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Abstract. In modern automotive development, security testing is crit-
ical for safeguarding systems against increasingly advanced threats. At-
tack trees are widely used to systematically represent potential attack
vectors, but generating comprehensive test cases from these trees remains
a labor-intensive, error-prone task that has seen limited automation in
the context of testing vehicular systems. This paper introduces STAF
(Security Test Automation Framework), a novel approach to automat-
ing security test case generation. Leveraging Large Language Models
(LLMs) and a four-step self-corrective Retrieval-Augmented Generation
(RAG) framework, STAF automates the generation of executable se-
curity test cases from attack trees, providing an end-to-end solution
that encompasses the entire attack surface. We particularly show the
elements and processes needed to provide an LLM to actually produce
sensible and executable automotive security test suites, along with the
integration with an automated testing framework. We further compare
our tailored approach with general purpose (vanilla) LLMs and the per-
formance of different LLMs (namely GPT-4.1 and DeepSeek) using our
approach. We also demonstrate the method of our operation step-by-
step in a concrete case study. Our results show significant improvements
in efficiency, accuracy, scalability, and easy integration in any workflow,
marking a substantial advancement in automating automotive security
testing methods. Using TARAs as an input for verification tests, we cre-
ate synergies by connecting two vital elements of a secure automotive
development process.

Keywords: Large Language Models · LLMs · Attack Trees · Threat
Modeling · TARA · Security Testing.
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1 Introduction

Security testing is a crucial component of modern software and system develop-
ment. With the increasing sophistication of attacks, ensuring the robustness of
systems against such threats is critical. Attack trees form a convenient way to
systematically categorize the different ways in which a system can be attacked
[12]. An attack tree is a hierarchical diagram that represents the various ways
an attacker might compromise a system. The root node represents the ultimate
goal of the attacker, and the child nodes show the steps or sub-goals required
to achieve it. These trees are instrumental in both the identification of system
threats and the generation of test cases that simulate potential attack paths.
Despite its importance, security test case generation often consumes significant
time and resources, potentially overlooking critical details in complex systems.
As a result, automation in this process has emerged as a critical area of research
to ensure comprehensive coverage of potential attack vectors. This research ad-
dresses the challenge of automating security test case generation from attack
trees using Large Language Models (LLMs) and a novel Retrieval-Augmented
Generation (RAG) framework [10]. LLMs offer promising opportunities for au-
tomating security test generation, as demonstrated by recent research in gen-
erating test programs for compiler bug isolation [20]. However, they often face
challenges in generating reliable and accurate test scripts, particularly in areas
like security evaluation [19, 15]. To address these limitations, we propose Security
Test Automation Framework (STAF), a novel solution using a custom multi-step
self-corrective RAG framework specifically designed for automotive security test
case generation from attack trees. By combining LLMs’ code generation capabil-
ities with this framework, we enable the automated generation of comprehensive
and executable security test in Python as well as model checking properties in
Linear Temporal Logic (LTL). Unlike traditional methods that focus on either
attack tree analysis [8, 6] or test generation [1, 16, 2] in isolation, our approach
integrates both aspects. This integration provides a complete workflow from
threat identification to security testing, representing a significant advancement
in the field. We also show the necessary adjustments that are needed to enable
general-purpose LLMs to generate sensible, tailored automotive test cases. The
key contributions of our work are:

– A method for generating security test cases from attack trees.

– An approach to create sensible executable tests for automotive systems.

– Integration with an existing system analysis tool for practical demonstration.

– Derivation of linear temporal logic (LTL) properties for model checking.

The remainder of this paper is organized as follows: Section 2 reviews related
work in the field of automated security testing; Section 3 describes our proposed
Security Test Automation Framework (STAF) in detail; Section 4 present the
experimental setup and results; Section 5 provides a real-world scenario-based
case study, and Section 6 concludes the paper.
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2 Related Work

This section reviews and synthesizes recent research on attack tree analysis,
security-focused test case generation, and the application of Large Language
Models (LLMs) in software testing and evaluation. We identify key advances
and limitations in these areas, highlighting the gaps that our work addresses.

2.1 Advancements in Automotive Attack Tree Analysis

Modern vehicles are increasingly characterized by their complexity as cyber-
physical systems, incorporating numerous electronic control units (ECUs), di-
verse communication protocols (e.g., CAN, Ethernet [23, 25]), and increasing
connectivity, all of which expand the attack surface [23, 9, 4]. To help manage
these growing cybersecurity risks, standards like ISO/SAE 21434 and UN Reg-
ulation No. 155 emphasize the importance of structured threat modeling. As
part of this process, Threat Analysis and Risk Assessment (TARA) plays a key
role, with attack trees often used to map out potential paths an attacker might
take [9, 4]. Despite their utility, the manual construction and maintenance of
attack trees remain labor-intensive and susceptible to human error, particularly
given the scale and dynamic nature of modern vehicle architectures [23, 4]. This
has driven the development of tools that automate attack path identification
using threat anti-patterns and system model analysis [4]. Such tools support
ISO/SAE 21434-compliant TARA processes by generating attack graphs and
trees that help identify threats early in the design phase. Although progress has
been made, a critical gap remains: the transformation of attack trees into exe-
cutable security test cases is still largely manual. Bridging this gap is essential
for validating system resilience in practice. Large Language Models (LLMs) have
shown promise in parsing structured data [7], but their application to generat-
ing test cases from attack trees (especially in the automotive domain) remains
underexplored. Our proposed framework, STAF, addresses this challenge by au-
tomating the generation of security test cases from attack trees, enabling scalable
and context-aware security validation for automotive systems.

2.2 Works addressing the problem end-to-end

Recent research has explored the use of attack trees for security analysis in au-
tomotive systems. Umezawa et al. [21] applied attack trees to systems like the
Tesla Model S, integrating threat databases to map attack vectors. Mishina et
al. [13] combined fault tree and attack tree analysis to enhance security assess-
ment. Cheah et al. [3] formalized systematic security evaluations using attack
trees for automotive applications, while dos Santos et al. [17] proposed a formal
model to facilitate security testing in modern automotive systems. While these
studies advance attack tree modeling and threat analysis, they primarily focus
on static analysis or threat documentation without automating test case gener-
ation; especially for general software systems. This highlights a critical gap; the
lack of automated, adaptable security test case generation from attack trees for
broader software applications.
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2.3 LLMs in Test Case Generation

The application of large language models (LLMs) in software testing, particu-
larly for test case generation, has garnered increasing attention in recent years.
However, their use in security testing remains relatively underexplored. Plein
et al. [14] investigated the use of LLMs, specifically ChatGPT, to generate test
cases from bug reports. Their findings indicated that LLMs could produce exe-
cutable test cases for approximately half of the bugs in their dataset. Nonethe-
less, the study also highlighted key limitations, including difficulties in achieving
completeness and maintaining contextual accuracy, particularly for complex or
domain-specific issues. Yu et al. [24] examined LLM-driven test script gener-
ation for mobile applications, identifying challenges related to cross-platform
compatibility and the handling of platform-specific features. These findings un-
derscore the need for more sophisticated approaches when generating test cases
for security-critical systems, where interactions are often complex and context-
dependent. Wang et al. [22] conducted a broader evaluation of LLMs across
various software testing tasks. While their results demonstrated the potential
of LLMs in generating unit tests and identifying bugs, they also revealed per-
sistent challenges. Specifically, LLMs struggled to produce comprehensive test
suites and to manage the intricacies of security-sensitive scenarios. Although
progress has been made in attack tree analysis and LLM-based test generation,
several critical gaps remain. Existing approaches often lack the adaptability and
depth required to address rapidly evolving security threats. The potential of
LLMs to parse and analyze attack trees for security testing purposes has yet to
be fully realized. Moreover, current methods frequently fall short in generating
complete and context-aware test cases, particularly in domains with stringent
safety and security requirements. These limitations are especially pronounced
in the automotive sector, where embedded systems, real-time constraints, and
regulatory compliance introduce additional complexity. To address these chal-
lenges, we propose the Security Test Automation Framework (STAF), which
leverages LLMs within a self-corrective retrieval-augmented generation pipeline.
STAF automates the generation of executable security test cases from attack
trees, offering a scalable and domain-adapted solution for security validation in
automotive systems.

3 Method

The goal of STAF is to create test cases from threat models. Our used threat
modeling tool, AVL ThreatGuard5, is capable of creating attack trees from
TARAs. We use these attack trees as an input for STAF to create test cases
in the form of executable Python scripts from that TARA. As an alternative,
we use queries that create LTL properties to check implementation models in
a model checker [11]. STAF then streamlines the process of generating security
test cases directly from attack trees. For that, we build a RAG architecture.

5 https://experience.avl.com/products/avl-threatguard
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RAGs usually consist (apart from orchestration and user interface) of a source
module, a retriever, a generator, and an evaluator/re-ranker [18]. For the source,
we provide the LLM with a closed-loop knowledge base and, alternatively, a web
search. The closed-loop information contains specific automotive cybersecurity
knowledge and consists of a vectorized database containing a variety of specific
automotive cybersecurity sources, particularly the Automotive ISAC Automo-
tive Threat Matrix (ATM)6, and the test libraries included in our automotive
testing platform, AVL TestGuard7. To further improve the quality of the scripts,
we include behavioral models (particularly Mealy machines) of tested protocols
that improves the LLM’s context knowledge of the protocol (see Section 5 for an
example). We automatically inferred the models using automata learning [5]. We
then implement a customized retriever that also contains an iterative grading
loop. The grading consists of customized input prompts providing guidance for
the LLM to evaluate the relevance of the retrieved documents. If the number
of relevant documents exceeds a defined threshold, they serve as an input for
the generator. The generator is another customized prompt that uses the re-
trieved inputs (and, if applicable, Mealy models) to generate actual test scripts.
These test scripts will be evaluated and regenerated, by another prompt. The
test generation process can be split in four interconnected stages: 1) Attack-
tree Analysis, 2) Adaptive Information Retrieval, 3) Test-case Generation, and
4) Iterative Refinement (see Figure 1). Each stage contributes to the overall
goal of translating complex attack tree data into actionable security test cases.
The process begins with LLM-guided attack tree analysis to extract threats.
The framework then employs adaptive information retrieval to gather relevant
knowledge, which informs the generation of structured test cases. Finally, an
iterative refinement process ensures the quality and relevance of the generated
test cases. We will discuss individual components in sections below.

3.1 Analyze Threats

The first stage of the framework involves analyzing attack trees encoded in a
structured JSON format to interpret relationships among threats, attack vec-
tors, and system weaknesses. STAF employs an LLM to extract insights from
the attack tree through a carefully structured prompting strategy. This strategy
guides the LLM in identifying individual threats, including the affected compo-
nents and potential impacts, and extracting associated attributes such as precon-
ditions, required access levels, and exploit complexity. For example, in the case
of an attack tree node representing a threat in the Unified Diagnostic Services
(UDS) protocol, the LLM would extract details about UDS services, sessions,
seed-key, etc. This detailed analysis not only allows the framework to under-
stand individual threats but also reveals their inter-dependencies and potential
sequences of compromise.

6 https://atm.automotiveisac.com/
7 https://experience.avl.com/products/avl-testguard
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Fig. 1. Workflow of STAF’s self-corrective information retrieval mechanism. This pro-
cess ensures the relevance and timely updates of the knowledge base by combining
vector data store retrieval with web queries when necessary, enhancing the accuracy of
generated security test cases. If applicable protocol Mealy models in DOT format are
provided in the initial test generation prompt.

3.2 Self-corrective Information Retrieval

The adaptive information retrieval component, illustrated in Figure 1, ensures
that the system maintains a current and contextually relevant knowledge base for
analyzing identified threats. Initially, the system formulates a query using key-
words and threat attributes extracted during attack tree analysis. This query
is used to perform a semantic search within a vectorized data store, which con-
tains preprocessed documents represented as vectors. The semantic capabilities
of the data store enable contextual matching, allowing the system to retrieve
documents that are relevant beyond simple keyword overlap. To enhance the
automotive relevance of the retrieval process, the vector store is enriched with
domain-specific sources. These include the AUTO-ISAC Automotive Threat Ma-
trix, which provides structured threat intelligence tailored to vehicle systems; a
proprietary test case database from AVL’s internal testing platform, which offers
real-world examples of security validation procedures; and automata models of
ECU Unified Diagnostic Services (UDS) stacks, which represent the behavioral
logic of diagnostic protocols in modern vehicles. These resources collectively im-
prove the system’s ability to retrieve and reason over automotive-specific threats
and test scenarios. Once candidate documents are retrieved, an LLM-based grad-
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ing mechanism evaluates their relevance based on contextual alignment, technical
depth, and applicability to the identified threats. If the retrieved documents are
insufficient or misaligned, the system initiates a self-corrective feedback loop.
This involves refining the query and performing a web search using the Tavily
API 8, aiming for targeted, use-case relevant sources such as vendor advisories,
automotive security bulletins, and technical documentation. The results from
both the vector store and web search are then integrated to form a compre-
hensive and up-to-date knowledge base for the subsequent test case generation
phase.

3.3 Generate Test Cases

Building upon the accumulated knowledge from the previous stages, STAF gen-
erates structured test cases in JSON format. We employ domain adaptation
through the strategic use of threat information and in-context learning capabil-
ities of LLMs. This is done by structuring the prompt. This prompt includes
threat analysis and the retrieved documents to ensure LLMs understand the
underlying context. Additionally, the prompt has instructions to ensure LLMs
include essential elements such as a descriptive title, an overview of the test sce-
nario, setup instructions for preparing the environment, executable test scripts,
tear-down procedures to restore the system to its original state, and expected
outcomes indicating successful test results. For example, a test for authentica-
tion mechanism, would try to perform an action on usually protected resources
without authentication. A success would indicate a vulnerability.

3.4 Chain of Improvement

For iterative refinement we use an LLM-as-a-judge approach [26]. This stage
ensures that the generated test cases align with the original attack tree and con-
form to established security testing standards. The framework employs an LLM
with specialized instructions to evaluate each test case across various metrics,
including alignment with the attack tree, completeness of the test case compo-
nents, runnability without additional modifications, and overall quality, clarity,
and effectiveness. It also identifies any threats that are inadequately addressed
and provides specific recommendations for refining the test cases. Lastly, it gives
improvement suggestions to regarding error-free, runnable and sensible code for
regeneration. If a test case does not meet the quality benchmarks, the framework
adjusts or regenerates the test case based on the suggested improvements and
then re-evaluates it against the established criteria. This cycle continues until the
test case achieves satisfactory scores across all metrics or a predefined number
of iterations is reached. By incorporating this dynamic refinement process, the
framework ensures high levels of precision and coverage in addressing potential
vulnerabilities, thereby adding a layer of quality assurance to the testing process.

8 https://tavily.com/
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4 Evaluation

The evaluation of our proposed Security Test Automation Framework (STAF)
is crucial to demonstrate its effectiveness in automating the generation of high-
quality security test cases from attack trees. By conducting comprehensive tests,
our aim is to show how STAF enhances the performance of the model in terms
of alignment with identified threats, runnability of the generated code, and com-
pleteness of test cases.

4.1 Evaluation Criteria

Apart from the number of tests (with and without redundancies), we manually
assessed each test case based on three key metrics, each evaluated on a scale of
0 to 10. Below is a detailed overview of the judgment criteria:

Alignment (0-10 points) : This metric measures the degree to which the gen-
erated test cases align with the identified threats present in the attack tree. A
rating of 0 points is given if the test case does not address a threat present in
the attack tree; we only want to test what is present in the attack tree. Up to
5 points are awarded for quality and specificity of the test case to address the
target threat. Up to 3 points are awarded if the test case addresses advanced or
subtle aspects of the threat, reflecting a higher level of depth and nuance. Show-
ing deeper knowledge about the protocols/systems available. Up to 2 points are
awarded for the variety of testing a threat, e.g., by trying different inputs or
approaches to test the threat.

Runnability (0-10 points) : This criterion assesses the practical executability of
the generated test code. A rating of 0 points is given if the test is not runnable
for whatever reason. A deduction of 2 points for every placeholder or implicit
assumption that will lead to a silent failing of tests (e.g., usage of unconfirmed
CAN IDs). A deduction of 2 points for every case where the test might fail based
on conditions (e.g. if the branch would execute successfully but the other branch
would fail).

Completeness (0-10 points) : This metric evaluates how thoroughly the gen-
erated test cases cover all facets of the identified threats. Up to 4 points are
awarded for including all the necessary external files, data, or resources required
for the test cases. Up to 3 points can be earned by providing comprehensive
setup and tear-down procedures, ensuring that the test environment is correctly
initialized and cleaned up. An additional 3 points are given for well-documented
test cases that clearly specify their purpose, procedures, and expected outcomes,
thereby facilitating reproducibility and understanding.

An overall score is calculated as the arithmetic mean of these three metrics,
providing a single comprehensive measure of the model’s performance in gener-
ating security test cases. The LLM evaluator provides a detailed breakdown of
how each score was calculated, along with a brief explanation of the evaluation.
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Model #Tests #Unique Alignm. Runnab. Completen. Overall

GPT (vanilla) 9 9 7.00 9.00 5.50 7.17
GPT (STAF) 60 22 9.80 9.00 8.50 9.11
GPT (STAF&MM) 65 27 9.00 9.67 7.33 8.67
DeepSeek (vanilla) 5 5 6.50 4.17 4.67 5.11
DeepSeek (STAF) 21 18 8.83 0.00 7.67 5.50
DeepSeek (STAF&MM) 30 14 9.33 0.00 9.00 6.11
Table 1. This table presents a detailed comparison of STAF’s and STAF&MM’s per-
formance using GPT (4.1) and DeepSeek (V3) against their pure versions. For each
category three scripts were analyzed.

This approach ensures a transparent and consistent evaluation process across
different models and methodologies.

4.2 Results

We selected two recent state-of-the-art models, GPT-4.1 and DeepSeek-V3-0324,
as the backbone for STAF and STAF incl. Mealy Models (STAF&MM). As
shown in Table 1, we compared their individual performance with their vanilla
versions to highlight the enhancements achieved through STAF and STAF&MM.
The results indicate that integrating STAF leads to significant improvements
across all metrics for both models. The most obvious difference is the rise in
the number of generated tests (#Tests) and tests after removing redundant ones
(#Unique). It gradually rose with STAF and MM introduction, with the excep-
tion that with deepseek, STAF alone generates more uniques than with MMs.
The addition of learned protocol models as additional context for the mod-
els also increases the alignment and completeness of the generated test cases.
This effect is more observable for DeepSeek-V3, while GPT-4.1 seems to in-
herently better understand certain protocols such as UDS out of the box. For
GPT-4.1, the overall score increased from 7.17 to 9.11 upon integrating STAF,
reflecting an improvement of 1.94 points. The most notable enhancement is
in the Alignment metric, which rose from 7.00 to 9.80, indicating that STAF
effectively helps the model to generate more relevant test cases and supports ad-
dressing the threats in the attack trees more effectively. The Completeness score
also improved from 5.50 to 8.50, demonstrating more comprehensive test case
generation. The Runnability score stayed at 9.00 for both, the overall improve-
ment suggests that there are considerable benefits in appyling the STAF ap-
proach. Similarly, DeepSeek-V3-0324 experienced an overall score increase from
5.11 to 5.50 (STAF), and 6.11 (STAF&MM), marking an enhancement of up to
1.0 points. The Completeness metric showed a substantial rise of up to 3.00
points, from 4.67 to 7.67 and respective 9.00 if the protocol model was applied.
The Alignment score also saw an increase from 6.50 to 8.83 (STAF) and 9.33
(STAF&MM). These gains highlight STAF’s ability to considerably supplement
the models performance for this task. The Runnability was evaluated as 0.0
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for half of the test cases generated by DeepSeek-V3 vanilla and all of the test
cases generated with DeepSeek-V3 STAF and DeepSeek-V3 STAF&MM, since
the model would always include natural language placeholders and comments
within the Python scripts, which yielded them unusable without modification.
In terms of individual metrics:

– Alignment: GPT-4.1 (STAF) achieved the highest score of 9.80, indicating
excellent adherence to the identified threats. DeepSeek-V3 (STAF&MM) also
performed well with a score of 9.33. GPT-4.1 (STAF&MM) placed third with
a score of 9.00.

– Runnability: GPT-4.1 (STAF&MM) achieved the highest runnability score
of 9.67, indicating that its generated test cases are highly executable without
additional modifications. GPT-4.1 (STAF) and GPT-4.1 vanilla performed
also well with a score of 9.00.

– Completeness: The STAF and STAF&MM models significantly outper-
formed the vanilla models in completeness. This suggests that the STAF
framework enables the models to generate more comprehensive test cases
that cover all critical aspects of the threats.

These results demonstrate that STAF and STAF&MM outperform even GPT-
4.1, in crafting effective test cases. This outcome demonstrates the importance
of a structured approach in security testing. STAF’s well-defined framework
and targeted protocols ensure the retrieval and application of highly relevant
data. This focus enables STAF to generate more precise, context-specific, and
robust test cases. The framework’s ability to filter, process, and apply domain-
specific knowledge effectively translates into superior test case quality, even when
compared to models with wider information access. The addition of the pro-
tocol Mealy models provides accurate knowledge of the communication rules,
increasing the quality of interaction with a system under test. This finding em-
phasizes that in specialized tasks like security test case generation, a tailored
approach with domain-specific protocols can yield better results than general-
purpose models with broader but less focused information sources. Qualitatively,
we saw not only improvements in the scoring itself, but also the appearance of
certain traits – for instance, the introduction of a UDS mealy model induced
the LLM to use session changes in test cases, which did not appear without the
models. Besides, all versions considered a comparable amount of infeasible tests
(e.g., physical bypass9), written in a Python pseudo code. We have seen similar
results for LTL properties (see Section 5), but the refinement process in the RAG
was more extensive.

As an example for the improvements possible by using GPT 4.1 STAF&MM
versus GPT-4.1 (vanilla) consider the following code listings 1.1 and 1.2. While
GPT-4.1 (vanilla) without a learned protocol model of the devices UDS was

9 This test involves physical tampering with the system. This is not feasible to test
in a pure digital manner. We therefore exclude this from test sets, since the goal
is to perform automated cybersecurity testing, which intrinsically does not involve
physical attacks.
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only able to create a test by sending a too short message, the 1.2 shows specific,
targeted test content utilizing undocumented sub-functions.

1 import can

2 import time

3

4 can_interface = 'can0'
5 bus = can.interface.Bus(channel=can_interface , bustype='

socketcan ')
6

7 # Malformed UDS message: too short (only 1 byte)

8 malformed_uds_data = bytes ([0x10])

9

10 # test code

11 """

12 Purpose: Send a malformed UDS message and observe ECU

behavior for secure error handling.

13 Attack Steps:

14 1. Send the malformed UDS message onto the CAN bus.

15 2. Listen for a response or observe for any abnormal

behavior (e.g., ECU crash , diagnostic session reset).

16 Expected Secure Behavior: ECU should respond with a negative

response (e.g., 0x7F) or ignore the message , without

crashing or leaking information.

17 """

18 tx_msg = can.Message(arbitration_id =0x7DF , data=

malformed_uds_data , is_extended_id=False)

19 bus.send(tx_msg)

20

21 response = None

22 start_time = time.time()

23 while time.time() - start_time < 5:

24 msg = bus.recv(timeout =1)

25 if msg and msg.arbitration_id == 0x7E8:

26 response = msg

27 break

28 if response:

29 if response.data [0] == 0x7F:

30 print('[PASS] ECU responded with negative response to

malformed message.')
31 else:

32 print('[WARNING] ECU responded with unexpected data:

{}'.format(response.data.hex()))
33 else:

34 print('[PASS] No response to malformed message. ECU may

be securely ignoring invalid input.')
35

36 # Teardown: Close the CAN bus interface
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37 bus.shutdown ()

Listing 1.1. GPT-4.1 (vanilla) - Test error handling of Malformed UDS Messages

1 # [...] definitions and imports skipped

2

3 if __name__ == "__main__":

4 CAN_IFACE = 'can0'
5 TX_ID = 0x7E0

6 RX_ID = 0x7E8

7 try:

8 sock = ISOTPNativeSocket(CAN_IFACE , rx_id=RX_ID ,

tx_id=TX_ID , basecls=UDS , padding=True)

9 except Exception as e:

10 print(f"[ERROR] Failed to open ISOTP socket: {e}")

11 assert False , "ISOTP socket unavailable."

12 # Rare/undocumented subfunctions

13 rare_subfunctions = [0x7F , 0x99 , 0xFE]

14 for sub in rare_subfunctions:

15 send_multiframe(sock , 0x10 , sub , payload_len =32)

16 # Malformed multi -frame (fragmentation)

17 send_multiframe(sock , 0x2E , 0x01 , payload_len =64)

18 # Check ECU is still alive

19 try:

20 resp = sock.sr1(UDS()/UDS_TP (), timeout=2, verbose=

False)

21 assert resp is not None , "ECU did not respond after

protocol -specific attack (possible crash)!"

22 print("[PASS] ECU is still operational after advanced

protocol -specific attack.")

23 except Exception as e:

24 print(f"[ERROR] Scapy operation error during post -

attack check: {e}")

25 assert False , "ECU not responsive after protocol -

specific attack!"

Listing 1.2. GPT-4.1 (STAF&MM) - Protocol Specific Attacks - UDS Subfunctions
and Multi-Frame Fragmentation

5 Case Study

We conducted a case study using STAF with an attack tree Battery Management
System (BMS). The purpose of this case study is to evaluate how well STAF
can automatically generate security test cases derived from attack trees. By
leveraging a realistic application, we provide a practical demonstration of the
framework’s potential and its current limitations when tested in a real-world
scenario.
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Fig. 2. Architecture of the Battery Management System used as system under test.

5.1 Setup

We used the TARA of a Battery Management System (BMS) as a basis. Figure
2 shows the architectural layout of the BMS’ components as designed in a threat
model. With the help of the threat modeling tool (see Section 3), we analyze the
system and create several attack trees. For this case study, we particularly use an
attack tree that targets Man-in-the-Middle Attack via UDS Message Collection,
which has the following attack vectors: Intercept UDS Communication (subvec-
tor Exploit Unencrypted Communication Channel), Inject Malicious UDS Mes-
sages (subvector Replay or Modify Captured Messages, and Bypass Physical and
Logical Protections (subvector Exploit Lack of Encryption and Trust). These are
described with attack steps for message replay: 1. Use previously captured UDS
messages as a template, 2. Modify message parameters to target specific ECUs
or functions, 3. Inject modified messages into the communication channel, and
4. Observe vehicle response to determine success of injection. This attack tree
provides the main input to STAF.

5.2 Walk Through

STAF is based on LangChain and is running on a server behind a FastAPI ap-
plication. The process of generation is triggered by sending an attack tree in
JSON format to the server. The Attack-tree Analysis (Analyze Attack Tree step
in Figure 1) is always conducted and results in keywords used for the Adap-
tive Information Retrieval (Retrieve Documents step), which will fetch the top
ten relevant documents in the vector database. Here, during ingestion of doc-
uments in the vector database a verbal description of the document content
was generated, for example existing Python test scripts for different attacks and
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automotive protocols. The Adaptive Information Retrieval will not only grade
the documents using a binary metric (Document Grading step), checking if the
document is relevant for addressing the threat, but also conduct a web-search if
less than three documents were rated positive (Web Search step). Afterwards,
the attack tree is searched for protocol names such as UDS. If a protocol name
appears in the attack tree, the Mealy model of the protocol standard is also pro-
vided in DOT language format. For STAF&MM, the protocol model could be
added, for STAF standalone, the protocol model support was deactivated. Sub-
sequently, the Generate Test Cases step is conducted and the LLM will receive a
comprehensive prompts with instructions, the documents retrieved, if applicable
the protocol model as well as formatting instructions for the result. As result,
a list of test cases is provided (an example is shown in Listing 1.3), including
metadata like a unique ID, the threat addressed, necessary implementations for
setup and tear-down of the test environment as well as the test implementation
itself.

1 "test_cases": [

2 {

3 "id": 1,

4 "name": "Bypass Physical and Logical Protections -

Unauthorized Diagnostic Port Access",

5 "description": "Tests whether an attacker with physical

access can connect to the diagnostic port and initiate

UDS communication without authentication.",

6 "threat_addressed": "Lack of Authentication on

Diagnostic Interfaces",

7 "setup": "# Setup instructions: ...",

8 "test_code": "import can\\ nimport os\\n ...",

9 "teardown": "# Teardown: ...",

10 "expected_result": "If the system is vulnerable, the

ECU will ..."

11 },

12 ...

13 ]

Listing 1.3. Example of a Test Case.

The full collection of test scripts is then provided to an LLM for review (in the
Evaluate Test Cases)step, where the tests are checked against the attack tree
for alignment and completeness and the implementation for runnability, using
a dedicated prompt. This prompt requests a scoring of 0-100 in each category
and a list of missing threats, as well as a list of improvement suggestions where
necessary. Listing 1.4 shows an example for improvement suggestions. If the
scoring is below a certain, configured threshold, the suggestions are improved
by the generator using these suggestions (Regenerate Test Cases step) in a loop
until the quality is satisfactory.

1 {

2 "test_case_name": "Test Case 10: UDS Message Injection Test

",
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3 "details": [

4 "Add more detailed checks for message authentication

mechanisms",

5 "Include verification of physical access requirements

"

6 ]

7 },[...]

Listing 1.4. Example improvement suggestions.

Now up to four cycles of Iterative Refinements are conducted. The refinement is
stopped if either four cycles were done, or the rating increases to above 90 for all
categories. In each regeneration step, the original test scripts, the missing threats
and the suggestions for improvement are provided to the LLM. This results in
a continuous extension and quality improvement of the generated test cases.
Listing 1.5 the prompt template for the Iterative Refinement. The same process
for LTL properties yielded for example a property like AUTHENTICATION
ENFORCEMENT:□(DIAG SESSION INIT ∧ UNAUTH → false.

1 prompt = """

2 You are an elite security test engineer [..]. Your

critical task is to ** modify specific test cases ** based

on the provided improvement suggestions , and **add new

test cases ** for any missing vulnerabilites.

3 ### Test Cases to Modify: {test_cases_to_modify}

4 ### Improvement Suggestions: {improvements_map}

5 ### Missing Vulnerabilites: {missing_vulnerabilites}

6 ### Instructions:

7 1. ** Modify the test cases listed above ** to incorporate

[..]

8 2. For each ** missing vulnerability **, ** create a new

test case** that exactly addresses the vulnerability.

9 3. Ensure that all test cases use appropriate and actual

code relevant to the system under test , [..].

10 4. Include all necessary **setup**, including required

imports [..]

11 5. The test code must be **complete , runnable Python code

**. [..]

12 6. Follow **best practices ** for the system or domain you

are testing , and use appropriate methods and calls.

13 7. Each test case should demonstrate both the **

vulnerable state and the secure state **.

14 8. Use ** assert statements ** to clearly indicate what

constitutes a pass or fail condition.

15 {format_instructions}

16 """

Listing 1.5. Prompt template for iterative refinement.
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6 Conclusion

In this paper, we introduced and evaluated STAF, a Security Test Automation
Framework that automates the generation of security test cases from attack trees
using LLM-guided analysis, adaptive retrieval, and iterative refinement. STAF
reduces manual effort by transforming attack vectors into actionable, structured
test cases. Through a combination of a robust knowledge base, adaptive re-
trieval, and self-corrective mechanisms, the framework generates comprehensive
test cases tailored to specific threats in the attack trees for automotive systems.
We could demonstrate that a specialized RAG architecture like STAF could
help to overcome the hurdles of making LLM-based test generation usable and
scalable for automotive systems and produce usable Python test code, as well
as LTL properties for model checkers. It shows that attack trees can be used
to structure test suites, while the RAG’s context information helps to gener-
ate meaningful and executable test cases. The introduction of behavior models
(Mealy machines) produced yet more and more aligned test cases.

7 Limitations & Future Work

While STAF shows promising results, a couple limitations surfaced during its
evaluation. Particularly, one significant limitation is the lack of implementation
details in an attack tree. Therefore, specific basic information (e.g., CAN baud
rates or arbitration IDs) should be included. This results in test cases which
are not immediately executable but require manual modification, hence STAF is
not yet fully autonomous. Further, the framework requires multiple iterations to
ensure that the test cases meet quality targets and align with the original attack
tree. Especially for more complex applications this is resource-intensive. This
hinders the scalability of STAF when applied in dynamic or large-scale settings
where speed is crucial. Overall, while STAF enhances the automation of security
test generation, it still requires manual adjustments and human oversight to
handle certain limitations. Additionally, improving the framework’s ability to
handle complex, large-scale applications efficiently, while maintaining up-to-date
knowledge retrieval and minimizing manual interventions, will be critical areas
for future development. Future work will include the output of test cases in
Domain Specific Language (DSL), to allow injecting implementation details into
generated tests as post-processing. Further, integration into a testing framework
with a feedback loop to refine test cases will help to increase both the test quality
and degree of automation – error messages and tool outputs will provide valuable
feedback for the test case evaluator to generate more practial-oriented feedback
and better test integration. The framework could also be improved with fine-
tuning: test sets and script code can be separated, which could provide more
accurate feedback and smaller context windows.
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