process of generation is triggered by sending an attack tree in
JSON format to the server. The Attack-tree Analysis (Analyze Attack Tree step
in Figure 14.1) is always conducted and results in keywords used for the Adap-
tive Information Retrieval (Retrieve Documents step), which will fetch the top
ten relevant documents in the vector database. Here, during ingestion of docu-
ments in the vector database a verbal description of the document content was
generated, for example existing Python test scripts for different attacks and au-
tomotive protocols. The Adaptive Information Retrieval will not only grade
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the documents using a binary metric (Document Grading step), checking if the
document is relevant for addressing the threat, but also conduct a web-search if
less than three documents were rated positive (Web Search step). Afterwards,
the attack tree is searched for protocol names such as UDS. If a protocol name
appears in the attack tree, the Mealy model of the protocol standard is also
provided in DOT language format. For STAF&MM, the protocol model could
be added, for STAF standalone, the protocol model support was deactivated.
Subsequently, the Generate Test Cases step is conducted and the LLM will re-
ceive a comprehensive prompts with instructions, the documents retrieved, if
applicable the protocol model as well as formatting instructions for the result.
As result, a list of test cases is provided (an example is shown in Listing 14.3),
including metadata like a unique ID, the threat addressed, necessary imple-
mentations for setup and tear-down of the test environment as well as the test
implementation itself.

1 "test_cases": [
2 {
3 "id": 1,
4 "name": "Bypass Physical and Logical Protections -

Unauthorized Diagnostic Port Access",
5 "description": "Tests whether an attacker with

physical access can connect to the diagnostic port and
initiate UDS communication without authentication.",

6 "threat_addressed": "Lack of Authentication on
Diagnostic Interfaces",

7 "setup": "# Setup instructions: ...",
8 "test_code": "import can\\nimport os\\n ...",
9 "teardown": "# Teardown: ...",

10 "expected_result": "If the system is vulnerable,
the ECU will ..."

11 },
12 ...
13 ]

Listing 14.3: Example of a Test Case.

The full collection of test scripts is then provided to an LLM for review (in the
Evaluate Test Cases)step, where the tests are checked against the attack tree
for alignment and completeness and the implementation for runnability, using
a dedicated prompt. This prompt requests a scoring of 0-100 in each category
and a list of missing threats, as well as a list of improvement suggestions where
necessary. Listing 14.4 shows an example for improvement suggestions. If the
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scoring is below a certain, configured threshold, the suggestions are improved
by the generator using these suggestions (Regenerate Test Cases step) in a loop
until the quality is satisfactory.

1 {
2 "test_case_name": "Test Case 10: UDS Message Injection

Test",
3 "details": [
4 "Add more detailed checks for message

authentication mechanisms",
5 "Include verification of physical access

requirements"
6 ]
7 },[...]

Listing 14.4: Example improvement suggestions.

Now up to four cycles of Iterative Refinements are conducted. The refinement
is stopped if either four cycles were done, or the rating increases to above 90
for all categories. In each regeneration step, the original test scripts, the miss-
ing threats and the suggestions for improvement are provided to the LLM. This
results in a continuous extension and quality improvement of the generated test
cases. Listing 14.5 the prompt template for the Iterative Refinement. The same
process for LTL properties yielded for example a property like AUTHENTI-
CATION ENFORCEMENT:□(DIAG SESSION INIT ∧ UNAUTH →
false.

1 prompt = """
2 You are an elite security test engineer [..]. Your critical

task is to **modify specific test cases** based on the
provided improvement suggestions, and **add new test cases**
for any missing vulnerabilites.

3 ### Test Cases to Modify: {test_cases_to_modify}
4 ### Improvement Suggestions: {improvements_map}
5 ### Missing Vulnerabilites: {missing_vulnerabilites}
6 ### Instructions:
7 1. **Modify the test cases listed above** to incorporate [..]
8 2. For each **missing vulnerability**, **create a new test

case** that exactly addresses the vulnerability.
9 3. Ensure that all test cases use appropriate and actual code

relevant to the system under test, [..].
10 4. Include all necessary **setup**, including required

imports [..]
11 5. The test code must be **complete, runnable Python code**.

[..]
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12 6. Follow **best practices** for the system or domain you are
testing, and use appropriate methods and calls.

13 7. Each test case should demonstrate both the **vulnerable
state and the secure state**.

14 8. Use **assert statements** to clearly indicate what
constitutes a pass or fail condition.

15 {format_instructions}
16 """

Listing 14.5: Prompt template for iterative refinement.

14.6 Conclusion
In this paper, we introduced and evaluated STAF, a Security Test Automation
Framework that automates the generation of security test cases from attack
trees using LLM-guided analysis, adaptive retrieval, and iterative refinement.
STAF reduces manual effort by transforming attack vectors into actionable,
structured test cases. Through a combination of a robust knowledge base,
adaptive retrieval, and self-corrective mechanisms, the framework generates
comprehensive test cases tailored to specific threats in the attack trees for au-
tomotive systems. We could demonstrate that a specialized RAG architecture
like STAF could help to overcome the hurdles of making LLM-based test gen-
eration usable and scalable for automotive systems and produce usable Python
test code, as well as LTL properties for model checkers. It shows that attack
trees can be used to structure test suites, while the RAG’s context information
helps to generate meaningful and executable test cases. The introduction of
behavior models (Mealy machines) produced yet more and more aligned test
cases.

14.7 Limitations & Future Work
While STAF shows promising results, a couple limitations surfaced during its
evaluation. Particularly, one significant limitation is the lack of implementation
details in an attack tree. Therefore, specific basic information (e.g., CAN baud
rates or arbitration IDs) should be included. This results in test cases which are
not immediately executable but require manual modification, hence STAF is
not yet fully autonomous. Further, the framework requires multiple iterations
to ensure that the test cases meet quality targets and align with the original at-
tack tree. Especially for more complex applications this is resource-intensive.
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This hinders the scalability of STAF when applied in dynamic or large-scale
settings where speed is crucial. Overall, while STAF enhances the automation
of security test generation, it still requires manual adjustments and human over-
sight to handle certain limitations. Additionally, improving the framework’s
ability to handle complex, large-scale applications efficiently, while maintain-
ing up-to-date knowledge retrieval and minimizing manual interventions, will
be critical areas for future development. Future work will include the output of
test cases in Domain Specific Language (DSL), to allow injecting implementa-
tion details into generated tests as post-processing. Further, integration into a
testing framework with a feedback loop to refine test cases will help to increase
both the test quality and degree of automation – error messages and tool out-
puts will provide valuable feedback for the test case evaluator to generate more
practial-oriented feedback and better test integration. The framework could
also be improved with fine-tuning: test sets and script code can be separated,
which could provide more accurate feedback and smaller context windows.
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“Retrieval-augmented generation for knowledge-intensive NLP tasks,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, (Red Hook, NY, USA), Curran Associates
Inc., 2020.

[3] H. Tu, Z. Zhou, H. Jiang, I. N. B. Yusuf, Y. Li, and L. Jiang, “LLM4CBI:
Taming LLMs to Generate Effective Test Programs for Compiler Bug
Isolation,” ArXiv, vol. abs/2307.00593, 2023.

[4] Y. Tang, Z. Liu, Z. Zhou, and X. Luo, “ChatGPT vs SBST: A Compar-
ative Assessment of Unit Test Suite Generation,” IEEE Transactions on
Software Engineering, vol. 50, no. 06, pp. 1340–1359, 2024.

[5] M. D. Purba, A. Ghosh, B. J. Radford, and B. Chu, “Software Vulnera-
bility Detection using Large Language Models,” in 2023 IEEE 34th In-
ternational Symposium on Software Reliability Engineering Workshops
(ISSREW), pp. 112–119, Oct 2023.

[6] R. Kumar, S. Schivo, E. Ruijters, B. M. Yildiz, D. Huistra, J. Brandt,
A. Rensink, and M. Stoelinga, “Effective analysis of attack trees: A
model-driven approach,” in Fundamental Approaches to Software Engi-
neering: 21st International Conference, FASE 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS

293



294 BIBLIOGRAPHY

2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings 21, pp. 56–
73, Springer International Publishing, 2018.

[7] G. Falco, A. Viswanathan, and A. Santangelo, “CubeSat Security Attack
Tree Analysis,” in 2021 IEEE 8th International Conference on Space Mis-
sion Challenges for Information Technology (SMC-IT), pp. 68–76, 2021.

[8] S. Alagarsamy, C. Tantithamthavorn, and A. Aleti, “A3Test: Assertion-
Augmented Automated Test case generation,” Information and Software
Technology, vol. 176, p. 107565, 2024.

[9] G. Ryan, S. Jain, M. Shang, S. Wang, X. Ma, M. K. Ramanathan, and
B. Ray, “Code-Aware Prompting: A Study of Coverage-Guided Test Gen-
eration in Regression Setting using LLM,” Proc. ACM Softw. Eng., vol. 1,
July 2024.

[10] N. Alshahwan, J. Chheda, A. Finogenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated Unit
Test Improvement using Large Language Models at Meta,” in Compan-
ion Proceedings of the 32nd ACM International Conference on the Foun-
dations of Software Engineering, FSE 2024, (New York, NY, USA),
p. 185–196, Association for Computing Machinery, 2024.

[11] D. Ward and P. Wooderson, “Automotive Cybersecurity: An Introduction
to ISO/SAE 21434,” in Automotive Cybersecurity: An Introduction to
ISO/SAE 21434, pp. i–xii, SAE International, 2021.

[12] L. Zhang, Intrusion Detection Systems to Secure In-Vehicle Networks.
PhD thesis, University of Michigan-Dearborn, Dearborn, Michigan,
USA, 2023.

[13] A. Lautenbach, M. Almgren, and T. Olovsson, “Proposing HEAVENS
2.0 – an automotive risk assessment model,” in CSCS ’21, pages = 1–12,
ACM, 2021.

[14] S. Chlup, K. Christl, C. Schmittner, A. M. Shaaban, S. Schauer, and
M. Latzenhofer, “THREATGET: Towards Automated Attack Tree Anal-
ysis for Automotive Cybersecurity,” Information, vol. 14, no. 1, 2023.

[15] U. A. Khan, “LLM-powered parsing and analysis of semi-structured &
Structured Documents,” Aug 2024.



BIBLIOGRAPHY 295

[16] K. Umezawa, Y. Mishina, and K. Takaragi, “Threat analyses using vul-
nerability databases —Possibility of utilizing past analysis results,” 2019
IEEE International Symposium on Technologies for Homeland Security
(HST), pp. 1–6, 2019.

[17] Y. Mishina, K. Takaragi, and K. Umezawa, “A Method of Threat Analysis
for Cyber-Physical System using Vulnerability Databases,” 2018 IEEE
International Symposium on Technologies for Homeland Security (HST),
pp. 1–7, 2018.

[18] M. Cheah, H. N. Nguyen, J. Bryans, and S. A. Shaikh, “Formalising Sys-
tematic Security Evaluations Using Attack Trees for Automotive Appli-
cations,” in Information Security Theory and Practice (G. P. Hancke and
E. Damiani, eds.), (Cham), pp. 113–129, Springer International Publish-
ing, 2018.

[19] E. dos Santos, A. C. Simpson, and D. Schoop, “A Formal Model to Fa-
cilitate Security Testing in Modern Automotive Systems,” in Proceed-
ings of the Joint Workshop on Handling IMPlicit and EXplicit knowledge
in formal system development (IMPEX) and Formal and Model-Driven
Techniques for Developing Trustworthy Systems (FM&MDD) , 2018.

[20] L. Plein, W. C. Ou’edraogo, J. Klein, and T. F. Bissyand’e, “Automatic
Generation of Test Cases based on Bug Reports: a Feasibility Study with
Large Language Models,” ArXiv, vol. abs/2310.06320, 2023.

[21] S. Yu, C. Fang, Y. Ling, C. Wu, and Z. Chen, “LLM for Test Script Gener-
ation and Migration: Challenges, Capabilities, and Opportunities,” 2023
IEEE 23rd International Conference on Software Quality, Reliability, and
Security (QRS), pp. 206–217, 2023.

[22] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
Testing with Large Language Models: Survey, Landscape, and Vision,”
2024.

[23] S. Marksteiner, M. Sirjani, and M. Sjödin, “Automated Passport Control:
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Abstract

Cyber-physical systems are part of industrial systems and critical infrastruc-
ture. Therefore, they should be examined in a comprehensive manner to verify
their correctness and security. At the same time, the complexity of such sys-
tems demands such examinations to be systematic and, if possible, automated
for efficiency and accuracy. A method that can be useful in this context is
model checking. However, this requires a model that faithfully represents the
behavior of the examined system. Obtaining such a model is not trivial, as
many of these systems can be examined only in black box settings due to, e.g.,
long supply chains or secrecy. We therefore utilize active black box learning
techniques to infer behavioral models in the form of Mealy machines of such
systems and translate them into a form that can be evaluated using a model
checker. To this end, we will investigate a cyber-physical systems as a black
box using its external communication interface. We first annotate the model
with propositions by mapping context information from the respective proto-
col to the model using Context-based Proposition Maps (CPMs). We gain
annotated Mealy machines that resemble Kripke structures. We then formally
define a template, which we use to transfer the structures in to a format to be
processed by a model checker. We further define generic security properties
based on basic security requirements (authentication, confidentiality, privilege
levels, and key validity). Due to the used CPMs, we can instantiate these prop-
erties with a meaningful context to check a specific protocol, which makes the
approach flexible and scalable. Furthermore, the gained model can be easily
altered to introduce non-deterministic behavior (like timeouts) or faults and ex-
amined if the properties still hold under these different conditions. Lastly, we
demonstrate the versatility of the approach by providing case studies of very
different systems (a passport and an automotive control unit), speaking dif-
ferent communication protocols (NFC and UDS), checked with the same tool
chain and the same security properties.
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15.1 Introduction
Cyber-physical systems in all domains of everyday life become more intercon-
nected and complex. Various domains like automotive, production, but also
critical infrastructures like electronic government systems naturally have to
provide communication interfaces to provide more smart and usable function-
ality. It is therefore crucial to create methodologies to verify the correctness
and security of these interfaces. Since those systems are mostly proprietary,
verifying their security has become an increasingly laborious task that is af-
flicted with a high degree of uncertainty. Many approaches rely on static, pre-
defined test suites that do not take any architectural or behavioral information
into account. Therefore, validation of industrial systems and critical infras-
tructure often include the use of formal methods that provide more rigor in
verification [1]. Such methods, including model checking, often come with the
disadvantage of a high effort (especially with modeling systems) in conjunction
with being hard to apply at black box systems. To mend these disadvantages,
we try to automate the model creation using active automata learning. This
technique allows for an automated model generation to be used in a check-
ing process, and is also a technique that is destined for black box systems [2].
We therefore combine the static model checking with dynamic active learning.
Furthermore, we want to be able to not only verify the systems, but also correct
errors and simulate different behavior. We can also use this technique to cre-
ate corner-cases for verification by altering the system behavior to a Maximum
Credible Accident (MCA) scenario [3]. We therefore follow the approach to
translate the learned models into a modeling language (see Sections 15.2.4 and
15.5.2).

15.1.1 Contribution
This paper combines formal methods, namely active automata learning of ex-
isting systems and model checking, to create a tool chain for checking cyber-
physical systems (particularly communication protocols) for their correctness
and security. Our main contributions are:

• An approach for annotating learned models (Mealy machines [4]) with
propositions using context-based proposition maps (CPMs - see Section
15.5.1), effectively creating Kripke structures [5] (combined into a single
model with the Mealy machine as a hybrid annotated Mealy machine),

• A formally defined and implemented template that allows for creating
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Rebeca models [6] from annotated Mealy machines,

• Generalized properties to check security requirements along with a eas-
ily usable, scalable method for concretization using CPMs,

• Two case studies of communication protocols (NFC [7] and UDS [8])
demonstrating the applicability and versatility of the approach.

15.1.2 Approach
We utilize active automata learning via the LearnLib Java library to infer Mealy
machine models of a respective System-under-learning (SUL). We therefore
created dedicated protocol adapters and defined input alphabets (Section 15.4).
Since this model does not intrinsically contain any properties, we annotate it
with sensible propositions. For that, we define using context-based proposi-
tion maps (CPMs) that define when propositions become true or false (Section
15.5.1). We created a tool that uses these maps to annotate Mealy machines
represented in the GraphViz format, receiving an combined annotated Mealy
machine. We then convert this structure into Rebeca code and verify it to be
faithful to the original model (Sections 15.5.2 and 15.5.6). Once this step has
been performed, we utilize the Rebeca Model Checking tool, RMC [9] to check
the models for properties defined in linear temporal logic (LTL). These prop-
erties are partly specific to the scrutinized protocol, but can also partly be gen-
eralized to check very diverse protocols for the same properties. Eventually,
if a property violation is found, the trace can be concretized via the learner’s
interface and be used as a test case for verification on the live system. If this
confirms the violation, that indicates an issue. Otherwise, the different behav-
ior serves as a counterexample for the learner in a new iteration of the process.
That way, we implemented all the phases for going through learning, check-
ing, and testing real-world examples. We automated the complete process by
combining (a) the learner(s) using LearnLib [10] (Section 15.4), (b) a tool
for generating Kripke structures and translating it into a Rebeca model to be
checked (Section 15.5) and (c) the Rebeca model checking tool [9], used with
generic security properties (Section 15.6).

The remainder of this paper outlines as follows: Section 15.2 contains ba-
sics, while Section 15.3 outlines general security requirements to be checked.
Section 15.4 outlines the learner interfaces, Section 15.5 the Rebeca code gen-
eration including a formally defined template and a formal description of the
CPM concept. Section 15.6 the model checking, including property definition.
Section 15.7 briefly describes the relation to testing. Section 15.8 presents the
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case studies, Section 15.9 the related work and Section 15.10 concludes the
paper.

15.2 Background

In this section, we briefly describe the basics of automata, automata learning,
model checking, as well as the frameworks we used and protocols used in the
case studies.

15.2.1 Automata and Kripke Structures

Automata, or state machines, are a fundamental concept of computer science
[11, 12]. To describe cyber-physical systems, we use a certain type of au-
tomata, namely Mealy machines [4]. A Mealy machine M is defined as M =
(Q,Σ,Ω, δ, λ, q0), with Q being the set of states, Σ the input alphabet, Ω the
output alphabet (that may or may not be identical to the input alphabet), δ the
transition function (δ : Q× Σ → Q), λ the output function (λ : Q× Σ → Ω),
and q0 the initial state. A state machine can describe a system in a way that for
any defined set of inputs (input word), it delivers the correct set of outputs (out-
put word) [13]. While Mealy machines are widely used to model system be-
havior, Kripke structures [5] are basic structures used for model checking [14].
A Kripke structure is similar to a Mealy machine, as both can be seen as types
of Labeled Transition Systems (LTS) [15, 16]. However, they differ in that in-
stead of labeling the transitions, Kripke structures have their states labeled with
propositions. Coming from propositional logic, these are logical attributes that
can be true or false. Any state in which this attribute is true gains it as a propo-
sition. Each state can have an element of the power set of all propositions. The
formal definition of a Kripke structure (K) is K = (S, S0, R,L) with S being
the set of states, S0 ⊆ S the set of input states, R ⊆ S × S a transition rela-
tion and L = S → 2AP the labeling function that attributes an element of the
power set of atomic propositions (AP ) to the states.

15.2.2 Automata Learning

Automata learning was developed as a method to learn regular languages [17].
A learner (i.e., an algorithm) is allowed to ask two kinds of questions: mem-
bership queries and equivalence queries. We then assume a teacher that knows
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all of the rules that determine well-defined words of that language. Mem-
bership queries give examples of input words(σ ∈ Σ|Wσ = ⟨σ1, σ2..σn⟩),
where the teacher answers wether the example is part of the language. Af-
ter a sufficient amount of queries, the learner infers a hypothesis model of an
automaton describing the language (in this case a Deterministic Finite Accep-
tor – DFA). It may then submit an equivalence query, where it presents the
hypothesis to the teacher. The teacher either answers that the hypothesis is
correct or presents a counterexample. To fit to real-world cyber-physical sys-
tems, approach has been adapted to learn Mealy machines as well, alongside
with more efficient algorithms [18]. In this case, membership queries yield
corresponding output words (ω ∈ Ω|Wω = ⟨ω1, ω2..ωn⟩). One popular field
to use automata learning is to learn and test black box systems. In this case
there is no teacher available that knows the interna of the examined system
(SUL). Therefore, membership queries are just passed on to the live system1.
Equivalence queries are implemented by a sufficient amount of conformance
tests [19]. If all are passed, the hypothesis is accepted of correct. Otherwise,
a failed conformance test automatically poses a counterexample. In this work,
we use Learnlib [10], a well proliferated Java library for automata learning. It
provides a classes for interfacing with SULs, implementations of well-known
algorithms (L*, Rivest-Schapire, AAAR, ADT, KV, DHC and TTT, as well as
an addon for L# [20]), and conformance testing strategies (complete depth-
bounded exploration, random words, random walk, W-method, Wp-method).
Other libaries are AALpy [21] and Libalf [22]).

Interface and Abstraction Layer

To interact with real-world systems, we not only need the input alphabet (Σ),
but also a means to communicate with the SUL. To keep the as universal
as possible, we therefore define an intermediate layer that serves two pur-
poses: provide an interface to the SUL (including necessary error correction,
timeout-handling, etc.) and abstracting the input layer. The latter, called map-
per, is necessary to reduce the input space to a size feasible to be exhaus-
tively explored. The mapper is formally defined as a state machine A =
(Σ,Ω, Q, q0, δ,X, Y,∇), with Σ the abstract input alphabet, Ω the abstract out-
put alphabet, Q being the set of states, q0 the initial state, δ the transition func-
tion (δ : Q×Σ → Q), λ the output function (λ : Q×Σ → Ω), X the concrete
input alphabet, Y the concrete output alphabet, and ∇ the abstraction function

1We are talking about active automata learning here. It is also possible to take the answers
from recorded data in passive automata learning.
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(∇ : Σ ∪ Ω → X ∪ Y . Inversely, the same mapper can convert the received
concrete output from the SUL back to abstract output to present the learner by
replacing the abstraction function with its inverse ∇−1 : X ∪Y → Σ∪Ω. The
latter must not necessarily be fully defined in all cases. For many protocols,
the learner is able to handle concrete outputs and to learn Ω on-the-fly. For
these cases a partial mapper with A = (Σ, Q, q0, δ,X,∇in) is sufficient where
∇in : Σ → X . However, for some concrete outputs (Y ′ ⊆ Y ) the inverse
mapper must still be defined (∇−1

out : Y ′ → Ω), since some inputs provoke non-
deterministic values in the sense that they would not yield the same output even
with the exact equal input sequence, which a non-deterministic Mealy machine
learner cannot handle. Examples of such outputs are timestamps, counters, and
random numbers (such as nonces).

15.2.3 Linear Temporal Logic and Model Checking
Linear Temporal Logic (LTL) is an extension of propositional logic [23] that
allows for expressing logical temporal2 modalities [24]. That is, LTL combines
atomic propositions (attributes of a state that can be true or false) formulas
using logical operators and extends them with the following modalities:

• always (□, or G for Globally): the proposition must hold in any subse-
quent state

• eventually (♢, or F for Finally): the proposition must hold in some (i.e.,
any arbitrary) subsequent state (may or may not hold before)

• next (⃝, or X for neXt): the proposition must hold in the immediately
subsequent state and

• until (U or U ): the proposition A1 must hold until another defined propo-
sition A2 occurs (A1UA2). A1 may or may not hold after A2 has oc-
curred. In any case, A2 has to occur at some point.

A model checker runs through all states of a model and checks if their proper-
ties hold [24]. The properties are often expressed in LTL or similar logics like
Computation tree logic (CTL) [25] or branching-time logic (CTL*) [26]. In
automata-theoretic model checking, a model checker ordinarily creates Büchi
automata of both the scrutinized model and the negation of the LTL property to
check, and examines if their cross product’s accepted language is empty [19].

2In this context, temporal is not to be confused with timed. LTL only allows statements about
the modality and succession order of events to occur, not about a duration of any kind.



304 Paper IX

15.2.4 Rebeca

Rebeca is a modeling language with model checking support specifically de-
signed to model and model check cyber-physical (i.e., reactive) systems [6].
Rebeca resembles the Java programing language to ease its usage for engineers.
It conceptually uses rebecs to model reactive actors. Rebecs are similar to Java
objects, but possess interfaces (message servers) to interact with each other
and contain a message queue to process messages from other Rebecs in a FIFO
manner. Its IDE, Afra [9], contains a model checker, Modere [27]. Each Rebec
can have state variables that can constitute checkable properties. The properties
are defined as LTL formula in a separate property file. Apart from the usabil-
ity for software engineering and modeling and model checking cyber-physical
systems, it is possible to convert code into Lingua Franca [28]. Lingua Franca
is a coordination language, providing a deterministic concurrency model, that
supports C, C++, Python, TypeScript, and Rust as targets [29]. Eventually, a
Rebeca code can produce a verified program in one of these languages via Lin-
gua Franca. Formally, a Rebeca model M is defined as M = ||i∈I ri, which is
the set of concurrent actors (also called rebec for reactive object) ri, with i ∈ I
being an identifier from the set of all identifiers in the model [30]. An actor is
defined as ri := ⟨Vi,Mi,Ki⟩, where i is a unique identifier, V i the set of state
variables, Mi the set of method identifiers (local methods and remotely callable
methods called message servers), and Ki the list of other actors known to actor
i. Remote method (i.e., message server) calls between actors occur by send-
ing messages msg = ⟨sendid, i,mtdid⟩, with sendid ∈ I being the sender
actor’s identifier, i ∈ I the receiver actor’s identifier, and mtdid ∈ Mi the
identifier of the method called on the sender side.

15.2.5 Near Field Communication and Integrated Circuit Ac-
cess

Near Field Communication (NFC) is a communication standard [31, 7] that de-
fines wireless communication for small, powerless embedded systems with low
data rates. It defines messages for data transmission (information or I blocks),
signaling (supervisory or S blocks), and acknowledgments (receive-ready or
R blocks) and the modalities operate communications. The main applications
are RFID-tags and wireless chip card access. For the latter, it uses the struc-
tures of ISO/IEC 7816-4 [32]. This standard logically segments circuits into
applications (comparable to directories in a file system) that can be accessed
via Dedicated Files (DFs) and contains Elementary Files (EFs) as data stores.
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The standard defines commands to access (SELECT) data and applications,
as well as manipulate data (READ, WRITE, UPDATE, etc.). It also defines
GETCHALLENGE and AUthenTICATE commands to implement challenge-
response-based authentication mechanisms that protect sensitive data. Usually,
an authentication procedure yields a session key, that is subsequently used to
encrypt the access to the protected parts of the system. Every command in-
duces a response that contains an unencrypted two-bytes status code (even if
the data itself is encrypted). This code is either 9000 for positive results or
6XXX for various error codes.

15.2.6 Electronically Machine-Readable Travel Documents
Electronically Machine-Readable Travel Documents (eMRTDs) are a logical
data structure to store travel document (e.g., passport) data on chips. The Inter-
national Civil Aviation Organization (ICAO) standardizes this format in their
Doc 9303 part 10 standard [33]. It defines two DF areas LDS1 (containing
the eMRTD application) and LDS2 (containing travel records, visa records,
and additional biometrics). The eMRTD contains the the Common (CM), the
Country Verifying Certification Authorities (CVCA), and the Document Secu-
rity Object (SOD) EFs, as well as EFs for 16 data groups that contain various
types of data, like personal data, document data, biometrics (fingerprint, iris).
The latter are more sensitive and therefore additionally protected, while the
rest is protected by either the older Basic Access Control (BAC) or the newer
PACE (Password Authenticated Connection Establishment). BAC generates a
key based on some cryptographic operationes with the passport number, expi-
ration date, and the owner’s date of birth. PACE uses a password to encrypt
a nonce, which then is the base for a Diffie-Hellman-Merkle key exchange
that creates a session key. Besides there are some conditional files outside of
both LDS, namely Attributes/Info (ATTR/INFO), Directory (DIR), Card Ac-
cess (CA), and Card Security (CS). Figure 15.1 shows an overview of the ICAO
eMRTD schema.

15.2.7 Unified Diagnostic Servcies
Unified Diagnostic Services (UDS) is an ISO standard that specifies services
for diagnostic testers to control diagnostic (and further) functions on an on-
vehicle Electronic Control Unit (ECU) [8]. Therefore, it defines a variety
of services, whereby the concrete elaboration mostly lies in the hands of an
implementer. The protocol operates on layer 7 of the OSI reference model.
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Figure 15.1: Logical Data Structure of Machine Readable Travel Documents
from [34]. Amber is the master file (MF), Cyan are dedicated files (DF), Blue
are Elementary Files (EF), and Green are key files. Solid frames means manda-
tory files, dashed ones optional files. Solid boxes donate the LDS contexts,
dashed black boxes requirements, and dashed red boxes necessary authentica-
tion.
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Therefore, it relies on an underlying communication protocol. Although it can
use multiple protocols, the most proliferated is the Controller Area Network
(CAN) protocol. As a client-server-based protocol it defines requests and re-
sponses. The requests contain a service ID, optionally followed by sub-service
IDs. Particularly, it defines diagnostic and management services: Diagnos-
tic Session Control (0x10), ECUReset (0x11), SecurityAccess (0x27), Com-
municationControl (0x28), TesterPresent (0x3E): a keepalive mechanism,, Ac-
cessTimingParameter (0x83), SecuredDataTransmission(0x84), ControlDTC-
Setting (0x85), ResponseOnEvent (0x86), ResponseControl(0x87). It further
defines data transmission services: ReadDataByIdentifier (0x22) , ReadMemo-
ryByAddress (0x23) , ReadScalingDataByIdentifier (0x24) , ReadDataByPeri-
odicIdentifier (0x2A) , DynamicallyDefineDataIdentifier (0x2C) , WriteDataByI-
dentifier (0x2E) , WriteMemoryByAddress (0x3D), ClearDiagnosticInforma-
tion (0x14), ReadDTCInformation (0x19). Lastly also I/O, routine control, and
file transfer functions: InputOutputControlByIdentifier (0x2F) , RoutineCon-
trol (0x31), RequestDownload (0x34), RequestUpload (0x35), TransferData
(0x36), RequestTransferExit (0x37), RequestFileTransfer (0x38). We will use
a set of these services as an input alphabet for learning the UDS state machine
(see Section 15.4.2).

15.3 Generic Security Requirements

In this section, we take some long established security goals [35, 36, 37] that
are also aligned with our case studies’ standards documents (ICAO [38] and
UDS [39]) and formulate them as checkable requirements in given-when-then3

format [40]. We use the terms MUST, MUST NOT, SHOULD, SHOULD
NOT and MAY as defined by the Internet Engineering Task Force (IETF) [41,
42]4. These requirements use attributes, we later (in Section 15.6.1) use as
propositions5 for defining logic properties.

15.3.1 Authentication

To establish authenticity as a goal, we must require authentication of a user
before accessing PROTECTED resources (not every resource must be protected,

3Using given, when, and then as keywords in italics.
4Using the same CAPITALIZED style.
5Using SMALL CAPITALS style.
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some may be openly accessible – this depends on the system’s security design).
As a requirement , we define it as follows:

Requirement R1: Given the system is not in an AUTHENTICATED state,
when an ACCESS operation on a PROTECTED resource occurs, then the opera-
tion MUST NOT return a positive response.

15.3.2 Confidentiality
To acquire confidentiality (also called secrecy in cryptographic contexts), most
protocols allow for encryption (and may require it under certain conditions).
We therefore recommend encryption for protected resource access:

Requirement R2: Given the system is in an arbitrary state, when an UN-
SECURED ACCESS operation on a PROTECTED resource occurs, then it SHOULD
NOT be successful.

15.3.3 Privilege Levels
It is common practice for more complex systems and protocols to define more
than one privilege level according to different roles and according privileges
of an actor in order to provide access to more critical resources. This also
applies for UDS, where this is implemented by different session and security
levels [8]. Likewise, for eMRTDs, sensitve data (particularly biometric data
like fingerprints and iris scans [43]) have to be additionally protected via ter-
minal authentication according to European extended access control [33, 44].

Requirement R3: Given different PRIVILEGE levels, when the level of
PRIVILEGE is not sufficient, then a performed operation MUST NOT be suc-
cessful.

15.3.4 Key Validity
Another important attribute of secure connections is key validity and recency6.
An invalid key in this sense is either a wrong key or an old key (not recent7). Ob-
viously, this is a fundament for the prior requirements, since an authentication
or encryption that accepts invalid keys is intrinsically flawed.

6To avoid misunderstandings, for this work we use the term to refer to using the most recent
key, i.e., no newer key must exist. Since we do not consider a time component in the automata, we
do not use recency in the sense of freshness.

7To avoid replay and similar attacks [45, 46]
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Requirement R4: Given an AUTHENTICATION OR SECURE ACCESS op-
eration, when an actor is asked for a key, then providing an invalid key MUST
NOT be successful.

15.4 Building the Mealy Machines using Automata
Learning

We use Learnlib (see Section 15.2.2) to create a setup to learn models of dif-
ferent protocol SULs, particularly NFC-based eMRTDs and UDS communica-
tions of automotive ECUs. Learnlib provides a variety of learning algorithms
of which we use the TTT algorightm [47] for its comparable high perfor-
mance [18]. We rely on previous work for the learning parts of eMRTDs [34]
and UDS [48], respectively. In this work, we annotated the learned models’
states with labels for propositions and translate them into code to allow for
model checking. In this section we provide some details of the learning pro-
cesses for the two protocols. While the learner is the same, the SUL adapters
differ due to different input alphabets and different means to access the respec-
tive SUL.

15.4.1 NFC Interface

We use NFC to access and learn models of eMRTDs. This section explains the
interface and inputs used to learn models of eMRTDs.

Input Alphabet

The used input symbols for learning eMRTDs contain effectively selecting the
dedicated file for LDS1, selecting elementary files (particularly, CA/CVCA,
CM, CS/SOD, ATR, DIR, and data groups DG1-168, read binary and update
binary9. These symbols are used in a plain and a secure (encrypted with a
key obtained in an authentication process) version. Furthermore, we defined
additionally modified versions of the secured commands both using a wrong
key (actually an all-zero key) and an old key from a previous authentication

8Selecting CA and CVACA, as well as CS and SOD, respectively, works with the same inputs.
The difference is whether the DF for LDS1 is selected or not (see Figure 15.1).

9We also tried write binary, search binary, erase binary, and read record. These were not
supported on used SULs (error code 0x6D00).
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process10. For authentication, also a basic authentication (BAC) process is
triggered via a dedicated input symbol. Since we lack an implementation of
another authentication method (e.g., PACE or Terminal Authentication), BAC
is the only authentication input we use.

Interface Device

We use a Proxmark3 NFC interface devices to access eMRTDs [49]. This
devices is capable of handling communication with a broad variety of different
NFC dialects, as well as reading from, writing on, flashing and emulating them.
Besides, it allows for crafting arbitrary frames, altering any part of the data
stream to specific needs.

SUL Adapter

The Java learner communicates with the SUL via a distinctive class that han-
dles input, reset, etc. This SUL class then uses a socket to transmit the inputs
to a C++ based adapter program that translates the input symbols into NFC
frames and pushes it to the interface device. We altered both the standard prox-
mark interface program and firmware for efficiency and stability reasons. As a
result, we send and receive complete input and output words instead of single
symbols [50].

15.4.2 UDS Interface
Input Alphabet

We use the following inputs from the UDS standard (with the respective service
IDs and sub IDs in parentheses): DefaultSession (10 01), ProgrammingSession
(10 02), ExtendedDiagnosticSession (10 03), SafetySystemDiagnosticSession
(10 04), Clear Diagnostic Information (PowerTrainDTC - 14), SecurityAccess
(27), SecurityAccessWithKey (as response to a seed with a legit key - 27 0A),
SecurityAccessWithWrongKey (same as SecurityAccessWithKey, but with a
random key), Communication Control (28), Authentication (29), TesterPresent
(3E), Secured Data (84), Routine Test (31), ReadDataByIdentifyer (22 with
IDs 0xF100, 0xF150, and 0xF180), RequestDownload (34), RequestUpload
(35), TransferData (36 - using dummy data), TransferExit (37).

10Secret keys for secured commands are obtained by successfully carrying out authentication.
If no authentication happened in an input trace before using a secured command, an all-zero key is
used. The same applies if an old key should be used but none or only a recent one is available.
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Interface Device

In contrast to NFC, the hardware adapter does not need to be modified. To
access the SUL, we use an off-the-shelf Peak Systems PCAN-FD device [51],
that provides a standard CAN-FD interface for Linux (where it is registered
under e.g., /dev/can0) or Windows systems. We access this interface via a
Python-based interface described in Section 15.4.2 to send and receive UDS
messages over CAN.

SUL Adapter

Analogous to the NFC interface, the learner uses a distinctive SUL class. This
class communicates with the device adapter program via a socket interface and
passes the input symbols forward. It calls a respective input handler func-
tion in a python script. This handler function creates a raw frame (i.e., the raw
UDS hex sequence encapsulated in a CAN message) corresponding to the input
symbol. It then sends it over the system CAN interface and returns the respec-
tive response frame to the learner. This python interface builds on previous
work [48] and was expanded with some error handling procedures, CAN-FD
support and a variety of additional input symbols.

15.5 Generating the Rebeca Code

Once the learner provides a model of the SUL (stored in GraphViz format), it
can be transformed to code in Rebeca for model checking. This happens in two
phases: annotating the model with propositions and subsequently translating
into code. The model checker also needs properties to check in the form of
linear temporal logic (LTL). This section describes how to obtain these three
components.

15.5.1 Annotating the Mealy Machine with Propositions us-
ing CPMs

Automata learning provides us with a SUL’s Mealy machine (see Section 15.2.2).
In a Mealy machine we only have inputs and outputs to distinguish different
states and each state does not include any other information. Our goal is to
determine the security of a system based on certain properties and it is more
intuitive to specify the properties based on the information about the states.
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We therefore annotate the states with relevant propositions. These propositions
should provide the necessary context for sensible security checking.

We define intuitive and usable propositions for our context for each state
(e.g., authenticated) and provide a method to annotate the model with these
propositions in a correct way. Since the only way of determining the proposi-
tions is through the system’s behavior (i.e., input and output), a straightforward
approach is to define a context-based proposition map (CPM) that describes
which input and output would make a propositions true or false. Therefore,
we define gain (for becoming true) and lose (for becoming false) conditions.
These condition sets (C) define when a state gains (Cg) and losses (Cl), respec-
tively, a proposition and constitute the CPM. We define a condition (c ∈ C) as
a triplet of a set of propositions SP ∈ 2P , an input set SΣ ∈ 2Σ, and an output
set SΩ ∈ 2Ω (⟨SP , SΣ, SΩ⟩) and P as set of all propositions in the annotated
Mealy machine. Which means that a condition could apply to multiple proper-
ties (p ∈ P ) to be set by one multiple inputs (σ ∈ Σ) producing one of multiple
outputs (ω ∈ Ω). The set Cg is applied to all transition labels of the model.
The target state of each transition gains SP if the transition’s input and output
equals σ ∈ §Σ / ω ∈ SΩ of c according to the Mealy machine’s output func-
tion λ. To automatically apply the propagation of propositions, we create an
inheritance map for all propositions. That is, we determine for each transition
in the system whether it would propagate the proposition in question. This is
the case for any transition which input/output does not match σ/ω for a respec-
tive proposition p in the lose set Cl. With this inheritance map, we iteratively
determine the cascading of propositions. For each proposition, we start at the
states that possess the respective proposition according to Cg and annotate all
target states of transitions in the propagation map for the proposition with p.
With the updated model, we repeat that step until no new states are to annotate.
Eventually, we have a state machine annotated with all propositions according
to the defined conditions. As a result, we have labeled states like in a Kripke
structure. Since we still maintain the Mealy machine labels of transitions, this
resulting annotated Mealy machine can be seen as combined Mealy-Kripke
structure. We therefore formally define the annotated Mealy Machine MK as
MK = (Q, q0,Σ,Ω, , δ, λ,L), with Q being the set of states, q0 the initial
state, Σ the input alphabet, Ω the output alphabet, δ the transition function and
λ the output function of the Mealy machine. Finally, L denotes the labeling
function that attributes propositions p ∈ P to the states. L corresponds to the
used CPM. For the model checking process, we also need to check for results
of performed operations (e.g., a successful read operation) that are described
in the transition labels of the Mealy machine. Since we use automata-based
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q 
 AUTH

READ / OK
q 

 AUTH

τ 
 AUTH 

 READOK

READ / τ

ε / OK

Figure 15.2: We need temporary propositions to specify certain properties
where the properties are related to labels on the transitions and we do not have
a corresponding proposition in the state for them. Here is a general example
for a temporary proposition, stemming from a transition output. Left is the
original state (q), already labeled with a proposition (AUTH). On the right
side, we introduce an internal state (τ ) to gain a checkable proposition for a
successful read (READOK). It has this temporary proposition and inherits
all other propositions from q.

model checking, we need to define a proposition for each result we want to
check. Since the information is not contained within a state, we cannot directly
set a proposition. For an example, a state x contains such an operation (we
want to attribute with proposition p) as a self-loop transition. Before perform-
ing the operation p is false, afterwards it becomes true. In such a case it is
undecidable if state x has proposition p. It might, however, still be needed to
check if p does not occur in combination with some other proposition (e.g., a
read must only occur if authentication is also set – see Property P1 in Section
15.6.1). To resolve this, define temporary or internal (τ ) propositions (Cτ ).
That is, propositions that are true only in a single, internal state. We only use
the internal properties in the translation to Rebeca code, they are not directly
visible in the annotated Mealy machine (see Section 15.5.2). For any input and
output matching c ∈ Cτ , we split the respective transition (labeled IN/OUT)
into two parts: an internal transition (labeled (IN/τ ) from the origin state (q)
to a new internal (τ ) state and an empty-input transition (labeled ε/OUT) from
τ the target state (q′, which may or may not be equal to q). The generated
τ state does not have any transitions than these two fragments of the original
one. We then let state τ inherit all propositions from q and additionally set the
proposition p that is defined in c, which is then (only) true in τ . Since we do
not alter the target state, there is automatically no further inheritance. For the
authentication example (see also Figure 15.2), if we check the property that
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reading is only possible with prior authentication (with a proposition AUTH
set), the generated τ will receive a proposition p = READOK. Further, it
also inherits the propositions of the origin state q. Therefore, if q is an authen-
ticated state, the property holds (since both AUTH and READOK are true in
τ ). If q is not authenticated, the property is violated (since in τ , READOK is
true, but AUTH is false). Therefore, CPMs enable to check different complex
protocols with the same generic properties, as they instantiate the properties by
populating it with the necessary (but protocol-specific) propositions.

15.5.2 Mapping the Annotated Mealy Machine into Rebeca
Code

After annotating the Mealy machine with propositions, a fully automated pro-
cedure implemented in Java translates the resulting annotated Mealy machine
to Rebeca code (see a formal definition in Section 15.5.3). In the annotated
Mealy machine we see input and outputs of each transition. In the correspond-
ing Rebeca code we have two actors: environment (an external entity giving
input and collecting output) and a system (the entity whose behavior is defined
by the Annotated Mealy machine). The environment actor contains a request
message server and message servers corresponding to each output in the anno-
tated Mealy machine. In the request message server we non-deterministically
send messages corresponding to each possible input symbol to the system. For
these messages related to each input symbol there is message server in the sys-
tem actor. Each of these message servers calls back the message server of the
environment actor that corresponds to the respective output in the respective
state (by call back we mean sending a return message). We keep track of each
state using a state variable in the system. Additionally, the system entertains
state variables for the propositions. Every time a proposition changes from one
state to another (gaining or losing) it is set to true or false, respectively, along
with changing the state and ? calling the appropriate output message server
on the environment actor. Additionally, the algorithm considers the tempo-
rary propositions. If Cτ defines a temporary proposition, a corresponding state
variable is set on the environment actor. However, all temporary propositions
are reset (i.e., set to false) in the environment actor’s request message server,
which is subsequently called by the output message server. This assures that
the temporary proposition is present in a state for the model checker, but not
maintained further, as it is not part of any state of the Mealy machine. As a
summary, the main part of the Mealy machine’s logic is modeled in the system
actor, while the environment actor can be seen as an external input giver to the



15.5 Generating the Rebeca Code 315

system.

15.5.3 Formal Definition of a Rebeca Template

We formalize the translation of the annotated Mealy machine by defining a
formal Rebeca template by substituting the annotated Mealy components into
a Rebeca model definition (see Section 15.2.4). We define this Rebeca model
with two actors: M := rsys||renv .rsys is for a system actor that obtains the
annotated Mealy machine’s behavior and renv for an environment actor that
serves as an input giver. We define the system as rsys := ⟨Vsys,Msys,Ksys⟩.
We further define Vsys := {q} ∪ AP . So rsys holds a state variable with an
identifier of the current state (q ∈ Q from the annotated Mealy machine, ini-
tially set to q0) and P , which is the annotated Mealy machine’s set of atomic
propositions, for each of which V:sys contains a boolean state variable. The
only known actor is the environment (Ksys := {renv}) and the method identi-
fiers are equal the set of input symbols (Msys := Σ). The environment (renv :=
⟨Venv,Menv,Kenv⟩) contains the temporary propositions from the CPM as
state variables (Venv := Cτ )) and system as other known actor (Kenv :=
{rsys}). The set of method identifiers consists the output alphabet and a re-
quest method that handles the calls of the system and resets the temporary
propositions (Menv := Ω∪ {req}). In each of the methods of rsys (i ∈ Msys)
two things happen: a) we set the curent state identifier (q) along with all prop-
erties (p ∈ AP ) according to the respective transition in the annotated Mealy
machine’s transition function that corresponds to the current state and input
symbol δ(q, σ)11. b) we call an output method in renv (oinMenv) according
to the current sate and the annotated Mealy machine’s output function λ(q, σ),
which means sending the message ⟨rsys, renv,Menv(ω)⟩. The environment
actor’s (renv) request method (req), resets all state variables (which represent
the temporary propositions from Cτ ) to false and randomly picks one input by
calling a method from Msys by sending the message ⟨renv, rsys,Msys(σ)⟩,
with a randomly picked σ ∈ Σ. Each of the other methods (mapping to a ω
from the annotated Mealy machine) sets a state variable corresponding to a
temporary proposition to true, if there is a respective entry in the CPM (Cτ )12

and then calls the request method (with the message ⟨renv, renv, req⟩) to start
another interaction cycle. Lastly, we note that the request method is also called

11Note: the Method m ∈ Msys has a direct, bijective representation in the set of Input Sym-
bols (σ ∈ Σ): Msys ↔ Σ. Additionally having the state variable, we can therefore directly use
the transition (δ) and output (λ) functions of the annotated Mealy machine.

12Depening on the calling methods, which is submitted as a parameter in the message.
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q₁
q₂ 
 p

σ₁ / ω₁

σ₁ / ω₂

Figure 15.3: A simple annotated Mealy machine example (left) with an UML
diagram of its Rebeca representation (right), as outlined in Section 15.5.2. The
black arrows in the UML diagram show an example flow an input of σ1 in state
q1, the gray ones a flow of an input of σ1 in state q2.

by renv’constructor, which starts the execution of the Rebeca model (M.

15.5.4 Illustrative Example

To give an illustrative example, we define a Mealy machine with two sates
(Q = {q1, q2}), one input (Σ = {σ1}), and two output (Ω = {ω1, ω2})
symbols. Further, we have the initial state q0 = q1, the transition function
δ(q, σ) := { q1 if q = q2 ∧ σ = σ1; q2 if q = q1 ∧ σ = σ1; }, and the output
function λ(q, σ) := { ω1if q = q1 ∧ σ = σ1; ω2if q = q2 ∧ σ = σ1; } We
further define the CPM as C := Cg + Cl + Cτ , with Cg := {⟨p, σ1, ω1⟩},
Cl := {⟨p, σ1, ω2⟩}, and Cτ := {⟨ω2set, ∗, ω2}, which essentially means
that q2 has proposition p set and we want to observe when ω2 occurs as an
output. Going through the described process, we receive the following Re-
beca model(M, as defined in Section 15.5.3): rsys := ⟨Vsys := {q, p},
Msys := {σ1},Ksys := {renv}⟩. renv := ⟨Venv := {ω2set}, Menv :=
{req, ω1, ω2},Kenv := {rsys}⟩. Figure 15.3 shows a graphical representation
of this example, while Listing 15.1 shows the resulting Rebeca code13.

13Please note that in the code we use state for the state variable denoting q and that we spell
the names of Greek letters in full instead of using their symbol.
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1 reactiveclass Environment(3) {
2 statevars {
3 boolean omega2set;
4 }
5 knownrebecs {
6 System system;
7 }
8 Environment(){
9 self.req();

10 }
11 msgsrv req() {
12 omega2set=false;
13 int data = (0);
14 switch(data) {
15 case 0: system.sigma1(); break;
16 }
17 }
18 msgsrv omega1(){
19 self.req();
20 }
21 msgsrv omega2(){
22 omega2set=true;
23 self.req();
24 }
25 }
26 reactiveclass System(3) {
27 statevars {
28 int state;
29 boolean p;
30 }
31 knownrebecs {
32 Environment environment;
33 }
34 msgsrv sigma1(){
35 if(state==0) {
36 state=1;
37 p=true;
38 environment.omega1();
39 } else
40 if(state==1) {
41 state=0;
42 p=false;
43 environment.omega2();
44 }
45 }
46 }
47 main {
48 Environment environment(system):();
49 System system(environment):();
50 }

Listing 15.1: Rebeca code from the illustrative example from Section 15.5.2.
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15.5.5 Altering the Model

Since in Rebeca a model’s behavior is defined similar to a programming lan-
guage, altering it is trivial. Furthermore, Rebeca possess an operator for non-
determinism (the ? operator). On the one hand, we can manually add any
arbitrary fault that might be interesting to investigate and examine its impact
on keeping the properties. On the other hand, this allows for re-introducing
some non-deterministic behavior that is abstracted away during the learning
process (see Section 15.2.2) [52]. By altering the template mentioned in Sec-
tion 15.5.3, we just introduce a timeout server on the sender side and alter each
input message server on the receiver to trigger a timeout with a certain prob-
ability14. If no timeout occurs, the logic continues. Otherwise, we reset the
state to initial and call the timeout function on the sender, which sets a tem-
porary proposition for timeout, to allow for checking for it. Since we can set
the timeout probability to an arbitrary value, we can play with different sce-
narios to be checked. We also can convert the resulting Rebeca code back to
a Mealy machine, so we possess a model that can contain timeouts and er-
rors, just as the originally learned model would have15. Formally, we alter the
Rebeca template by extending Menv with a timeout method, that sets a state
variable timeout ∈ Venv (to perform checks for timeouts if needed) and calls
the request method. Further, we alter each method msys ∈ Msys to randomly
(with a settable parameter determining the probability) reset the state identi-
fier q to the initial state q1 and call the timeout method (⟨rsys, renv, timeout⟩),
instead of the output method (Menv(ω) derived from λ(q, σ).

15.5.6 Verifiying the Code

In order to assure the Rebeca code is faithful to the learned model, we check
their equivalence. We generate the full state space of the Rebeca model. For
that, we run the model checker without any properties to check, so, the model
checker does not stop at a violation. This way the full state space is gener-
ated, which we export to a Linear Transition System (LTS) representation in
the GraphViz format. Based on a previous work in [53], we then use an al-
gorithm that collapses the state space LTS into a Mealy machine and check
the bisimilarity of the converted Rebeca Mealy machine with the originally

14Realized with a random (?) pick of an integer
15If the resulting Rebeca code contains non-determinism, the resulting model is not techni-

cally a Mealy machine, but a Mealy-styled non-deterministic state model, for it defines multiple
transitions for a given input per state to represent the different possibilities.
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learned model. The Rebeca model checking tool (RMC) supports Linear Tem-
poral Logic (LTL) to formulate properties. For security checking, these LTL
form should describe security attributes.

15.6 Checking the Model

15.6.1 Defining Generic Properties
Since the requirements in Section 15.3 are very generic, we can also define
generic properties to check them. The become more specific in conjunction
with the CPMs (Section 15.5.1), which define the meaning of propositions
used in the property in the context of a specific protocol16. For the sake of
readability, we restrict our definitions of ACCESS to read operations but write,
update, and similar operations can be defined the same way.

Authentication

For Requirement R1, we define an authenticated state as a state with the propo-
sition AUTHENTICATED set to false, a when an access operation on a PRO-
TECTED resource occurs, then the operation must not return a positive response
(access ok).

Property P1: □(¬AUTH ∧ PROT → ¬ACCESSOK)17.

Here, we define AUTH for AUTHENTICATED, PROT for PROTECTED,
and ACCESSOK for a positive response18 (i.e., a successful read operation).

Confidentiality

For checking the confidentiality (Requirement R2), we assume the presence
of unsecured and secured operations. For the access operation as used in
Section 15.6.1, we therefore define two exemplary subsets: an UNSECURED
read UREAD and a SECURED read SREAD. Since READ is a superset,
in the respective context maps we then define that READ will always be

16If a proposition used in a property is not defined in the respective CPM, we define it as
false(⊥) for the respective property.

17Afra does not support implications in the property file, therefore we use □(¬(¬AUTH ∧
PROT ) ∨ ¬ACCESSOK), instead.

18Example for non-existing protocols: if we have a protocol with no protected resources, we
set PROT := ⊥, which means that reading is always allowed according to Property P1.
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set along with UREAD or SREAD is set (using the same conditions, i.e.,
cREAD ↔ cUREAD ∨ cSREAD). Given requirement R2, we define that an
UREAD may not succeed when PROT is true. Please note that we fail to
apply this property to the UDS case, since there is no encrypted communication
on the CAN bus that servers as a medium for the UDS protocol19.

Property P2: □(PROT → ¬ UREADOK)

Privilege Levels

We assume that there are areas that go beyond a basic protection level and that
there additional protection measures (e.g., different type or level of authentica-
tion) have to be taken (Requirement R3). We define this higher protection level
as critical resources (CRIT ) and the additional authentication as privileged
(PRIV ). We further assume that since it is a higher security level privileged
authentication (PRIV ) also includes normal authentication (AUTH).

Property P3: □((PRIV → AUTH)∧(¬PRIV ∧CRIT → ¬ACCESSOK))

Key Validity

A property for using a valid key (Requirement R4) is straightforward, since it
only has to define that an invalid key must not be accepted in the entire system.

Property P4: □(¬INV KEY OK)

Depending on the protocol, we use propositions like WRONGKEY OK
or OLDKEY OK that would both be seen as invalid keys.

15.6.2 Checking the Properties

This section defines and explains the CPMs for eMRTDs and UDS, along with
defining some protocol-specific properties that allow for checking the protocol
flow.

19While there are some proprietary and research solutions for encrypted CAN, none of them
is widely adopted (i.e., used by a larger number of major OEMs). An industry standard gain-
ing momentum, the AUTOSAR Secure On-board Communication (SecOC) [54], only provides
authentication and integrity, but not confidentiality.
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eMRTDs

For eMRTDs, we define PROT as DF input in Cg of the CPM for eMRTDs
(Table 15.1), since the ICAO standard defines the applications to be in a pro-
tected zone20, while AUTH is gained by performing a basic authentication
(BAC) operation. As ACCESSOK we define a successfully performed file
selection in Cτ . This means that for P1 a BAC must be performed before se-
lecting any file inside an application.

For UREADOK, we define an unsecured read binary operation. This
means that for P2, only secured read binary operations are allowed.

We define CRIT as a successful selection of data groups 2 or 3 in Cτ .
These contain biometric data, which is why the ICAO standard requires and
additional (particularly terminal) authentication. Since, we do not have an ad-
ditional authentication method implemented, PRIV is set to false (⊥). This
means that P3 only holds when these sensitive data groups cannot be selected
in the complete model.

Lastly, we define INV KEY OK for P4 as any successful secured opera-
tion that has been carried out using an old key or an all-zero key in Cτ . We
realize these by dedicated input symbols (see Section 15.4.1).

We also use a couple of complimentary properties for checking eMRTDs.
SecureRead: □(¬(SREADOK ∧ ¬(DF ∧ AUTH ∧ EF ))), which reads
as a secure read operation (SREADOK) can only be successful if authenti-
cated and a protected resource is selected (DF ∧ EF ). This also creates the
need for a normal read operation not to work on protected resources: Plain-
Read: □(¬(UREADOK ∧ (¬EF ∨ DF ))), which reads as a successful
plain read (READOK) cannot happen without a selected resource outside of
LDS1 (¬EF∨DF ). We can further specify a secure select process with the
following property: SecureReadFollowsSecureSelect: ((¬SREADOK) U
SSELEFOK)∨□(¬SREADOK). Table 15.1 gives an overview of the CPM.

UDS

Authentication in UDS works over SecurityAccess and subsequent SecurityAc-
cessWithKey. We therfore define the AUTH proposition after the second step
has been successfully exectued. As a canary for P1, we perform a reading op-
eration on a protected resource. We choose to start the Check Programming

20Note: we only set DF for selecting LDS1, which corresponds to the eMRTD application.
Technically, DF would also be set when selecting other applications (i.e., LDS2). However, we
then would design the CPM to distinguish between DFs. This is not necessary in our case, since
we only use one.
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Dependencies (0xFF01) routine. This routine does not alter the firmware and
is standardized [8]. Furthermore, it is industry practice that this route is pro-
tected by a Security Access routine [55]. Therefore we set both PROT and
ACCESSOK as a cτ when starting this routine. For P2, set perform a direct
memory read operation to set UREADOK. Unfortunately, we don not have
the knowledge of which memory are actually protected (as a workaround defin-
ing the CheckASWBit routine could also be defined as PROT ). For P3, we
define the RequestDownload routine as CRIT , as it allows to actually flash the
device, while PRIV his defined as SecurityAcccess with a higher level. Lastly
for P4, INV KEY OK is defined as SecurityAcccess with a wrong key (as an
own input symbol). Table 15.2 shows the CPM for UDS.

15.7 Testing

With a property violation discovered by the learning and checking procedure,
the only thing left is to verify the finding on the actual system. Due to relying
on conformance testing for equivalence queries, the automata learning process
maintains a residual risk for an inaccurate model. We therefore test the trace of
a found violation with the life system to exclude false positives. If the actual
system behavior matches the one predicted by the model, the violation is con-
firmed. Otherwise, the trace can be fed back to the learning system to refine the
model. The verification of found traces is trivial, as the same tool set from the
learning can be used for concretizing the input and interfacing with the SUL.
Therefore, this combination can be seen as method for test case generation.

15.8 Evaluation

To show the practical usability and versatility of the described process, we
evaluate it on two devices (an eMRTD and an automotive control unit), each
speaking one of the communication protocols described earlier in this paper
(NFC and UDS). Though the use cases are very different, in both cases the
model checking is very similar. At the present abstraction level, we check
generic security requirements (Section 15.3) using according LTL properties
(Section 15.6.1).
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Table 15.1: CPM for eMRTDs.

Proposition Input Output
Gains (Cg)

AUTH BAC 9000
DF, PROT DF* 9000

EF EF* 9000
CRIT EF DG2, EF DG3 9000
PRIVa TA 9000

Losses (Cl)
EF, AUTH, PRIV,

CRIT
DF 9000

AUTH, PRIV EF*, *BIN, *REC 6*
CRIT EF* 9000

Temporary (Cτ )
UACCESSOK,
ACCESSOK

SEL EF* 9000

SSELEFOK,
SACCESSOK,
ACCESSOK

SSEL EF* 9000

UREADOK,
READOK

RD BIN 9000

SREADOK,
READOK

SRD BIN 9000

SSELEFOK SSEL EF* 9000
INVKEYOK,

WRONGKEYOK
WS* 9000

INVKEYOK,
OLDKEYOK

OS* 9000

a Since, we do not have a Terminal Authentication implementation, this condition is
hypothetical (will not be triggered).

15.8.1 Electronically Machine-Readable Travel Document

For the eMRTD use case, we scrutinize two different Austrian passports, on
elder, expired and one current (see a process based on equivalence checking
in [34]). The model was learned via LearnLib using the TTT algorithm (with
binary closure) and a minimum input trace length of 40 symbols, a maximum
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S0: 
  

S1: 
  DF

SEL_DF_LDS1 / 9000
S3: 
  EF

SEL_EF* (ex) / 9000

S2: 
  DF 

 AUTH

BAC / 9000 SEL_EF* (ex) / 6982 SEL_EF* (noex) / 6a82 SEL_DF_LDS1 / 9000 RD/UP_BIN / 6986 SUP_BIN / 6700

BAC / 9000

S4: 
  DF 

 AUTH 
 EF

SSEL (ex) / 9000

SEL_DF_LDS1 / 9000

SEL_DF_LDS1 / 9000

SSEL_EF* (ex) / 9000SRD_BIN / 9000

S5: 
  DF 
 EF

SEL_EF* (ex) / 6982 SEL_EF* (noex) / 6a82

SEL_DF_LDS1 / 9000

BAC / 9000

Figure 15.4: Simplified version of the annotated eMRDT. Self-loops that do not
add to the understanding have been removed for readability. (S)SEL EF* (ex)
and (noex) denotes all elementary file selections of existing and non-existing
files.

of 50, and 150 random walk conformance tests as equivalence oracle. Using the
method described above, we translated the Mealy Machine into Rebeca code
(see Listings 15.2 and 15.3 for parts of the model code for the environment
and system agent, respectively). Using the CPM and properties as described in
Section 15.6.2, we were able to verify that described security properties hold
the scrutinized systems.

1 msgsrv req() {
2 error=false;
3 ureadok=false;
4 sreadok=false;
5 readok=false;
6 sselefok=false;
7 selefok=false;
8 accessok=false;
9 [..]
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10 int data =?(0,1,2,[..],56);
11 switch(data) {
12 case 0: system.pp_sel_ef_ca_cvca(); break;
13 case 1: system.pp_sel_df_lds1(); break; [..]
14 case 22: system.pp_rd_bin(); break; [..]
15 case 28: system.pp_bac(); break; [..]
16 case 32: system.pp_ssel_ef_dg1(); break;[..]
17 }
18 }
19 [..]
20 msgsrv req_9000(int data){
21 switch(data) {
22 case 0: accessok=true;selefok=true;
23 uaccessok=true;break;
24 case 1: break; [..]
25 case 22: readok=true;ureadok=true;break; [..]
26 case 28: break; [..]
27 case 32: accessok=true;sselefok=true;
28 saccessok=true;break; [..]
29 }
30 self.req();
31 }

Listing 15.2: Example of generated eMRTD environment actor code.

1 msgsrv pp_rd_bin(){
2 if(state==0) {
3 state=0; environment.req_6986();
4 } else
5 if(state==1) {
6 state=1; environment.req_6986();
7 } else
8 if(state==2) {
9 auth=false; state=1; environment.req_6986();

10 } else
11 if(state==3) {
12 state=3; environment.req_9000(22);
13 } else
14 if(state==4) {
15 auth=false; state=5; environment.req_6982();
16 } else
17 if(state==5) {
18 state=5; environment.req_6982();
19 }
20 }
21 [..]
22 msgsrv pp_sel_df_lds1(){
23 if(state==0) {
24 df=true; prot=true; state=1; environment.req_9000(1);
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25 } else
26 if(state==1) {
27 state=1; environment.req_9000(1);
28 } else
29 if(state==2) {
30 auth=false; state=1; environment.req_9000(1);
31 } else
32 if(state==3) {
33 df=true; prot=true; ef=false; state=1; environment.req_9000

(1);
34 } else
35 if(state==4) {
36 auth=false; ef=false; state=1; environment.req_9000(1);
37 } else
38 if(state==5) {
39 ef=false; state=1; environment.req_9000(1);
40 }
41 }
42 [..]
43 msgsrv pp_bac(){
44 if(state==0) {
45 state=0; environment.req_6985();
46 } else
47 if(state==1) {
48 auth=true; state=2; environment.req_9000(28);
49 } else
50 if(state==2) {
51 state=2; environment.req_9000(28);
52 } else
53 if(state==3) {
54 state=3; environment.req_6985();
55 } else
56 if(state==4) {
57 state=4; environment.req_9000(28);
58 } else
59 if(state==5) {
60 auth=true; state=4; environment.req_9000(28);
61 }
62 }
63 [..]
64 msgsrv pp_ssel_ef_dg1(){
65 if(state==0) {
66 state=0; environment.req_6988();
67 } else
68 if(state==1) {
69 state=1; environment.req_6988();
70 } else
71 if(state==2) {
72 ef=true; state=4; environment.req_9000(32);
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73 } else
74 if(state==3) {
75 state=3; environment.req_6988();
76 } else
77 if(state==4) {
78 state=4; environment.req_9000(32);
79 } else
80 if(state==5) {
81 state=5; environment.req_6988();
82 }
83 }
84 [..]

Listing 15.3: Example of generated eMRTD system actor code.

15.8.2 Automotive Electronic Control Unit

Our example use case for UDS is an automotive electronic control unit (ECU)
from a major European Tier-1 supplier running in a vehicle from a Chinese
car manufacturer. The model was learned via LearnLib using the TTT algo-
rithm with a minimum input trace length of 20 symbols, a maximum of 50,
and 50 random walks as equivalence oracle. Figure 15.5 shows the annotated
Mealy machine (using the CPM in Table 15.2) of this ECU. We subsequently
use the properties from Section 15.6.1 to check the model for security prop-
erties, along with the CPM for UDS (Section 15.6.2). We could verify P1 .
For P2, we lack the knowledge which memory areas are actually protected.
However, it is well known that the CAN bus (over which UDS communication
runs) is completely unencrypted, while principally critical (safety) data can be
exchanged [56]. Therefore, R2 is not met by the protocol itself, regardless of
any implementation. To test P3, we lack a higher layer security access. How-
ever, scrutinizing critical functions (RequestDownload), we saw P3 to hold, as
it were not possible to trigger with our current security level. P4 was found to
be violated21, as in the (authenticated) state S6 (see Figure 15.5), the system
accepts a wrong key22.

21According to the standard, wrong key should not be acknowledged, even though a wrong key
does not mean the security level must be locked (de-authentication) [39].

22An issue known to us from previous works [48].
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Table 15.2: CPM for UDS (SA means SecurityAccess).

Proposition Input Output
Gains (Cg)

AUTH SAWithKey 67
EXT Extended 5003

PROG Programming 5002
PRIVa HLSAWithKey 67

Losses (Cl)
EXT,PROG Default 5001

EXT Programming 5002
PROG Extended 5003
AUTH SA, SAwKey,

SAwWrongKey
7f

AUTH Session 50
Temporary (Cτ )

INVKEYOK,
WRONGKEYOK

SAwWrongKey 67

PROT CheckASWBit 71
ACCESSOK CheckASWBit 71

UACCESSOK CheckASWBit 71
CRIT RequestDownload 74

UREADOK Read* 62
a Since, we do not have higher level security access, this condition is hypothetical

(will not be triggered).

15.9 Related Work

This work is based on previous work on model learning and model check-
ing [48, 34, 53]. Peled et al. [19] have provided a very influential paper regard-
ing black box testing that combines automata learning with model checking.
They learn a model (using Angluin’s algorithm) create a cross product with a
Büchi automaton created from the negate of an LTL property to check. If the
accepted language is empty, the property is satisfied. Otherwise, the contained
(non-empty) words it serve as a counterexamples that will be tested against a
true system model. If these tests yield the same results, the counterexample
poses a property violation. Otherwise, it serves as a counterexample for refin-
ing the model. They propose both an off-line and on-the-fly approach. The for-
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S4

S1 
 EXT

EXTENDEDDIAGNOSTICSESSION / 065003..DEFAULTSESSION / 065001003201F4AA

S3 
 PROG

PROGRAMMINGSESSION / 065002..

S2 
 PROG

SECURITYACCESS / 0667..

S0

DEFAULTSESSION / 065001..

* / 037F

S7 
 AUTH 
 PROG

SECURITYACCESSWITHKEY / 0670..

DEFAULTSESSION / 065001..

PROGRAMMINGSESSION / 065002..

CHECKASWBIT / 0571..

S6 
 AUTH 
 PROG

SECURITYACCESS / 0667..

DEFAULTSESSION / 065001..

CHECKASWBIT / 0571..SECURITYACCESSWITHWRONGKEY / 0670..

S5 
 PROG

PROGRAMMINGSESSION / 065002..

DEFAULTSESSION / 065001..

* / 037F

SECURITYACCESS / 0667..

DEFAULTSESSION / 065001..

* / FFFF..

Figure 15.5: Simplified annotated Mealy machine of the learned ECU model.
Self-loops that do not add to the understanding have been removed and the out-
put truncated for readability. The star (*) denotes any other input not explicitly
stated.

mer uses a fully learned (i.e., a full run-through of Angluin’s algorithm) model
that is checked. The latter incorporates the checking into the learning process
and stops it, if a violation is found, potentially greatly reducing the runtime.
Groce et al. [57] advance the former approach by integrating the model check-
ing deeper in the learning algorithm for an efficiency boost. Shijubo et al [58]
expand Peled’s approach by introducing strengthened specifications, that tend
to find counterexamples that earlier detect divergence between the learned and
the actual model, boosting the learning process’ efficiency. We refrain from us-
ing on-the-fly checking because we want to fully investigate the model for any
violation of a defined set of properties, and therefore not stop at the first found
violation, as the purpose is to investigate already implemented real-world sys-
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tems for all incorrect behavior. 23 While our work is based on a similar idea as
the off-line variant, we extended the approach by annotating Mealy machines
with atomic propositions creating Kripke-like structures that we turned into
Rebeca code for model checking. That way, we implemented all the phases for
going through learning, checking, and testing real-world examples. In our case,
however, we automated the complete process by combining (a) the learner(s)
(using LearnLib [10]), (b) an automated way of generating Kripke structures
and translating it into a checkable model (described in Section 15.5) and (c)
a model checker translates this model and (the negation) LTL properties to
Büchi automata, creates a product, and check its language for emptiness [9]
with generic properties (Section 15.6). This improves both the usability of the
approach and its applicability to real-world (cyber-pyhsical) systems. Neider
and Jansen used a symbolic approach to learn and model-check DFAs (but not
Mealy or More machines) [59]. Similarily, Fiterau-Brostean et al. [60, 61]
also used a symbolic approach (using the NuSMV model checker). Trans-
lating the learned model to Rebeca, our approach in contrast provides more
advanced possibilities to manipulate the model, including re-introducing ab-
stracted (e.g. non-deterministic) behavior (see Section 15.5.5), as they also
stated in their work that ironing out timing issues were a major engineering
problem. Altering the Rebeca template, it is trivial to re-introduce timeouts
(non-deterministically) to check a protocol’s behavior under such conditions.
This allows for more advanced checking possibilities. Furthermore, our ap-
proach using CPMs does not only allow for a more explicit and comprehensi-
ble annotation of states with propositions, but also using generic properties and
a clean separation between state proposistions (visible in the annonated Mealy
machine) and pure transition outputs (in Cτ and τ states).

Other approaches [62, 15, 63] combine automata learning with bisimulation-
based equivalence checking, which need a specification model to compare the
learned automaton with. Our approach needs generalized properties. We do
not know of an approach that translates a learned model into a modeling lan-
guage allowing for both direct property checking and manipulating the model
to simulate scenarios.

23While the Rebeca model checker also stops with a counterexample when a property violation
is found, we can, in contrast to on-the-fly-checking, check the other properties as well on the
complete model and therefore determine if the system violates multiple properties. Furthermore,
many properties do not actually require a modal operator – e.g., Property 1 uses a single □ operator,
which means it should hold globally and a further distinction is not necessary. We can check
these with a simple script running over a Rebeca-generated full state space, enabling us to find all
occurrences of a violation.
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15.10 Conclusion

In this paper, we presented an approach to combine automata learning with
model checking for cyber-physical systems. We defined Context-based Propo-
sition Maps (CPMs) that provide an annotation mechanism to annotate Mealy
machines inferred by Automata Learning with propositions. As a result, we re-
ceived annotated Mealy machines that combine attributes of Mealy machines
and Kripke structures. We subsequently translated the annotated Mealy ma-
chine into Rebeca code by formally defining a template using two actors: a
receiver modeling the learned system and a sender modeling an external actor
that interacts with the system. Starting from four high-level security require-
ments (authentication, confidentiality, privilege levels, and key validity), we
defined generic LTL properties to check models for security. Protocol-specific
CPMs provided the context to assure the generated Rebeca code provides all
propositions that are used in these properties. This way, each property can be
checked with regard to the protocol the examined cyber-physical system runs
on. We presented a case study with systems from different domains (a passport
and and automotive control unit) speaking different protocols (NFC and UDS)
to show the versatility of the approach. We were able to verify the security
properties for all requirements on to different passports. On the automotive
control unit, we could verify two of them (authentication and privilege levels),
while one of them (confidentiality) is intrinsically not provided by the protocol
and the last one (key validity) was not met (property violated) on the examined
unit.

15.10.1 Outlook

Further research directions to lift the approach to a larger scale lie in creating
adapters for other different protocols and creating other generalized LTL prop-
erties to check different aspects of security. Additionally, we also investigate
utilizing an LLM to generate LTL properties from threat models to check their
respective implementations’ Mealy machines. Also we can improve the learn-
ing process by using timing [64] and by extending the model with unknown
inputs using input symbol mutation; if the unknown input triggers new behav-
ior, we can dynamically extend the input alphabet (as described here [65]).
This allows for a more holistic testing.
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ing for Compliance Evaluation of Communication Protocols on an NFC
Handshake Example,” in Engineering of Computer-Based Systems
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