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Abstract—The Default Mode Network (DMN) is associated
with an internal self-referential view of the world, and its intrinsic
properties have been linked to different cognitive abilities. While
its function and structure has been well characterized through
functional magnetic resonance imaging (fMRI), much less is
known about its behavior using electroencephalography (EEG).
This study examines the stability of EEG-based DMN functional
connectivity. We focus on eyes-open resting-state across multiple
sessions. Using the debiased weighted Phase Lag Index (dwPLI),
we analyzed connectivity patterns in the alpha band across
four sessions involving twenty participants. Our results show
consistent DMN connectivity patterns both within and across
individuals and sessions. This indicates that EEG-derived DMN
connectivity is relatively stable over time and across people. Such
stability could be relevant for the development of brain-computer
interfaces (BCI) for cognitive training that adapt to individual
connectivity patterns.

Index Terms—Default mode network (DMN), functional con-
nectivity, EEG, resting-state, BCI

I. INTRODUCTION

The Default Mode Network (DMN) is one of the most
studied resting-state networks, observed in functional MRI
(fMRI) activity when subjects are not actively engaged in a
task. It is the most active brain network when individuals are
mentally at rest and not focused on the external environment
[1]. In most cases, the DMN reduces its activation when
subjects are focused on tasks that require attention to the
outside world, but certain processes like self-referential think-
ing, mind wandering, recalling memories, and internal mental
simulations, can activate the DMN [2], [3]. Anatomically, the
DMN includes the medial prefrontal cortex (mPFC), poste-
rior cingulate cortex (PCC), precuneus, and lateral posterior
parietal cortex [1], [3], [4]. While its structure and function
have been extensively characterized using fMRI, its dynamics
when estimated from electroencephalogram (EEG) remain less
explored, particularly across multiple sessions and in eyes-
open conditions. In fact, to the best of our knowledge, no prior
studies have examined the stability of EEG-estimated DMN
across sessions.

Understanding how the DMN can be estimated from EEG
is especially relevant for brain-computer interface (BCI) and
neurofeedback training (NFT), as different metrics on its con-
nectivity could provide real-time information on the subject’s
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mental state. EEG is preferred here due to its accessibility,
portability, and real-time feedback capabilities, as recently
demonstrated in a 2024 study on real-time DMN activation
[5].

Yet, studies evaluating DMN stability over time using EEG
are scarce and report inconsistent findings: some studies that
tracked resting-state activity using PET and fMRI, reported
DMN stability in healthy older adults over a 8-year follow up
period [6]. Another study recorded EEG continuously over
multiple days (at least 48 hours) [7] and found consistent
DMN-related activity in younger adults across different levels
of consciousness. On the other hand, a more recent fMRI study
suggests that DMN connectivity may change with aging, even
in the healthy brain [8]. These age-dependent differences have
been linked to changes in working memory, processing speed,
and neural plasticity, all of which can influence the outcomes
of cognitive training and neural self-regulation. Moreover,
an individual’s cognitive state on a given day may affect
DMN connectivity, which raises intriguing questions about
how day-to-day variability impacts NFT performance. Resting-
state functional connectivity activation has been linked to
NFT performance [9]-[11], but the question of why some
individuals are able to self-regulate their neural activity while
others fail (16% to 57%), commonly termed “BCI illiteracy”
[12], [13], remains open.

Frequency-specific associations also support the DMN’s
relevance in EEG: the alpha band (8-13 Hz), for instance,
has been positively related to posterior regions of the DMN,
including parietal-occipital midline cortex [14], [15], and is
known to support long-range communication across resting-
state networks [16], [17]. Its prominence in resting-state
activity justify the importance of this frequency range [18].

Additionally, EEG-based studies have identified subnets of
DMN (or operational modules) that approximate the DMN
topography usually seen in fMRI studies [19]. Other work
has shown enhanced effective connectivity within DMN re-
gions in individuals with social anxiety disorders compared
to healthy controls during rest [20], highlighting the DMN as
an interesting target for network-level analysis. However, im-
portant questions remain: How stable is EEG-measured DMN
connectivity across multiple days? Is this stability region-



specific? The present study addresses these questions by
analyzing DMN functional connectivity across four eyes-open
resting-state EEG sessions in 20 participants. Connectivity
was assessed using the debiased weighted Phase Lag Index
(dwPLI), a measure that reduces volume conduction effects
and aims to capture non-spurious phase synchrony between
electrodes. Our topographical analysis focuses on identifying
stable connections across sessions, emphasizing on the alpha
band due to its known relevance for resting-state activity and
potential in NFB training (NFT) protocols.

II. METHODOLOGY
A. Participants

In this work, we present results from 20 healthy adults
(15 males and 5 females), aged between 20 and 39 years
M = 27.60, SD = 5.57). None of the participants had been
diagnosed with any neurological diseases. The recruitment
process and study procedures adhered to ethical standards, and
the research protocol was approved by the Swedish Ethical
Review Authority (reference number 2021-03121).

B. Recordings

Each participant was recruited to participate in four distinct
sessions on different days. Each session started with a block
of eyes-open resting-state followed by multiple blocks of NFB
training. For the scope of this study, only resting-state data
were analyzed. During resting-state, participants sat in a dark
room with their eyes open in front of a black computer
screen. Data were recorded during 5 minutes using Pycorder
(Brain Products), in-house LabVIEW (National Instruments)
and MATLAB (MathWorks) as a system interface.

1) Electroencephalogram (EEG): EEG data were recorded
at a sampling rate of 1 kHz using 64 active electrodes arranged
as per the extended 10-20 electrode placement system (Brain
Products ActiCHamp). One of the active electrodes was placed
on the tip of the left nostril to serve as the reference electrode
and another one was placed below the right eye to measure
vertical eye movements. Our data analysis were performed on
the remaining total 62 active electrodes placed on the scalp.
Electrooculogram (EOG) and horizontal eye movements were
also recorded using two additional passive electrodes placed
1 cm lateral to the left and right outer canthi of the eye.
Impedances were maintained below 40 kOhms throughout all
sessions.

C. EEG Preprocessing Pipeline

EEG data were preprocessed using MATLAB R2024a and
the EEGLAB toolbox (version 2024.2.1) [21]. The following
steps were applied on raw EEG data: (1) Power line noise
artifacts were removed using pop_cleanline to directly atten-
uate 50 Hz power line interference and its second harmonic
(100 Hz). A sliding window approach with spectral estimation
was applied across all EEG channels. (2) Downsampling the
EEG data from 1000 Hz to 100 Hz using pop_resample to
speed up next steps (3) A bandpass filter between 1 and 40 Hz
was applied (pop_eegfiltnew) with a Hamming-windowed sinc

FIR filter. This step removes slow drifts (e.g., due to move-
ment) and high-frequency noise. (4) Data was re-referenced
to the common average of all electrodes using pop_reref.
(5) Dimensionality reduction was performed with principal
component analysis (PCA) to determine the number of signif-
icant components. Only components with eigenvalues greater
than le-7 were retained. (6) Independent Component Analysis
(ICA) was applied on filtered data using pop_runica with
the picard algorithm and PCA-based dimensionality reduc-
tion and concatenation of conditions enabled. (7) Eye-related
components were automatically identified using pop_iclabel
and flagged with pop_icflag if the probability of classifi-
cation as ’Eye’ exceeded 0.8. (8) The flagged eye-related
ICA components were removed from the original EEG data
(sampled at 1000Hz and band-pass filtered to 1-40Hz) using
pop_subcomp. ICA weights computed on the downsampled
data were applied to the full-resolution dataset for improved
temporal precision. (9) Artifact subspace reconstruction (ASR)
was applied to further suppress transient, high-amplitude arti-
facts, using pop_clean_rawdata with the following parameters:
FlatlineCriterion = 40, ChannelCriterion = -1, BurstCriterion
= 4, WindowCriterion = 20, BurstRejection = ’off’, Highpass
= ’off’, and Distance = ’Euclidian’. Importantly, BurstRejec-
tion = ’off’ does not reject entire data windows but instead
applies artifact suppression to individual bursts. If any bad
channels were detected (via clean_channel_mask), spherical
spline interpolation was performed using pop_interp. (10) A
surface Laplacian filter was finally applied [22], implemented
as laplacian_perrinX, with a smoothing parameter of le-5.
This step enhanced spatial resolution by attenuating volume
conduction effects.

D. Data Analyses

EEG data were transformed into the time-frequency domain
using complex Morlet wavelets across a frequency range of
1-40 Hz. The wavelets were defined with frequency-dependent
full-width at half-maximum (FWHM) values as in [23]. This
yielded a complex-valued time-frequency representation of
the signal for each electrode, frequency, and time point. The
resulting signal was downsampled by a factor of 10 and used
for subsequent phase-lag index (PLI) computations.

For this study, from the complex signal we extracted the
alpha frequencies (8—12 Hz). The averaged signal across these
frequencies was decomposed in non-overlapping 20-second
windows, and debiased weighted phase-lag index (dwPLI)
matrices were calculated for all windows (approx 15 windows
for 5 minutes) and electrodes.

1) Debiased Weighted Phase Lag Index (dwPLI): The
phase-lag index (PLI) is a measure of phase synchronization
between two signals and was used as the fundamental method
to estimate EEG functional connectivity during rest using 62
electrodes (1891 unique electrode pairs). PLI-based measures
are known to be well suited for resting-state activity or tasks in
which connectivity strength is not compared across conditions
because they minimize volume conduction contamination [24],
which would otherwise obscure true connectivity patterns



when comparing conditions. To improve upon the original PLI
we employed the debiased weighted (dw) PLI, which assigns
more weight to phase differences further from zero, thereby
reducing the influence of near-zero-lag connections (often
associated with volume conduction or common sources), and
corrects for the bias introduced by small sample sizes [25]. We
adapted the dwPLI implementation [24] to match our dataset
structure, and trials were created by splitting the data into
windows.

E. Validation of Connectivity Results Using Surrogate Data

To identify statistically significant connections, we gener-
ated null distributions of dwPLI values through a surrogate
data approach:

1) Surrogate Generation: For each session (4 sessions per
subject), we generated 1000 surrogate datasets by disrupting
the phase relationship between electrode pairs. This was
done by circularly shifting (circshift) the time series of one
electrode in each pair by a random number of samples (in the
range [10, N-10], where N is the signal length), preserving
spectral properties while pseudo-randomizing genuine phase
synchrony.

For each surrogate iteration, dwPLI was computed across
all time windows, and the values were averaged to obtain
one surrogate dwPLI per electrode pair. This resulted in 1000
surrogate-based dwPLI values per electrode pair, forming a
null distribution. The observed/real dwPLI values (averaged
across windows) were then compared to their corresponding
null distributions. A p-value was computed for each electrode
pair by calculating the proportion of surrogate values that
were equal to or greater than the observed dwPLI. Electrode
pairs with p-values below 0.05 were considered statistically
significant. Only these connections were retained for further
analysis.

The coefficient of variation (CV) was calculated for each of
these significant connections across the ~ 15 time windows to
assess the temporal stability of functional connectivity within a
single session. To exclude unstable and transient connections,
we selected the 30% of connections with the lowest CV values,
here referred to as stable connections. We tested different
thresholds within a range of 10-30%, however 30% allowed
for a good compromise between stability and sample size. The
use of a proportional threshold is supported by previous find-
ings showing that it produces more stable network measures,
particularly for fMRI eyes-open resting-state recordings [26].
There is a lack of consensus on the ideal threshold for whole-
brain network analyses and an arbitrary threshold or range of
thresholds is typically used [26]. Choosing a more conservative
threshold (e.g., the lowest 10%) would restrict the analysis to
only the most temporally stable connections, thereby reducing
noise but potentially excluding other meaningful connections
that exhibit slightly higher variability. Given the limited spatial
resolution of scalp EEG, particularly its inability to reliably
capture signals from deep subcortical regions such as the hip-
pocampus, it remains challenging to comprehensively assess
the long-term stability of DMN connectivity regions. For this

reason, we adopted a more inclusive 30% threshold, allowing
us to to capture a broader range of potentially significant
interactions, but at the risk of incorporating less stable ones.
This approach is supported by evidence that, despite short-
term fluctuations, stable functional networks can emerge over
longer EEG recordings [7], highlighting the value of using
less conservative thresholds to uncover persistent network
structures over time.

A false discovery rate (FDR) step was applied to correct for
multiple comparisons [27] and control for type I errors among
our stable connections.

F. Defining DMN ROIs

We selected the alpha frequency band (8-12Hz) for analysis
due to its prominence in resting-state EEG recordings [15],
[28], [29] [14] as well as the stronger positive correlation
between DMN and the alpha rhythm [30].

We further approximated DMN regions [3] (e.g., medial
prefrontal cortex, posterior cingulate cortex, inferior parietal
lobes) to our extended 10-20 EEG electrodes locations by
evaluating a graphic representation of Montreal Neurologi-
cal Institute (MNI) coordinates of DMN anatomical regions
[28] and DMN seeds [31], operational modules [19] and
montage of DMN-related EEG channels previously described
[32]. We defined 4 Regions of interest (ROIs): Frontal (F),
Left-Parietal (LP), Right-Parietal (RP) and Medial (M) (see
Tab. I), generating a total of 6 possible connections within
the DMN: LPM (Left-Parietal-Medial), LPRP (Left-Parietal-
Right-Parietal), LPF (Left-Parietal-Frontal), MRP (Medial-
Right-Parietal), MF (Medial-Frontal), RPF (Right-Parietal-
Frontal). We then averaged dwPLI and subject count per
connection within these ROIs, focusing our analysis in ROI-
to-ROI connectivity. Only connections that were significant,
belonged to the 30% lowest CVs, and survived the FDR step
were considered, and ROIs were displayed only if they had at
least one significant connection with another ROL

TABLE I
REGIONS OF INTEREST (ROIS) AND CORRESPONDING EEG ELECTRODES
ROI label Electrodes
Frontal (F) Fpl’, "Fp2’, AF3’, AFz’, "AF4’,
’F3’, ’F1’, ’Fz’, ’F2’, "F4’
Left-Parietal (LP) ’CP5’, °CP3’, ’P1’, ’P3’, 'P5’,

P7’, "’PO3’, ’POT’

Right-Parietal (RP) | 'CP4’, *CP6¢’, 'P2’, P4, "P6’,
P8, "PO4’, "POS8’

Medial (M) 'CPz’, 'Pz’, POz’

III. RESULTS

The overall averaged dwPLI for significant and stable
DMN connections, aggregated across four sessions and twenty
subjects, is shown in Fig. 1. Notably, all twenty participants
showed intra-session stability in LPF, LPRP, LPM in at least
one session and posterior short-range connections show greater
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Fig. 1. Overall functional connectivity (dwPLI) across all sessions. Each line
represents a functional connection between ROlIs, with the color indicating the
mean dwPLI value and the number displaying how many participants (out of
20) exhibited intra-session stability in that connection.

dwPLI values. First, we analyzed the averaged dwPLI of our
intra-session stable connections for each resting-state session
and each ROI following the previously outlined methods
outlined.

To complement Fig.1, we provide a breakdown of connec-
tion stability across sessions in Fig.2. Each subfigure repre-
sents the number of participants whose functional connection
between two ROIs was exclusively stable in a specific number
of sessions: connections stable in (a) only one session, (b)
exactly two sessions, (c) exactly three sessions, and (d) in all
four sessions. The numbers on each line indicate the number of
participants meeting the stability criterion for that connection,
while the line color reflects the mean dwPLI across those
participants and connections. Moreover, in Fig. 2(d), we
can see that 16 out of 20 participants had a stable LPRP
connection across all four sessions, suggesting high inter-
session consistency in that DMN pathway. Furthermore, it is
noticeable that short-range connections exhibit greater stability
when compared to long-range ones.

Furthermore, none of the participants showed complete

Two Sessions

Single Session

U

(a) (b)

instability of DMN connectivity, having at least two connec-
tions, independently of which specific ones, that remained
stable across three out of four resting-state sessions. More-
over, the majority of subjects demonstrated a high degree of
consistency, with five out of six DMN connections remaining
stable in at least three sessions. These patterns of intra-session
stability are illustrated in Fig. 3.

IV. DISCUSSION

In this work, we focus only on EEG data because, to
the best of our knowledge, no EEG studies have examined
the stability of DMN connectivity across multiple resting-
state sessions in healthy participants. In fMRI literature, some
studies have investigated test-retest reliability of resting-state
networks, including the DMN, but rarely specifying which
connections within the DMN remain stable and in how many
individuals over repeated sessions [33], [34].

Our results fill this gap by quantifying the consistency
of DMN connectivity patterns across four EEG resting-state
sessions, as shown in Fig. 2. This approach allows us to
identify both which DMN pathways are most consistently
preserved and the number of subjects in which such stability
occurs.

These DMN regions are known to be involved in self-
reflection and internally focused thoughts [3]. The fact that
they stay strongly connected across sessions suggests they
might form a kind of “core” subnet within the DMN, at least in
the alpha band. Specifically, the consistent presence of stable
connections in these regions might indicate that they could be
functionally relevant. Such stable connectivity patterns might
be a valuable feature to integrate into EEG-based BCI systems,
where having consistent brain signals is key for accurate neural
decoding and neurofeedback applications.

Our findings show that DMN connections exhibit a high
degree of stability across multiple EEG resting-state sessions
in most participants (Fig. 1). In particular, none of the partic-
ipants had zero stable connections in three sessions (Fig. 3)
which suggests a robust structure of the DMN. Furthermore,
the stability of DMN connectivity across time has also been
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Fig. 2. Session-specific stability of DMN connections. The color indicates the average dwPLI for each connection, and the number shows the count of
participants with a intra-session stable connection in (a) only one session, (b) two sessions, (c) three sessions, or (d) all four sessions.



Inter-session Stability
(three or more sessions)

-
o

Number of Subjects
(6]

Stable connection count

o

Fig. 3. Histogram of Subjects with a given number of intra-session stable
connections across at least 3 out of 4 sessions. Each subject could have all 6
connections stable (LPM, LPRP, LPF, MRP, MF, RPF), none, or just a few.

linked to healthy brain function [6] and could be used as a
biomarker to predict who will succeed or fail at self-regulation.
The DMN could also be used as an independent biomarker
during neurofeedback to measure task compliance and evaluate
if the participants are actively trying to regulate their brain
activity. In other words, if the DMN becomes active during
easy tasks because people start mind-wandering, then the
change in its activity between practiced and new tasks should
be linked to how much a person tends to mind-wander [2].

In the context of neurofeedback training, especially for
BCI applications, DMN metrics could potentially be used to
characterize individual mental states during rest or training
[35]. Our results reveal inter-subject variability in the number
and configuration of stable connections (as shown in Fig. 3)
across sessions. Such variability may reflect differences in
internal thought processes, attention regulation and learning
strategies [35], or even individual susceptibility to mind-
wandering. This inter-subject variability might be a concern
if we want to generalize our results and link DMN stability to
NFT performance, which could be addressed by using a larger
sample size.

Notably, our topographical analysis revealed that connec-
tions along the occipital-parietal exhibited stronger phase
synchronization, as reflected by higher dwPLI values. On the
other hand, longer-range connections were weaker. This spatial
pattern of stability and connectivity strength suggests that
posterior medial regions of the DMN are particularly stable
and synchronously active during resting-state EEG. Interest-
ingly, the medial parietal DMN regions (PCC/precuneus) have
shown enhanced alpha-band effective connectivity in patients
with social anxiety disorder [20], pointing to the potential
clinical relevance of these DMN sub-regions. Furthermore, a
previous study demonstrated that stronger resting-state func-
tional connectivity between the medial frontal cortex and PCC
(key nodes of the DMN) was associated with better working
memory performance [36], highlighting a link between DMN
and cognitive performance. Extending this, a recent study [35]
showed that individual and design-specific factors significantly

influenced neurofeedback performance, reinforcing the role of
intrinsic brain network variability in BCI outcomes.

Although many previous studies have explored the stability
of DMN using fMRI [35], [36], our findings demonstrate that
EEG can offer a practical and low-cost alternative for tracking
the dynamics of DMN connectivity over time. Additionally,
unlike most resting-state EEG studies that focus on eyes-
closed conditions, our work contributes to the understanding
of DMN dynamics under an eyes-open protocol, which better
reflect the natural setting of BCI training.

Previous research has linked fMRI-based resting-state net-
works with specific EEG frequency bands during eyes-closed
rest, particularly showing stronger positive correlation between
alpha rhythm and DMN [30]. Our work adds value to the field
by using eyes-open recordings and suggesting that alpha-band
connectivity metrics may serve as useful indicators of network
stability.

We used functional connectivity measures to estimate intra-
session dwPLI stability within the DMN and whether or not
those connections were replicated across sessions and subjects.
Our topographical analysis shows where connectivity changes
occur on the scalp and how they evolve over time in the alpha
band. Future work should evaluate the strength and stability
of connectivity across different frequency bands. Additionally,
metrics such as graph theory and clustering coefficients could
be applied to better understand the network structure.

Most importantly, it is worth noting that our network struc-
ture stability relied on a threshold of 30% of the lowest CV in
all significant connections, and different thresholds could lead
to different results, particularly for fMRI eyes-open resting-
state recordings [26]. On another note, eyes-open might pro-
duce more “non-specific brain activation” than closed eyes
condition, leading to more variability and less stability in the
connectivity patterns [37]. Furthermore, gender imbalances
and applying different thresholds between sex groups might
have also led to different outcomes [26], [38]. This is one of
the main challenges in the functional connectivity thresholding
problem, as there is no “ground truth” method on how to define
the best threshold value [38].

V. CONCLUSION

This study shows that EEG-based functional connectivity
within the Default Mode Network remained relatively stable
across multiple eyes-open resting-state sessions in a group
of healthy participants. By identifying consistent alpha-band
connectivity patterns across sessions and participants, the
results suggest that individual brain network characteristics
can be reliably measured. These findings also encourage
further investigation into how DMN connectivity relates to
other frequency bands, cognitive traits, training outcomes, and
network topology.
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