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ABSTRACT

When developing computer systems that are part of largeemsstas in con-
trol systems for cars, airplanes, or medical equipmengbiity and safety is
of major concern. Developers of these systems want to keepribduction
and development costs to a minimum while maximizing custopemefit by
increasing the functionality of the product.

Increasing the number of functions, along with the addedpiexity that
it entails, places a demand on better development methamt$els) and tools.
Response-Time Analysis (RTA) can be a useful method foretlsgstems by
able to guarantee a system’s temporal behavior. This thestents new tech-
nigues aimed at improving currently existing RTA methodse&fically, these
techniques lead to the following improvements:

e The precision in the calculated response times are significhigher than
with previous methods, with typically 15% shorter respatises.

e The analysis, itself, can be made more 100 times faster thtArpvevious
implementations.

By combining these independent techniques of preciset]tiglsponse
times and fast analysis, as shown in this thesis, one carhgdabenefits of
both in a single analysis method. High precision respoimse-gstimates en-
able either increased functionality within a given hardsvacost, or a lower
cost for a given functionality. Faster RTA will increase teefulness of RTA
by enabling the use of RTA in development tools for real-tisgstems with
hundreds, or even thousands of tasks.

RTA can be particularly beneficial for safety critical appliions that have
even higher requirements on reliability and safety, anelofindergo expensive
and lengthy certification processes. We illustrate the iptesadvantages by
applying RTA for tasks with offsets in a real industrial cextt The benefits
consist of simplifying the development process as well abkmg an efficient
resource usage.






SWEDISH SUMMARY

Vid utvecklingen av datorsystem som ar en del av en storréykto som t.ex.
styrsystemet i en bil, ett flygplan eller medicinsk utrustpi stalls det ofta
mycket harda krav pa sakerhet och tillforlitighet. En avisaftningarna ar
aven att halla nere produkt- och utvecklingskostnadentidagnsom man vill
Oka kundnyttan genom att 6ka innehallet, dvs. funktioatsit.

Okningen i antalet funktioner, och komplexiteten den meditiller krav
pa battre utvecklingsmetoder, -modeller och -verktyg.atlysera svarstider
genom s.k. responstidsanalys (RTA) ar ett satt att kunnanggna systemets
tidsbeteende innan produkten tas i drift. | denna avhagdliresenteras nya
tekniker som syftar till att forbattra existerande RTA-our, vilket konkret
leder till foljande forbattringar:

e Precisionen i de berédknade svarstiderna blir avsevartehagrtidigare
(typiskt ca 15% kortare responstider).

e Analyserna kan go6ras avsevart snabbare an tidigare (typés®00 ggr
snabbare an tidigare).

Genom att kombinera dessa tv& helt oberoende teknikerybehntian ej
offra precision for snabb analys eller vice versa. Det bastwva varldar upp-
nas i en och samma analysmetod; snabb analystid och preeisdider. Ho-
gre precision i svarstider mojliggdr antingen okad funkéititet inom ramen
for en given produktkostnad, eller en lagre kostnad for gargfunktionalitet.
Snabbare analysmetoder innebéar att utvecklingsverktygnwanvanda RTA i
praktiken @ven for riktigt stora system med hundratalsygndusentals, funk-
tioner.

Speciellt sakerhetskritiska tillampningar som maste earhort sakra och
tillforlitliga, och manga ganger maste genomga en dyr odbktidvande cer-
tifieringsprocess, kan dra nytta av RTA. En stor del av svaxgortindustri
sdsom Volvo, Saab, och ABB utvecklar realtidssystem famvilenna forskn-
ing skulle kunna vara av strategisk betydelse.






WHAT IS TIME?
TIME IS WHAT PREVENTS EVERYTHING FROM HAPPENING AT ONCE

John Archibald Wheeler (The American Journal of Physics, 1978)
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Thesis






CHAPTER 1
Introduction

Modern society is getting more and more dependent on comspatel soft-
ware. This is strikingly illustrated by the following quote

"Modern society runs on oil and software, and we think we know
how to replace the oil®.

When talking about computers and software, most people tofnthe
boxes and screens at our desks, desktop computers. Howleearast ma-
jority, more than 99.8% of all computers sold 2002, were eidié in other
products [Tur02], such as mobile phones, microwave overs, or airplanes,
etc. In fact, almost every electronic device today containgast one simple
computer. As an example, modern cars — such as the BMW 7ssedentain
more than 65 microprocessors [Tur02].

Since computers and software are replacing more and moteedfadi-
tional mechanical solutions, the software systems arerbiggplarger in size.
Furthermore, since software is more flexible, the possgybitir new types of
functionality emerges when switching to software solwsio®ne example is
the anti skid functionality in a modern car. The possibifaythis functionality
arose from the fact that when switching from mechanicallytaled brakes
to computer controlled brakes, the wheels can be individeahtrolled.

This increase in size and diversity of functionality, [HMUB], presents an
increasing challenge for the developers of this kind ofeayst One of the main
challenges comes from the fact that when replacing mechlsitbsystems
with software controlled solutions, the computer basetesygs must be at least
as reliable and safe as the mechanical solutions they eepglaonsider, e.g., the

IAustralia’s competitive dependence on software by AustreSoftware Quality Research In-
stitute, 1992, URL:http://www.sgi.gu.edu.au/docstsigt/Aus_Comp_Depend_onS_W.pdf
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control systems for a nuclear power plant, an airplane oricaédquipment.
We would not accept that these system malfunction or hatehg in the
same manner as, e.g., desktop computers. It is not uncommadmlésktop
computers, every now and then, crash or slow down and hawe restarted.

The increased demand on reliability and safety of contretesps means
that the functionality of these systems must be verified fegefbe system is
actually taken into use.

Another important and complicating factor for this type gétem, com-
pared to a desktop system, is the timing (temporal) behafitime computer
system. In the desktop domain, the computer sets the paogeoédtion, and
its environment (most often human) has to adapt to that p&ae. control
systems where the computer is controlling a physical devieeroles are re-
versed. The environment (e.g., car, airplane, robot, pgigert, or medical
equipment), i.e., laws of nature, dictates the pace ofacten. Therefore, cor-
rect timing behavior is a vital part of the overall correcseriteria for these
types of computer systems. For this reason, they are callddime systems.

1.1 Problem formulation

In order to meet the challenges of reliability and safetyirements during the
ever increasing complexity of real-time functionalityyvetpers need to have
proper development and analysis tools at their disposal.

One of the most important aspects of real-time systems tsttlest must
exhibit a predictable timing behavior. Furthermore, theggems are also of-
ten embedded in larger systems where resources are oftee sdderefore,
models and analysis tools aiming at predicting the tempmehhvior in a re-
source constrained environment, are of great concern. @ofersethod is the
Response-Time Analysis (RTA) method. By predicting resgotimes, RTA
aims at predicting the systems worst case timing behavior.

This thesis investigates to what extent RTA can be extenddi an in-
dustrial development context of predictable embeddedtie@ systems. In
particular, we will:

1. Investigate how RTA could calculate more accurate less pessimistic,
response times and which would reduce the resource congumipt
these systems.

2. Investigate how to make the current RTA analysis methodsereffi-
cient with respect to analysis speed. The goal is to achiewffient
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3.

1.2

RTA able to handle large enough task sets for handling relstmial
applications.

Furthermore, we investigate how a task model with offaatsthe cor-
responding RTA could improve the design process in the dpweént of
embedded real-time systems.

Thesis outline

This thesis is a so calleddmmanliaggningsavhandlitigwhere the main part
constitutes of a number of previously published researpleyza In addition to
the appended papers, a "sammanlaggningsavhandling”im®rma introduc-
tory part consisting of introduction and background to #search area where
the research papers make scientific contributions. It alsongarizes these
contributions. This thesis is thus organized into two parts

Part |

Contains the introductory part for the thesis whiahsat giving an
introduction and background to the area of research for ppersded
papers. Furthermore, this part will also present someaehabrk and
discuss aspects of the research presented in this thesisaftandus-
trial viewpoint.

Part Il Contains four appended scientific papers A, B, C an@ili2se papers

Part |

appear as published, except for paper C which is an extenststbn
of the published paper. They have only been modified to fitajieuf
of this thesis.

is organized as follows:

Chapter 1 has given a short introduction to real-time systand how
such systems differ from other (desktop) systems. It hasralstivated
temporal analysis of such systems and presents this tipgslsiem for-
mulation.

Chapter 2 gives a more formal definition of a real-time systew de-
fines important terms in the area of temporal analysis. Tiépter also
presents the field of real-time scheduling. In particulaheslulability
analysis is presented which will lead to the area of Respdimee An-

alysis (RTA).

2A doctoral thesis consisting of a collection of previoustipfished research papers.
SDiscovered typos have also been corrected.
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RTA is the specific research area of this thesis and will beudised
extensively in Chapter 3. Basic RTA, introduced by JoseghRamdya,
will be presented. Furthermore, the work leading to RTA &mkss with
offsets will be outlined.

This thesis’ scientific contributions, presented in pagerB, C and D,
together with their impact, are summarized in Chapter 4.

Chapter 5 presents and discusses some related work in thefaRTA
for tasks with offsets.

Finally, Chapter 6 concludes this thesis and describesilgessiture
work and relevant open problems.



CHAPTER 2
Real-time systems

The fundamental view of a real-time system is that it intesadth, i.e., ob-
serves and controls, its physical environment. The maiaatibg is to act and
react upon changes in the controlled process. To be ablentoot@ physi-
cal process that obeys the laws of nature, the computerai@ystem must
be fast enough in order to establish an internal view of therotied process’
state and to be able to produce a relevant response to ch@vgess) in the
process. As an example, consider a computer controlled@ftimctionality in

the control system for a car, depicted in figure 2.1.

Too early :ﬁ Too late
1

Collision
é ' Inflate airbag

time

&— Response time =
Figure 2.1: Fundamental view of a real-time system

The control system must be able to:

1. Detect that an event (a collision) has occurred.
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2. Decide on what action to perform by executing some contipmis In
this example it could be to determine whether or not the fofdmpact
is severe enough to launch the airbag.

3. Produce aresponse to the event, i.e., launch the airragponse to the
collision.

The correctness of the airbag functionality is not only aejeat on if the
computations (deciding whether to launch the airbag or a)correct, it is
also dependent on timely response to the event, i.e., wieeodthtrol systems
acts (launches the airbag). This timing, i.e., the time fith event occurs
until the computer system produces a response is caltedppnse time for
that functionality.

For the airbag functionality, there is a window of time, se@ffe 2.1, when
the airbag must be launched. If the airbag is launched béfiatenvindow of
time, it will be collapsing by the time the driver hits it, mng it useless. The
consequences of launching the airbag after the specifiedowirof time, are
more serious. If the driver is just about to hit the steeritng@l when the airbag
inflates, it will explode in his face. This example also shdhat real-time
systems are not the same as fast systems, rather they minde be jgredictably
adapt themselves to the pace of their environment. Variefisitions of real-
time systems exist. The one provided Bye Oxford dictionary of computing
offers one that agrees well with our view as well as being idetbee:

DEFINITION 2.1 (REAL-TIME SYSTEM ) A system in which the time at which
the output is produced is significant. This is usually beeah® input corre-
sponds to some movement in the physical world, and the cugsub relate to
that same movement. The lag (delay) from the input time foubtiine must
be sufficiently small for acceptable timeliness.

In a computer based system, there are often many differpastgf func-
tionality that compete for the computer’s resources, ssotomputing power,
memory, and I/O. In the control system for a car there is muchenfunc-
tionality than controlling the airbag. Examples includei-dmcking breaking
systems (ABS), engine control, cruise control, infotainingystems, and so
on. In desktop computers there are lot of different progrivasare active at
the same, such as, e-mail client, web browser, word procdd&3 player, etc.

There are two fundamental differences between real-tindedassktop ap-
plications:
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1. A real-time system must be able to handlethe critical functionality
in a timely fashion, whereas desktop computers strive fotimam av-
eragethroughput. That is, some functionality may suffer, but ikaac-
ceptable as long as the average responsiveness is higlal-ime com-
puting, the average response time is of little or no conddin.fact is
strikingly illustrated in the analogy by J.A. Stankovid@:Here was a man
who drowned crossing a stream with an average depth of sheiic

2. In a desktop application, the computer dictates the pagaearaction.
Most often, this suffices since its environment, probablyiman, reacts
much slower than the computer. But sometimes, when the campas
many things to do, the user may get annoyed at waiting for porese
from the computer. In real-time systems, on the other hdnedetviron-
ment dictates the pace of interaction and the computer Heefoup and
respond to changes in the environment in a timely fashiome@iise,
the system may not perform correctly, and in the worst casetban be
threat to human lives.

Thus, we see that the notion of time and timely response irtirea sys-
tems is important. Safety critical systems, where timingltfacould mean
threat to human lives, place an even greater concern onitiessl In safety
critical systems, correct timing behavior must be guarshteefore the product
is deployed. This is often done by lengthy and costly cediftn processes.

2.1 Types of real-time functionality

Since more and more functionality is being controlled by-teae software,
the diversity of this functionality continues to increaseypical real-time sys-
tem contains functionality ranging from control (e.g., tonous engine con-
trol) to user interaction or diagnostics functionality. dRéme systems can be
classified in several ways. One common classification isstiingjuish between
hard and soft real-time systems:

Hard Failing to meet timing requirements will result in failurétbe system.
Systems where failures potentially result in catastroplican conse-
guences are also called safety critical systems.

Soft The system does not fail if a timing requirement is not maheathe
quality of service deteriorates by a late response.
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In reality it is unusual that a system contains solely hardaft function-
ality. Rather, the functionality is mixed, and/or fits on @&yiscale between
purely soft and purely hard functionality. For example, icantrol system
for a car, functionality such as ABS and engine control amesitered hard.
Functionality such as electronic windows, seat heateid,r@otainment sys-
tems can be considered soft. This thesis focuses on anglgrid verifying
temporal behavior for hard real-time systems. Howevenmadge of timing
behavior is also useful in quantifying the quality of seevior soft real-time
systems.

Another common classification of systems is to distinguistwieentime-
triggered(TT) andevent-triggeredET) systems. Typically, control functional-
ity is by its nature time-triggered, i.e., the activatiortteé functionality is con-
trolled by the progress of time. Examples include contnglithe water level
in a tank or medical equipment monitoring the vital signglsas a cardiopul-
monary monitot. In these instances, the water level and vital signs arekeldec
periodically independently of what happens in the envirentmFunctionality
characterized by sudden changes in the environment is despent-triggered.
Examples of such functionality include user interactioctsass detecting an ac-
tivation of an emergency button. The airbag functional#pidted in figure 2.1
is also a typical example of an event-triggered functidpali

Control systems are generally embedded in larger appitstiso called
embedded systems. These systems are characterized by lzafixed and
limited amount of resources. They are fixed in the sense thabhwpplications
are shipped, upgrades are difficult and costly; and theyimitetl in the sense
that the amount of memory and computing power is small. Thevat@n for
manufacturers to limit resources is increased revenuen&sample, consider
a modern car which consists of several computers (CPUsg than 65 for the
BMW 7-series. Since the product volumes are high (hundrédsonsands),
even small savings in product cost, e.g., hardware ressuvaé result in a
substantial increased revenue.

In conclusion, we see that there is a wide variety of funclibyin a real-
time system. All this functionality, at least the hard anéesacritical parts,
have to be guaranteed to meet their timing requirementsth&umore, for
embedded systems, this has to be achieved in a system witedinesources.
In order to meet this challenge, developers of real-timeéesys need proper
method, analysis, and tool-support.

IMonitors and records blood pressure, pulse rate and rhy#spirations, and body tempera-
ture
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2.2 Real-time scheduling
Oxford English Dictionary Onlinedefines scheduling as:

The action of entering in or drawing up a schedule; esp. tapar
ration of a timetable for the completion of the various stagé
a complex project; the co-ordination of many related astion
tasks into a single time-sequence.

Scheduling in the area of computer systems, according tydiomedia
Britannica Onliné, is:

The allocation of system resources to various tasks, kn@ayoka
scheduling, is a major assignment of the operating systehe T
system maintains prioritized queues of jobs waiting for GPte

and must decide which job to take from which queue and how
much time to allocate to it, so that all jobs are completed faira
and timely manner.

We see that scheduling, in general, means to decide what & dach
specific point in time, and that scheduling from an operasgstems view
is to decide what task (job) to assign the CPU. Real-timedudireg aims at
ensuring that all tasks in the system will meet their timiaguirements under
resource constraints.

2.2.1 Task model

The schedulable entity, representing a single thread dfalan real time sys-
tems is called #ask A task is, from a scheduling point of view, an abstraction
of functionality and corresponds to a piece of sequenteigcutable code. A
task describes the temporal requirements and constrdittie corresponding
functionality by a number of attributes. Common exampletask attributes
include:

e Period, T;, specifies how often a tagkgets activated, and is inversely
proportional to frequency. However, not all tasks are mlicioas we
shall later see.

2http:/iwww.oed.com/
Shttp://www.eb.com/
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e Worst case execution time C;, specifies the absolute longest time it
takes to execute the code of taskf it could run on the CPU without
interruption. There has a been numerous research reswising the
topic of establishing a task’s WCET. Ermedahl and Engbétral. give
good overviews of some of these methods [Erm03, EG3].

e Deadling D;, specifies a constraint on the completion time of tagkhe
task must finish no later thal; time units after it has been activated.

A task is said to arrive to the system upon activation. Fonewéggered func-
tionality the corresponding task (or tasks) handling thetctionality is acti-
vated when the triggering event happens. Time-triggerskitare activated at
their scheduled time. Different activation patterns commaonsidered in the
real-time scheduling community are (see figure 2.2):

o Periodic tasks are activated at perfect periodicity, i.e., they atwated
at times0, T, 2T, 3T, etc.

e Aperiodic tasks can be activated at any time and with any frequency, i.e
there is no information about their activations at desigretiand thus a
hard real-time system is unattainable. However, theraexigethods
that allow aperiodic tasks in hard real-time systems. Tlaesdased on
providing either firm guaranteter best effort servicefor them [But97].
Systems that provide firm guarantees for aperiodic taskalaoeknown
as admission control systems. Examples can be found in .

e Sporadic tasks is another approach to deal with aperiodic task activa
tions. Sporadic tasks have an uncertainty on when they dnextsa.
However, they are characterized by havingiaimum inter-arrival time
between two consecutive activations. while there is normédion on
exactly when task activations will occur their frequency@inded by
the minimum inter-arrival time. This gives that sporadisksmwill have
a periodic worst-case activation-pattern with the minimiater-arrival
time as the period. So, from worst case scheduling point@fvspo-
radic tasks can be treated as if they were periodic.

The collection of tasks that constitute a system is calleashk set A task
set with corresponding attributes, and the constraintsratesd under which

4Upon arrival, the task is either admitted to the system andagieed to make its deadline or
it is rejected.
5Task are admitted to the system but no grantees can be given.
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Periodic i_’% é %

period
Sporadic é é é
<+
Minimum interarrival time
Aperiodic é

Figure 2.2: Different task activation patterns

tasks execute, is calledtask model The task model should ideally reflect as
much as possible the requirements of the functionality heccapabilities and
constraints of the underlying run-time system.

2.2.2 Scheduling algorithms

A scheduling algorithnfor embedded real-time systems aims at satisfying the
timing requirements of the entire system functionality,,imeet all tasks dead-
line constraints, while minimizing the use of resourceserehexist a wide va-
riety of scheduling algorithms in the real-time researtéréiture. These can
be classified in many ways: priority-based, value-based:lvased, server al-
gorithms, etc. One common and coarse grained classifidatlmsed on when
the actual scheduling decision, i.e., the decision of wdish to execute at each
point in time, is made. This classification categorizes dahieg algorithms
into static and dynamic scheduling:

e Static scheduling The scheduling decisions are made off-line, i.e., be-
fore run-time. These decisions are stored in a static s¢ébedduring
run-time, the dispatcher simply dispatches tasks accgrttirthe pre-
defined schedule. Static scheduling is also commonly edew as off-
line or time-triggered scheduling.

e Dynamic scheduling Scheduling decisions are made on-line by a run-
time scheduler. Typically some task attribute, such as ldeadr pri-
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ority, is used by the scheduler to decide what task to exe@yaamic
scheduling is also commonly referred to as on-line or ewéggered
scheduling.

For static schedulers, where every scheduling decisionadenat design
time, the run-time dispatcher becomes very simple, it jefvates tasks ac-
cording to the predefined schedule. The static scheduleeVmwis often
complex in the sense that it deals with task models with a Higree of ex-
pressiveness where tasks have many attributes and coteglimanstraints.

Dynamic schedulers are often much simpler, both with reisipethe ex-
pressiveness of the corresponding task model and sogttistiof the schedul-
ing algorithm. This is due to the fact that the schedulingsiens are made at
run-time and a too sophisticated and powerful algorithmldisteal processing
power (CPU time) from tasks, resulting in a too large admiat&/e overhead.
The most widespread, both in research and in commerciatireal operat-
ing systems, is théxed priority schedulindFPS) algorithm. All major open
standards on real-time computing support fixed-priorityestuling [SAr-04].

The pre-run-time configuration activities of fixed priorgghedulers con-
sist of assigning priorities to tasks. At run-time, taskattare activated, ei-
ther by passing of time or external events, are placed in dyrqaeue. The
dispatcher chooses, each time it is invoked (typically ahezock tick and
system call that releases a task), to execute the task véthitfhest priority
among those in the ready queue. In fixed priority schedubrtgsk placed in
the ready queue is considenateased for executiofwhich usually happens at
its activation, also known as the task’s arrival time).

Further discussions on static versus dynamic (FPS) sobextdn be found
in [Loc92, XP0O].

2.2.3 Schedulability analysis

A task set is said to be schedulable if a schedule can be folchwguaran-
tees that all tasks will meet their timing constraints unaléicircumstances.
Schedulability analysis aims, before run-time, to deteamwhether a task set
is schedulable or not. For most real-time scheduling dlgaors some kind of
schedulability analysis test is available.

In static scheduling, the schedulability analysis is coratiwith the con-
struction of the schedule, a so called proof by constructipproach. That
is, if a schedule which fulfills all timing requirements anghetraints can be
constructed, the system is, by definition, schedulable.
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Real-time research on schedulability in fixed priority shlled systems
has resulted in a wide variety of research results. Sevéifereht sched-
ulability-analysis techniques for fixed priority systenxéseé The most power-
ful approach, that provides the highest obtainable utibzeand is able handle
the most expressive task models, is to iEsponse-time analys{RTA).
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CHAPTER 3
Response-time analysis

Liu and Layland [LL73] provide the theoretical foundatian inalysis of fixed
priority scheduled systems. They define an instant in tinalled acritical
instant, which, if a task is released at that time, will lead to its storase
(longest) response time. For a simple task model with indeget periodic
tasks the critical instant is defined as:

THEOREM 3.1 A critical instant for any task occurs whenever the task is re
leased simultaneously with the release of all higher ptjotasks.

PROOF REFERENCE The theorem is proved in [LL73].

For the simple task model used by Liu and Layland this meaatttte
critical instant for the entire system will occur when alika are released si-
multaneously. Liu and Layland also present a utilizatiosdobschedulability
test under the assumption of independent tasks that haviireEsaequal to
their period O; = T;). Furthermore, priorities must be assigned according to
rate monotonic (RM) priority ordering, stating that the ghothe period of a
task, the higher the priority. The schedulability test fonumber of tasks in
the system is then as follows:

< /n _
; T, <n 1)

Stating that the total utilization (achieved by summing Upask utiliza-
tions C; /T;) must be lower than or equal to the expression on the rightl han
side. This schedulability bound approaches about 68£2)( whenn ap-
proaches infinity. This schedulability test, although vemnple, provides
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an onlysufficientcondition under which the task set is schedulable. That is,
while guaranteeing schedulability upon passing the thstfdsk set may still
be schedulable upon failing the test.

e A schedulability test providing only sufficientcondition means that if a
task set passes the test, it guarantees that all deadliidsewiet under
any circumstances. However, if the task set does not padeshethe
task set might be deemed schedulable with some other tegtindPit
another way, a sufficient condition might place unnecedsarg restric-
tions to be able to guarantee schedulability.

e A schedulability test providing only aecessarycondition means that
the task set can not be schedulable upon failing the scHatityldest.
However, passing the test does not guarantee scheduylalfilitting it
another way, a necessary condition is insufficient to be tabdgiarantee
schedulability. A trivial example of a necessary conditi®that the total
utilization must not exceed 100%.

A schedulability test providing bothecessary and sufficiembnditions
means that upon passing the test the task set is schedutablgpan failing
the test the task set is unschedulable. The necessary diuiestifcondition
also means that the schedulability teseisact Such a schedulability test,
for the simple Liu and Layland task model, is provided by gponse-time
analysis(RTA) method. RTA consist of calculating response times foraakt
and comparing them with corresponding task’s deadlinestsTidat merely
provide a sufficient condition are also denoteépproximatdests, since, e.g.,
overestimating worst case response times will never wrdlygfleem a task
set as schedulable.

3.1 Basic RTA

Joseph and Pandya presented the first basic RTA for the sitiypded Layland
task model [JP86]. The task model for basic RTA is as follokgask 7; is
specified by:

e Aperiod,T;, specifies either the period of a periodic task or the minimum
inter-arrival time of a sporadic task.

e Worst case execution tim€;;, specifies the longest time it takes to exe-
cute the code of the task if it could run on the CPU uninteediyt
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e Deadline,D;, specifies a constraint on the completion time of the task.
The task must finish no later thdpy time units after it has been activated.

e Priority, P;. A user defined integer value. As opposed to rate monotonic
schedulability analysis, priorities can be set arbityaril

In addition, the following assumptions must hold in ordertfee analysis to be
valid:

e Tasks must be independent, i.e., there can be no synchtionibetween
tasks.

e Tasks must not suspend themselves.
e Deadlines must be less or equal to corresponding peri@dshi. < T;.
e Tasks must have unique priorities.

The following formula determines the worst case respomse,if?;, of taskr;:

R;
R =C;i+ Z [TJ(JJ
Vj€hp(i)
Wherehp(i) is the set of all higher priority tasks tg.

The smallest positive value which satisfies the above equatirresponds
to the worst case response time. Sitit;eoccurs both at the left and right side
of the equation, it cannot be solved directly. Algd, cannot be factored out.
However, the equation can be numerically solved by theiallg recurrence
relation:

R?
R = Ll
' ’ Z {Tj-‘ !
Vji€hp(i)
which can iteratively be solved using fix-point iteratiorRW91, ABT"93].
Starting withR? = C; and iterating untilR!*! = R? is guaranteed to yield
the smallest possible solution and thus the response time f8H98]

EXAMPLE 3.1 (RESPONSETIME CALCULATIONS ) Asan example, consid-
er the task set in table 3.1 on the following page where theripiés H, M, and
L denotes high, medium, and low respectively.

in order to guarantee convergence either 1) one must enswi@laask utilization is not
greater than 100% or 2) one can stop iterating wh&h > D;, i.e., a deadline violation has
occurred.



20 CHAPTER 3. RESPONSETIME ANALYSIS |

n | 4 1 4 H
Ty 6 2 6 M
T3 10 3 10 L

Table 3.1: Example task set

Below we show the fix-point iterations for calculating thepense time
of the lowest priority tasks. In the formulae we omit the subscript 3, so
Rk actually denotes?¥ (the kth iteration in the fix-point calculations when
calculating the response time of tasf. Figure 3.1 depicts these calculations
graphically. At the top of the figure, activation patterns tbe two higher
priority tasks,, andr,, are depicted. The progress of the fix-point iterations
is illustrated beneath, starting witR® = C3 = 3. Intuitively, R! is obtained
by accounting for interference from higher priority tasksidg 2°. The figure
indicates that bothr; and =, are activated one time each during that time,
interfering with 1 and 2 units of time, respectively. Hernge = 6. This
intuition applies to each iteration step untR* = 10 (higher priority task
interference duringR? is 3 and 4 time units, respectively). Higher priority
task interference durind?* is still 3 and 4 time units andt® = 10. Thus, a
fix-point has been reached and the response timefof; = R® = 10, has
been obtained.

R'=C;=3
s RO
R —C 2o ~ |y, =34+1+2=6
3+ T 1+ T 2 + 1+
g PRI
R2=C —|C — | Cy=342+2=T7
3 + T 1+ T 2 + 2+
3 [R2T [R2
R*=C —|c — | Cy=34+2+4=9
3 + T 1+ T 2 + 2+
[R3T (R3]
R =Ci+ |=—|C1+ |=|Cy=34+34+4=10
Ty T
e R4
RO=C3+|—|Ci+|=—|Co=3+34+4=10
Ty T

R® = R* Fix-point has been reached!
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Figure 3.1: Fix-point iteration example
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SinceR3 < D3, and assuming; andr, also meet their deadlines, the task
set is schedulable, i.e., all tasks will, under all run-tikicumstances, meet
their deadlines.

One can view the fix-point and RTA equations as: when the tati exe-
cution demand meets the supply of the CPU, all tasks havééditheir exe-
cution, and thus a fix-point has been reached. Figure 3.2tdapis viewpoint
for the example above. The execution demand of tagks, andrs are high-
lighted separately and the fix-point iterations steps &ustitated by the dotted
line, with eachR* marked with a black dot.

Execution

A R3
10+ Fixpoint has been

1 Execution reached when supply

demand of meets demand
8 T1, T2 and T3
6 @iy
: The supply of the execution
resource, CPU

4

[ YRR
2+ Fix-point iteration steps

t >
10 Time

Figure 3.2: lllustration of fix-point iteration steps

3.2 Extending and applying RTA

There have been numerous extensions made to this basimsespme anal-
ysis. These extensions aim at either lifting some of theriotisins made in
the assumptions in section 3.1 or extending the capabiliiehe task model.
Some of the extensions improving the applicability of RTAAr

o Lifting the assumption of independent tasks Enabling task communi-
cation via shared (locked) resources, such as semaphdldsave the

2The RTA formulae for some of these extensions can be found ireAgig A.
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effect, on a task’s execution, of potential interferencodfom lower
priority tasks. Shat al. [SRL87, SRL9I0] introduced priority inheritance
protocols that solve the priority inversion problem whetask may in-
definitely be waiting for a lower priority task to finish. Foermore, they
also presented the priority ceiling protocol (PCP) whicavents dead-
locks. An even more important property of PCP is that thelitagtime
caused by lower priority tasks can be bounded and thus incatgd in
the RTA method. Algorithms to calculate blocking times faffetent
resource locking protocols can be found in [But97].

o Arbitrary deadlines. Lehoczky lifts the restriction of deadlines being
less than or equal to periods [Leh90]. Consequently, skirstances
of a task can be simultaneously active. The impact of thikas RTA,
for a taskr;, first has to determine the length of a level-i busy period
(processor is busy executing tasks with priority higher quas to 7;).
During that busy period; may have been activated several times, and the
worst case response of is the maximum of all of those corresponding
instance response times. Lehoczky provides two sufficightation
based schedulability tests, while Tindell extends the Ri#nulae and
thus provides both a sufficient and necessary test in [Tin92a

e Accounting for jitter . This is an extension of the basic task model by
considering variations in task periodicity, so calledejitt This kind of
variation could occur, e.g., due to precedence constraiets the ac-
tivation of a task is dependent on the completion of anotiitecould
also depend on the arrival of a message if analyzing a diséibsys-
tem. Depending on the variation in execution time (or messamding
time in case of a message) of the predecessor, the actitibe suc-
cessor may vary, even if the predecessor is activated pesiyd The
deviation from perfect periodicity (can also be viewed asdffference
between the earliest and the latest possible release df atasessage)
is calledrelease jitter Rajkumar first reasoned about jitter in [RSL88],
and it became more explicitly addressed by Tindell and Aeydet al.
[Tin92a, ABT93].

e Analyzing other devices RTA was originally designed for analyzing
the CPU. However, the basic RTA has been extended to haridie dx-
vices such as communication and hard disk devices. BasicaR$Ames
a preemptive task model, i.e., when a higher priority taglelisased, it
preempts (interrupts) the execution of the currently rogr{iower pri-
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ority) task. When modeling, e.g., communication devicehiaccCAN
and ATM networks, this assumption becomes invalid. A messagch
has been granted the device has access to the device unpletan.
The Controller Area network (CAN) can be seen as a non-préeenp
fixed priority schedulable resource. In [THW94] Tindell, i4aon, and
Wellings extend RTA to analyze message passing in CAN. Eamed
Hannson, and Sjédin (now Nolin) shows how RTA can be appbesht
alyze traffic in an ATM network [EHS97, Sj000]. Tindell and iBs also
provides a method to calculate response times for hardirealmulti-
media disks [TB94].

Fault tolerant systems S. Punnekkat extends the worst-case response
time analysis to include fault-tolerant real-time taskdemvarious fault
tolerant strategies with the assumption of a known minimuoteriarrival

time between faults [Pun97].

Distributed systems In [TC94] Tindell and Clark apply RTA in a dis-
tributed context where the communication channel is alkedaled and
analyzed by RTA. With these results, end-to-end responsestcan be
calculated for tasks scheduled in a distributed systemcedence re-
lations among tasks (and messages) are modelled by relgasd k.,
variation in the response time of a predecessor becomeseejitter for
the successor.

Modeling OS overhead In order for RTA to be used in engineering
practice it has to be able to efficiently model real world &ftons. One
such reality is to model operating system overhead. Two elesrof
taking scheduler overhead into account is Katastesl. [KAS93] and
Burnset al. [BTW95].

Temporal dependencies — Introducing offsetsFor all above methods
it is assumed that tasks are arbitrarily phased, which migatshe crit-
ical instant assumption of simultaneous release of allstaskn fact
possible at run-time. In systems where tasks are tempatafigndent,
and thus can not be activated simultaneously, the critisahnt assump-
tion of [LL73] becomes pessimistic. Tindell introduced thsk model
with offsets [Tin92b] with a corresponding RTA. Palenciati&wrez and
Gonzalez Harbour formalized and extended Tindells worlPi@98] by
allowing unlimited release jitter and by introducing dyriamffsets.
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A more detailed discussion of some of these improvementshedaiound in
A Practitioners Handbook for Real-Time Analysis [KR®9]. This book is
focused on a practitioner’s point of view and thus aims atyapg RTA in an
engineering context. A historical perspective of realetisecheduling research,
where RTA is a big part, can be found in [S%04]. This thesis focuses on
the task model with offsets and improves upon the correspgrapproximate
RTA.

3.3 RTA for tasks with offsets

Basic RTA relies on the critical instant assumption thatasks are released si-
multaneously. This becomes a pessimistic assumptionresults in unneces-

sary long response-time estimates if task activationsesn@orally dependent.

This section will give an overview of RTA for tasks with oftses presented in

[PG98].

3.3.1 Task model

A system,T’, consists of a set of transactiond’;,...,I'y. Each transac-
tion T'; is activated by a periodic (or sporadic) sequence of eveittsperiod
(minimum inter-arrival time);. The activating events are considered mutually
independent, i.e., phasing between them is arbitrary. Wsaetionl’; contains
IT;| number of tasks, and each task is activated when a relatieedenoted as
offset elapses after the arrival of the external event. Offsesexiuto express
the temporal dependency between releases of tasks.

A task is denoted by;;, where the first subscript, denotes which transac-
tion the task belongs to, and the second subsgcrigtenotes the number of the
task within the transaction. A task is defined by a worst casewgion time
(Cy5), an offset O;;), a deadlineD;;), maximum jitter (/;;), maximum block-
ing from lower priority tasks 3;;), and a priority {;;). The system model is
formally expressed as follows:

r={Ty,...,T}}
Fi ::<{Ti1, [N aTi\Fi|}aTi>
75 :=(Cij, Oij, Dij, Jij, Bij, Pij)

There are no restrictions placed on offset, deadline erji#.g., they can each
be smaller or greater than the period.
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Parameters for an example transactidy) (with two tasks ¢;1, 7;2) are
depicted in Figure 3.3. The offset denotes the earliesasel¢ime of a task
relative to the start of its transaction, and jitter (ilkagéed by a shaded region)
denotes the variability in the release of the task, i.e.,atial task release
can occur anywhere in the shaded region. The upward arromstelearliest
possible release of a task, and the size of the arrow comeéspo the released
task’s worst case execution time.

Oiz=5 Ji2=1
— 1]
Oi1:2 Ji1:8
e \
Ti=10
| Cu=2 Tci2=l |  Time

I

0 1 2 3 4 5 6 7 8 9 10

Figure 3.3: Example transaction

In [PG98] dynamic offsets are introduced, i.e., offsets magy between
different activations of a task. However, dynamic offsetsraot part of the task
model. Rather, they are modelled by static offset and jiftbe definition of a
dynamic offsetO;ij, is that it may dynamically vary between a minimum and
a maximum value:

Osz c [Ozzlln?Ome]

This dynamic offset is modelled by the static offséX () and jitter ¢/;;),
producing a new offset¥;;) and jitter ¢J;;) term, as follows:

/ min
0, = o
7 - max min

Dynamic offsets are often dependent on response times wbpretasks
in the transaction. Response times, in turn, are dependetitese dynamic
offsets. The solution to this problem is similar to that ofcc#ating response
times for tasks with jitter in a distributed system, i.earihg with response
times as zero, and iterating until a stable solution is agug¢TC94].
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3.3.2 Exact analysis

Let ., denote theéask under analysts In the classical RTA (without offsets)
thecritical instantfor 7., is when it is released at the same time as all higher
priority tasks. In a task model with offsets this assumpti@ids pessimistic
response times since some tasks can not be released siaauitiy due to
offset relations. Therefore, Tindell relaxed the notiorekfical instant to be:

At least one task in every transaction is to be released atritie
ical instant. (Only tasks with priority higher tg,, are consid-
ered.) [Tin92b]

Since it is not known which task coincides with (is releas8dtlze critical
instant, every higher priority task in a transaction mudreated as aandidate
to coincide with the critical instant. Every possible cordtion of critical
instant candidates must be considered. Ngdt,,) denote the number of tasks
in transactiorl’; having priority higher tharm,,,.

The number of possible critical instant combinations tanixe, when cal-
culating the response time foy,, is:

(Nu(Tua) + 1) H Ni(Tua)
Vitu
That is, all possible combinations of higher priority tagksuding 7,,,,* must
be considered.

Since task attributes such as deadline and jitter are atldavébe larger
than periods, several instances of a task may be activetsinedusly. Thus,
previously activated instances can interfere with the etiec of a subsequent
instance. So, RTA must take this into consideration. Thaitioh behind
the RTA formulae (for details see paper A, B, or C and ApperAiaf the
corresponding papers) is as follows:

e For each critical instant combination, assuming we argéasted in the
response time of,,,, do:

1. Calculate the worst case busy period where the processmsy
executing tasks with higher or equal priority tasks than

2. In that busy period a number of instances.gf are released. Cal-
culate the response time for each such instance.

3This can be read aask under analysias well as task belonging to transactioR,, .
4Hence thet1 for T',,, the transaction of,,.
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e The worst case response time fg, is obtained by selecting the maxi-
mum of all such calculated instance response times.

This however, becomes computationally intractable (regmes an NP-com-
plete algorithm which grows exponentially with the numbétasks [PG98])
for anything but small task sets. Hence [Tin92b] introduaesapproximate
RTA algorithm with polynomial complexity.

3.3.3 Approximate RTA

The combinatorial explosion in cases to consider, makeexhet analysis in-
tractable. The heart of the approximate method, introdbgeidndell [Tin92b],
is to reduce the number of cases to explore.

During RTA, when calculating a transaction’s interferenne,,, the exact
analysis relies on information about which task in eachdaation that coin-
cides with the critical instant. Since this is not known, &xact analysis tries
every possible combination globally in the system. The axipnate algorithm,
however, approximates transaction interference by omgiciering each task
within its corresponding transaction as coinciding wité thitical instant. The
one resulting in the highest interference, at each poininie,tapproximates
the transaction’s interference. That is, the approximataasaction interfer-
ence is the maximum of all variants at each point in time. Bstrieting its
view locally within a transaction, the number of cases [Pinphas to consider
becomes:

(Nu Tua + 1) Z N Tua

Vitu

We get an additive instead of a multiplicative effect in theniber of cases
to consider. In order to reduce some pessimism, [PG98] @wonet to use
this approximated transaction interferencelfgr(the transactiorr,, belongs
to). Instead, they use the exact method by testing everyhplitySor T",,. The
number of critical instant combinations to consider thecooees:

(Mulua) +1) + 3 Ni(rua)

Vitu

This is the variant represented in Appendix A of papers A, @ which
also includes further discussions and complete formulae.
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CHAPTER4
Thesis contributions

This thesis presents scientific contributions in the are@sonse-time anal-
ysis (RTA) for tasks with offsets, presented by Tindell [g2b] and Palencia
Gutiérrez and Gonzéalez Harbour [PG98]. This chapter sumzesand dis-
cusses the impact of these contributions.

4.1 Problem formulation restated

In order to meet the challenges of reliability and safetyunesments in face
of the ever increasing complexity of real-time functiohaldevelopers need to
have adequate development and analysis tools at theirsdispo

One of the most important aspects of real-time systems tsttlest must
exhibit a predictable timing behavior. Furthermore, theggems are also of-
ten embedded in larger systems where resources often ace sdderefore,
models and analysis tools aiming at predicting the tempuehhvior in a re-
source constrained environment, are of great concern. @ofersethod is the
Response-Time Analysis (RTA) method. By analyzing respdimes, RTA
aims at predicting the systems worst case timing behavior.

This thesis investigates to what extent RTA can be extenddi an in-
dustrial development context of predictable embeddedtie@ systems. In
particular, we will:

1. Investigate how RTA could calculate more accurate less pessimistic,
response times which would reduce the resource consumiptidhese
systems.

2. Investigate how to make the current RTA analysis methaute refficient
with respect to analysis speed. The goal is to achieve anesffiRTA
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which is able to handle large enough task sets for handliaigndustrial
applications.

3. Furthermore, we investigate how a task model with offaat$the cor-
responding RTA could improve the design process in the dpveént of
embedded real-time systems.

4.2 Summary of contributions

The contributions of this thesis, in the context of RTA foska with offsets,
consist of:

(1) A Technique that enables tighter approximate resptingeestimates.

(2) A Technique that enables considerably faster analyisgpproximate
response times.

(3) A Technique that enables the combination of (1) and (2)ria single
analysis method.

(4) Quantitative evaluations of the above techniques.

(5) Showing how RTA for tasks with offsets can simplify thesig trade-
off between static and dynamic scheduling.

These contributions are presented in papers A, B, C, and @hvelne enclosed
in part Il of this thesis. These papers are:

Paper A Jukka Maki-Turja and Mikael Nolin.Tighter Response-Times for
Tasks with Offsets. In proceedings of Real-time and Embedded
Computing Systems and Applications Conference (RTCSAJhGo
enburg Sweden, August 2004.

Paper B Jukka Maki-Turja and Mikael NolinEfficient Response-Time An-
alysis for Tasks with Offsetdn proceedings of the 10th IEEE Real-
Time Technology and Applications Symposium (RTAS), Tooont
Canada, May 2004.

Paper C Jukka Maki-Turja and Mikael NolinFast and Tight Response-Times
for Tasks with OffsetsTo appear in proceedings of 17th EUROMI-
CRO Conference on Real-Time Systems (ECRTS), Palma de Mal-
lorca Spain, July 2005.
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Paper D Jukka Maki-Turja, Kaj Hanninen, and Mikael NolirEfficient De-
velopment of Real-Time Systems Using Hybrid Schedulifgyap-
pear in proceedings of international conference on Emlub&ys-
tems and Applications (ESA), Las Vegas USA, June 2005.

I have been the main author and the driving force in devefpthie ideas pre-
sented in these papers which have been supervised by Mikdial IRor paper
D, Kaj Hanninen provided the basis for the case study thatawided in the
paper.

In sections 4.3 to 4.6 the contribution of each paper is @rrtetailed,
followed by description of the collected contribution angpact of this thesis
in section 4.7.

4.3 Paper A

Jukka Maki-Turja and Mikael Nolin.Tighter Response-Times for
Tasks with Offsets. In proceedings of Real-time and Embedded
Computing Systems and Applications Conference, Gotherbwe-
den, August 2004.

Paper A shows how existing approximate RTA for tasks witlsetf [Tin92b,
PG98] result in unnecessary pessimistic response timeseWgal and exploit
a misconception, resulting in an overestimation of high@rity task interfer-
ence in the response-time formulae, dating back to ther@igesponse-time
analysis presented by Jospeh and Pandya [JP86]. This roesution has gone
undetected because overestimation in higher priorityitgskference does not
produce any pessimism in response times for the classicdehay for the
exact analysis for task with offsets. This is due to the fhat fix-point con-
vergence cannot be reached during time intervals whereoti@sestimation
occurs. However, using approximate RTA for tasks with affsthis overesti-
mation produces overly pessimistic response times. Thitesdrom the fact
that the overestimated interference-function is not usestly in the fix-point
iterations, instead they are first subjected to a maxingadtinction. This situ-
ation can be compared to arithmetic calculation with roahge floating point
values (integers); the most accurate result would be adaiy using floating
point values, and only at the end do the round up, insteadunfdiog up every
value before each calculation step.

In the paper we redefine the interference function, redueg#ssimism,
and show how the corresponding response time formulae ehakg@rmal
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proofs show that our modified RTA never yield response tirhas are longer
than those obtained with [Tin92b, PG98], and that it stibydes safe, i.e.,
never underestimates, response times.

Using this new interference function, imposed interfeeeas we call it,
significantly shorter response times can be obtained. @itioul results show
that typically 15% tighter (i.e. shorter) response timeloaobtained compared
to [Tin92b, PG98]. In certain situations the response tiae loe improved
upon (tightened) by more than 50%. In the special case with @me high
priority transaction, corresponding to, e.g., a staticslcite (see paper D), our
approximate method yields exact response times.

On the downside, our algorithm has to pay a penalty of slowepdint
convergence, and thus longer analysis time. Since it mddglser priority
task interference more accurately, it needs more iteratieps to reach a fix-
point.

4.4 PaperB

Jukka Maki-Turja and Mikael Nolin Efficient Response-Time An-
alysis for Tasks with Offsetdn proceedings of the 10th IEEE Real-
Time Technology and Applications Symposium, Toronto Canad
May 2004.

In paper B we address the analysis time of the approximate fefAasks
with offsets. We present a technique which enables an effigieplementa-
tion of the RTA method presented in [PG98]. The resultinghudtcalculates
response-times in a considerably shorter analysis time.

The main effort in performing RTA for tasks with offsets is ¢alculate
how higher priority tasks interfere with the task under gl The nature of
this interference is that it exhibits a repetitive periopiittern for each transac-
tion. Furthermore, within that period it increases at digepoints in time. The
essence of our method is to calculate and store this infawméte., the dis-
crete points for the duration of one period) statically andrd fix-point calcu-
lations, use a simple table lookup. We formally prove thatRTA-equations
can be reformulated to allow such a static representatioasfinterference.

Simulations show that the speedup for our method comparfiGe8] is
substantial. For realistically sized task sets (100 tagiexforming schedula-
bility analysis for an entire task set gives speedups of ab0uimes. Since
we have reduced the complexity the relative improvemeritheileven higher
for larger task sets, which means that arbitrary large sggeedan be achieved
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by just scaling up the task set. In an on-line RTA context, @g-line admis-
sion control, where interference from tasks in the samesaetion as the task
under analysis can be ignored, our method outperformsqarsvinethods by a
factor of more than 100 and reduces the actual time from thHsedond to the
microsecond range, for the task sets considered.

4.5 PaperC

Jukka Maki-Turja and Mikael NolinFast and Tight Response-Times
for Tasks with OffsetsTo appear in proceedings of 17th EUROMI-

CRO Conference on Real-Time Systems, Palma de MallorcanSpai
July 2005.

In this paper, we bring together the two independent imprems of paper A
and paper B. The method in paper B for fast analysis is nottjrapplicable
for the tight analysis of paper A. The enabling factor foratistrepresentation
of the original approximate RTA [PG98] is that the higheropity task inter-
ference has a periodic pattern and that it increases ateti#sppints in time.
Our tight method, presented in paper A, defines a new intréer function
which does not increase at discrete points in time and theis dpproximate
interference will not exhibit a simple periodic pattern.

In paper C, we find a repetitive pattern also for the approtérmaposed in-
terference of paper A. We show how this continuous interfeggunction can
be represented and approximated by a discrete interfefancéon without
losing any precision in resulting response-time estima®esofs are provided
to show that all of our manipulations are safe and producednee response
times as those in paper A.

In a simulation study we obtain speedups of more than twars@fanagni-
tude for realistically sized tasks sets compared to thd &ighlysis (essentially
the same result as comparing the original approximate RTE{®98] with
our fast approach in paper B). We also demonstrate that tteafal-tight an-
alysis has comparable execution time to that of the fastyaisalWe see that
introducing pessimism in modeling the interference fumtin points where a
fix-point can not be reached, we completely eliminate theafigrntroduced
by our tight analysis presented in paper A. Hence, we corcthdt the fast-
and-tight analysis is the preferred analysis method whetrefaalysis and tight
response-times estimates are needed. We do not need ficeaarcuracy for
speed, both are obtained with the fast-and-tight analysis.
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4.6 PaperD

Jukka Mé&ki-Turja, Kaj Hanninen, and Mikael NolitEfficient De-
velopment of Real-Time Systems Using Hybrid Schedulifigap-
pear in proceedings of The 2005 International Conferenciron
bedded Systems and Applications, Las Vegas USA, June 2005.

This paper is an engineering paper showing how RTA for tasitsaffset can
be used in an industrial setting.

When developing real time systems, there is a design tradi@ afioos-
ing scheduling strategy. Two of the most commonly used adiragistrategies
are the static off-line scheduling and the dynamic fixed risicscheduling.
Since both scheduling strategies have their pros and cdamgyrad static and
dynamic scheduling model would simplify the design traflebfvhich sched-
uling strategy to choose. Choosing the most appropriedéesfy for each func-
tion, instead of force-fitting it to an overall strategy faetentire system, will
simplify this trade off. Furthermore, such a hybrid systest anly simplifies
the design choices but also gives the possibility to saviesysesources and
improve responsiveness.

Even though there have been successful attempts in in@ipgboth stra-
tegies in the same system, most provide only best efforicete dynamic
tasks [Arc, FIx]. In this paper we show how RTA for tasks witffset is able
to model such a hybrid system and provide tight response-ginarantees also
for dynamic tasks.

An industrial case study at Volvo Construction Equipmerdl[\sing the
commercial real-time operating system Rubus by Arcticus[Alemonstrates
how this approach enables more efficient use of computdtiesaurces, re-
sulting in a cheaper or more competitive product since manetfonality can
be fitted into legacy, resource constrained, hardware.

4.7 Impact of contributions

This section outlines potential impact of the contributiqeresented in this
thesis.

4.7.1 Impact of fast and tight RTA

A tight RTA has the benefit of not overestimating resourceshé case of RTA,
the resources consist of processing (CPU) power. While rtaafyg reducing
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the system utilization at run-time, RTA is able to guararseleedulability for

task sets with higher utilization since the overestimationesponse times is
reduced. The exact analysis for tasks with offsets is, ofsmuthe tightest
possible solution to use. However, itis computationaltyaotable for anything
but small task sets. Thus, the approximate RTA is a good “offgdend the

tight RTA presented in this thesis produces the tightegiaese times of all
comparable approximate methods available.

RTA is not only used as a schedulability analysis tool, big &so used in
a wider context. For example, schedulability analysis réqomed in the inner
loop of optimization or search techniques such as taskat&iassignment and
control performance enhancement.

Many task attribute assignment techniques have a schelitylabest by
RTA to test if a certain attribute configuration yields a stilable system. For
example, Gutiérrez Garcia and Gonzalez Harbour presentteothfor priority
assignment for tasks and messages in [GG95]. Bate and Blsmprasent a
method to assign priorities, offsets, and deadlines whaoh e€onfiguration
is tested by a schedulability test [BB99]. Sandstrom andstom (former
Eriksson) present a genetic algorithm approach where ti@idim assigns
task offsets and priorities in order to fulfil original moremplex constraints
[SNO2].

Cervin recognizes in [Cer99] that in achieving high conpretformance,
one needs to incorporate scheduling information in therobdesign. He pro-
poses an attribute (deadlines and priorities) assignmegatitam for enhanc-
ing control performance. Also, this algorithm relies on hestulability test to
ensure that a control enhancement step does not violatdidabdity.

Since RTA is performed several times to test if a configuraiscschedula-
ble, task attribute assignment and control performancamgment methods
require the implementation of RTA to be efficient in order ®useful in en-
gineering tools. One can deduce that since RTA can be useedbstically
sized task sets with hundreds or even thousands of tasksthase methods
could be applied to larger class of systems using such an Rithaod. These
methods would, most probably even to a higher degree thanitRgh, benefit
from a fast RTA since the it is performed repeatedly for maiffeient con-
figurations. The number of configurations to test can be attleousands for
solving a problem such as task allocation.

With the combined fast and tight RTA method presented inttiesis, the
traditional trade-off situation between a fast RTA on onadjaand accurate
response times on the other, is eliminated. This nght and fastmethod
exhibits the most accurate response times as well as tresfastalysis time
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among all comparable approximate RTA methods.

4.7.2 Impact of RTA in an engineering context

The task model with offsets simplifies the design trade-effieen static and
dynamic scheduling by enabling a choice between them onfapetion level
instead of system level. An offset relation represents gpteal dependency
between the activation of two tasks. Offsets can be viewedmaedeling con-
cept, i.e., itis used to model situations where tasks haapdeal dependencies
among them, in order for RTA to produce more accurate regptimes. Ex-
amples of offsets used as a modeling concept contains sgieading tasks
and precedence constraints.

With the task attributes, jitter and offsets, one can maatgts that suspend
themselves. Palencia Gutiérrez and Gonzalez Harbour sh¢RG98] how
a task which suspends itself can be modelled by two separsis.t Assume
that a task suspends itself fSrtime units. This task would be modelled as
one transactionl{;) consisting of two tasks;;, corresponding to code before
suspension, and;», corresponding to code after suspension. The activation
time of 7,2 depends on the completion time ©f and the suspension tinte
Thus offset and jitter for;, will be: O;2 = S+ REC andJ;, = RV¢ — REC
(where REC denotes best case response time, for which it is always safe t
assume zero, and"’ ¢ denotes worst case response time).

We see that for self suspending tasks, the latter task'sagictn is depen-
dant on the former task’s completion. This kind of effecoadgpears in ana-
lyzing distributed systems where tasks and messages hesedance relations
[PG98]. A task which depends on the completion of a precetdiskor the ar-
rival of a message will be assigned an offset. The offsehisidase represents
the minimum delay relative to the event that triggered thagaction, the task
will suffer before it will be released for execution. Thegit, on the other hand,
represents the longest possible delay before the tasleizsed.

Offsets can also be viewed as a design concept where theyecaseld to
achieve some other goal. However, in order to use offsetslasign parame-
ter, the run-time system has to be able to enforce thesaaff8aper D shows
such a situation where a static scheduler activates timeetred tasks, thus
enforcing offsets. Consider a real-time system contaicimgtrol functional-
ity, with control performance as the main goal, coexistirthwvent-triggered
functionality where high responsiveness is the main goamé&capabilities of
offsets as a design concept for such systems could include:
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e More complex constraints can be faithfully modeled Time-triggered
control functionality can be scheduled by a static schedarid assigned
offsets that the run-time system can enforce.

The main advantage of this approach is that it can use a polWaff

line scheduler with an expressive task model which can kandire
complicated task constraints. For example, in many corsyetems,
jitter is detrimental on control performance [Cer99, N@®g]. A static
scheduler could have, in addition to schedulability, a goaénhance
control performance by minimizing jitter. It can do this bgs&gning
offsets for sampling and actuating tasks in the system.

e A higher degree of responsiveness can be obtaineBy not only hav-
ing a priority to determine the degree of responsivenedsalba an ad-
ditional offset attribute, there exist better means togasstsponsiveness
where it is needed the most. Assume an approach, proposedriginC
and Bateet al. [Cer99, BNCO03], where the short sampling and actuating
part of the control functionality are modelled as separad&d with high
priorities and offsets in order to minimize jitter. The aataontrol cal-
culations in between could be given lower priority as longtdimishes
before actuation starts. The updating of the control statddc with
the same argument, be given even a lower priority as longfasshes
before next sampling. Then responsiveness of tasks widnigyriying
in between sampling and control calculation (or betweenadin and
updating control state) is enhanced.

Furthermore, the static scheduler can also be given antalgeo pro-
duce a schedule that enhances the responsiveness for tiiskewer
priority than those in the schedule by preventing long busyogls. The
highest degree of responsiveness for low priority tasksheiwhen the
static schedule contains equidistant gaps in the entiredsdé.

e Eliminating the need for synchronization protocols Another advan-
tage of being able to separate tasks in time, is that taskssiog shared
resources can use time separation by assigning offsetadhsitf using
expensive synchronization protocols.

The introduction offset concept in FPS systems brings posigs that
were previously exclusive for static scheduling. Beingeablchoose between
static and dynamic scheduling on a per function basis idstézaan overall
system level, simplifies the design trade-off betweencstatd dynamic sched-



38 CHAPTER 4. THESIS CONTRIBUTIONS |

uling. This will enable developers to use more suitabletagias for different
functionalities in a system.
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CHAPTERDS
Related work on tasks with offsets

This section describes some related work in the area of RTAafgks with
offsets, and their relation to the work of this thesis.

5.1 Variant of exact RTA

Redell presents a variant of the exact worst case RTA forstasth offsets
and release jitter in [RT02]. All tasks in the system may haugual offset
relations, not only tasks belonging to the same transacfidre approach is
to unfold the schedule for the duration of the least commoitiphe (LCM)
of all task periods and consider each task instance separatee worst case
response time for a task is obtained by selecting the tas#trios that results
in the longest response time. The main advantage of the ohéshits time
complexity over schedule simulation method presented ird@4]. However,
it still suffers from the complexity problems that all exd&TA methods for
offsets do. That is, having to investigate numerous possibtical instant
scenarios. Choosing the task periods unwisely, i.e. ivelatime periods, will
result in an even worse explosion in cases to consider.

5.2 Bestcase RTA

In systems where release jitter contributes to the reguhisponse times, as
for example, when analyzing end-to-end response timesistigtited system
[TC94, PG98], it is desirable to keep jitter as low as possibh [PGG9I8] Pa-
lencia Gutiérrez and Gonzalez Harbour tighten the worst casponse times
by calculating also a lower bound on the best case respansdfdr all tasks.
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Precedence-related tasks in the system are modelled toéad release jit-
ter. Atask is assigned an offset which corresponds to idquessors best case
response time, representing the earliest possible retédke task. The worst
case response time of the predecessor represent the lzdsiilp release of the
task. Thus, the difference between earliest and latesiselef a task will be
the succeeding tasks release jitter. By not assuming arfinitey small best
case response time for tasks, the release jitter is mindmience, the worst
case response time becomes less pessimistic. In [RS02}/IRed Sanfrids-
son provide an exact variant by identifying a favorableanstcorresponding
to the critical instant for the worst case RTA. The favorahitant will lead to
the shortest possible response time for a task. Anotherfibeheninimizing
jitter, is that it increases RTAs applicability for contreystems where small
jitter enhances control performance [Cer99, NG$, BNCO03].

5.3 Improving RTA using precedence information

In systems where tasks have precedence constraints sucstrésuted sys-
tems, RTA methods such as [TC94, PG98] can yield pessinissiglts, i.e.,
unnecessarily long response times. During RTA, many diffecritical in-
stant task combinations are considered. Each combinagguiits in a specific
mutual phasing between tasks. To obtain the response timeombination
resulting in the longest response time is chosen. Howewign, precedence
relations some of these combinations may become impossiblesider a task
chain (related by precedence) of three tasks with prierhigh, low, and high
respectively. Assume further a task of middle priority fdnieh we are inter-
ested to calculate the response time. In this situationyidelle priority task
cannot experience interference from both higher prioggks since they have
a low priority task between them. Using such precedencernmdtion, many
cases that can not occur at run-time can be ignored during Rihas, the
pessimism in resulting response times can be reduced. dtalkemd Harbour
introduced this concept for linear transactions, i.e., mwheach task can have
one successor [PG99]. Redell extended this approach o alliask to have
several successors, so called tree-shaped transactifiedf4].

5.4 RTA for earliest deadline first systems

Palencia Gutiérrez and Gonzalez Harbour provides an RTAadefor tasks
with offsets scheduled under earliest deadline first (EDQdReduling policy
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[PGO03]. The method highly resembles the fixed priority ceqgpart, and since
the exact analysis is computationally intractable theyid®a similar approx-
imate technique. However, the analysis time of the appraténtechnique is
significantly higher than for the fixed priority case. Sina#thoffset based
methods, the one for fixed priority and the one for EDF, candralined in
analyzing distributed systems, heterogeneous systenssstiog of some EDF
nodes and some FPS nodes can feasibly be analyzed for emdiiesponse
times.

5.5 Relation to work presented in this thesis

This thesis contributes to the theory of RTA for tasks witfsefs in fixed pri-
ority systems in two ways. First, by introducing the concefpimposed in-
terference, which more accurately captures the naturegbfenipriority task
interference, the approximate RTA is able to produce lessipustic response
times. Second, this thesis recognizes that higher pritagl interference ex-
hibits a periodic pattern which can be stored statically] daring fix-point
iteration perform a simple table lookup. This will resultdgansiderably faster
approximate RTA. The work of this thesis relates to the wodspnted in this
chapter as follows:

e Exact RTA. Since the improvement of this thesis focuses on the approx-

imate RTA, the relation to exact RTA work is limited. One pbggy
would be that the fast analysis technique of storing poiatdccalso be
applied to the exact variant. This would mean that pointsld/tave
to be stored for the smallest periodic pattern which wouldheeen-
tire LCM. One would have to further investigate the gain oftsan
approach.

e Best case RTASimilarly, to exact RTA, best case RTA of Redell [RS02]
is an exact approach. However, the work of this thesis andtk per-
formed on best case RTA are orthogonal in the sense that iting@yve
RTA in different and independent ways. The orthogonaligoaheans
that the improvements does not invalidate each other. Aumgl fRTA for
distributed systems with precedence (offsets and relétse [TC94,
PG98] can be further improved upon by applying the work of thesis
together with the work of best case response times [PGG982RS

e Improving RTA using precedence information. The work of applying
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high level precedence information aims at eliminating sakat can not
occur at run-time.

Our fast and tight improvements of higher priority task ifegeence, stat-
ically stored imposed interference, however, zeroes inrooie detailed
level of the analysis. Thus, the two methods are orthogdndhct, the
two approaches are complementary, in the sense that theyainsif us-
ing precedence information is achieved when jitter is végihjwhereas
the imposed interference method gives the most gain when i low.

Hence, it is an attractive approach to combine them in asiagproxi-
mate RTA method.

RTA for earliest deadline first systems The RTA method for EDF is
very similar to the one of FPS scheduled systems. The appedgime-
thod is defined the same way as for the FPS case. It seems thahbo
approaches of fast and tight methods for FPS RTA could b&htfar-
wardly incorporated into the EDF variant. However, one nmarsure
that the higher priority task interference exhibits a peidgattern in or-
der to store that statically. If that can be done the fast ptkttould have
an even greater impact on the analysis time of offset baséduRd@er
EDF since the number of calculations of interference is &ighan in
the FPS case.
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CHAPTERG
Conclusions and future work

6.1 Conclusions

What distinguishes a real-time system from other computstesys, such as
desktop systems, is how one views and deals with the notiimef For real-
time systems, correct temporal behavior is a vital part efayistem’s overall
correctness criteria. When developing hard real-time afetysaritical sys-
tems, the worst case temporal behavior must be guaranteledigh time.

The trend in developing embedded real-time systems is anreureasing
complexity in both the number of functions and the diversitfunctionality
[HMTNO5]. In order to meet the challenges of reliability asafety require-
ments developers need to have supporting development detimal analysis
tools at their disposal.

Response-Time Analysis (RTA) is able to predict and guagatsystem’s
worst case temporal behavior at design time. RTA is a widpplieable me-
thod, since it provides a schedulability test which is perfed as a repeated
step in several optimization problems. Examples includk &location and at-
tribute assignment, where a schedulability test is peréatfior every possible
configuration.

In order for RTA to produce precise response times, the taskefshould
reflect requirements on task constraints together with timetime system’s
possibilities and limitations, as accurately as possifilee task model with
offset aims at expressing temporal dependencies in taskatiohs. Conse-
quently, the pessimism of the basic RTA is reduced since#uktional critical
instant of simultaneous release of all tasks is no longesiptes Tasks with
offsets is a general task model that has been extended in weys; includ-
ing shared resources, jitter, arbitrary large or small tskbutes, and non-
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preemptive tasks. Thus, tasks with offsets and it's coordmg RTA is able
to accurately model many real situations, e.g., distridbated hybrid static and
dynamic systems.

This thesis provides contributions in the area of RTA by edieg the ap-
plicability of RTA for tasks with offsets:

e By further reducing the pessimism of calculated respomsedi We en-
able this by revealing and exploiting a misconception camog higher
priority task interference in the RTA formulae. A new congémposed
interference, is introduced which is able to produce tylhid®% shorter
response times than previous approximate methods. A tightas the
benefit of not overestimating resources, and thus, is #ttesfor use in
predicting the temporal behavior of embedded real-timéesys.

e By introducing techniques that enable efficient impleméore of the
RTA method. The essence of these techniques concerns Iighety
task interference. We recognize that this interferencéista repetitive
and discretely increasing pattern that can be stored aligfiand during
fix-point calculations simply perform an efficient table kap. Another
technique which speeds up the analysis is to introduce mpéessiwhen
modeling higher priority task interference. If the pessimiis intro-
duced in places where a fix-point cannot be reached, the fix-pal-
culation will converge in fewer iterations. The complexdf RTA is
reduced, and thus, arbitrary large improvements over pusvinethods
can be obtained by scaling up the task set size.

However, with realistically sized task sets, simulatiohevg that with
the techniques presented in this thesis, RTA will be at leastorders
of magnitude faster than with previous implementationss Tidicates
that RTA for tasks with offsets is efficient in being able totke larger
task sets such as those in real industrial applications.

e By combining the two independent improvements of fast aglut iRTA,
the traditional trade-off situation between a fast RTA o tvand, and
accurate response times on the other, is practically editath The re-
sulting tight and fastmethod exhibits the most accurate response times
as well as the fastest analysis time among all comparablezippate
RTA methods.

¢ By illustrating how RTA for tasks with offset can be used imgmction
with commercially available tools for analyzing hybrid sduled safety
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critical and hard real-time industrial systems. Being d@blehoose be-
tween static and dynamic scheduling on a per function bastead of
an overall system level, simplifies this design trade-offl eonsequently
the entire engineering process. Furthermore, the offseteq, viewed
as a modeling and design concept, facilitates simplificatibthe de-

velopment process, by modeling existing temporal depetidsnsuch
as precedence relations. Offsets as a design concepthéogdth run-

time support, extends the expressiveness and appligabflithe task

model by being able to introduce temporal dependencies grtazks.

Thus, the offset concept extends the applicability of RTA dgstems
with complex and mixed constraints. A system having tigtspom-

siveness, as well as control performance constraints, example of

a system with such complex and mixed constraints.

The RTA method allows the timing behavior of embedded riga¢:tsys-
tems to be accurately assessed at the design time of thensyBte contribu-
tions of this thesis consist of techniques that extend tipdicgbility of RTA by
making them more eligible for integration in developmemisdor embedded
real-time systems. Furthermore, we show how these cotitiits) taken to-
gether with previous and related work, can be instrumenttié development
of predictable real-time systems.

6.2 Future work

Future work in the field of RTA can take many different direas. This section
outlines, what | believe are the two most important ones. @tates specifi-
cally to the work of this thesis, while the other one appl®&RTA in general:

e Bring RTA for tasks with offsets into a real development conext.
The work of this thesis has been verified, by simulation gsidon a
conceptual level only. In order to validate the claims of ithgustrial
relevance of this thesis, the presented improvement tqubaimust be
implemented in commercially available development toold ased in
full scale development projects. An ongoing research ptojalled
MultEx!, in collaboration with an operating system and development
tool vendor, Arcticus Systems [Arc], will address this isstArcticus
Systems focuses their efforts on dependable safety dritpgalications.

IMultEx URL: http://Aww.mrtc.mdh.se/projects/multex/
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MultEx aims at providing development mechanisms and nleltgxe-
cution models that relieve some of the specification burdeheodevel-
oper. In achieving this, RTA plays a major part. With implertaion
of RTA in Arcticus’ development tools, real industrial $e¢fs can be
set up. And hopefully, in the long run, apply RTA in a real,| &dale,
development project.

Further reducing the pessimism of RTA The complexity of embedded
real-time applications is growing in both size and divgrsior RTA to
be useful for such applications, task models must be ablepess the
requirements of functionality as well as the possibilites! constraints
of the run-time systems, as accurately as possible. Tadksoffsets,
and the corresponding RTA, reduce the pessimism by beirgytalex-
press and introduce temporal dependencies among taskpe$hienism
is further reduced by techniques presented in this thestherQech-
nigues, reducing the pessimism, include best case resporesanalysis
[RS02, PGG98] and utilizing precedence information [Red®&99]
among tasks. However, Wadt al. recognize that traditional real-time
analysis models, such as RTA, are not applicable for largecamplex
real-time systems. The existing models are too simple torately cap-
ture the systems temporal behavior, resulting in a too pestc analysis
[WAN +03].

We believe that in order for RTA to be useful for large systéhas have
many mutual task dependencies, further studies of soufgeEseimism
must be conducted. An example of such a study would be toifgemtd

express dependencies in WCETS of tasks belonging to the sansat-
tion, instead of assuming WCET for each an every one of them.
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Abstract

We present an improvement to the analysis methods for edioglapproxi-
mate response times for tasks with offsets. Our improveredntlates tighter
(i.e. lower) response times than does earlier approximatiethods, and sim-
ulations show that the method, under certain conditionisutates the exact
worst-case response time.

We reveal, and exploit, a misconception in previous mettamfeerning
the interference a higher priority task poses on a lowerrgyitask. In this
paper we show how the generally accepted concept of “redldasexecution”
interference produces unnecessary pessimistic respiomse for the approxi-
mate response-time analysis (RTA), presented by Tind&lBpA] and Palencia
Gutiérrezet al.[PG98]. This concept of interference does not cause any pes-
simism in response-time analysis for tasks without off§e¢sther in the exact
analysis with offsets), and has thus remained undetectectiog years.

Instead, we propose the concept of “imposed” interferanbé&h more ac-
curately captures the interference a task causes a lowwitptiask. We pro-
vide formal proofs that “imposed” interference is neverht@gthan “released
for execution” interference and that it never underestimdhe interference
caused by higher priority tasks. We also show, by simulatiom randomly
generated task sets, that our improvement results in resgones that outper-
form previous approximate methods. A typical improvemesuits in about
12% better admission probability (more than 30% under teciecumstances
can be obtained).
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1.1 Introduction

A powerful and well established schedulability analysihtaque is theRes-
ponse-Time AnalysigRTA) [ABD t95]. RTA is applicable to systems where
tasks are scheduled in priority order which is the predontisaheduling tech-
nigue used in real-time operating systems today. RTA is datkto calculate
worst-case response times for tasks in hard real-timersgsteence, RTA can
be used to perform schedulability tests, i.e., testingsksain a system will
meet their deadlines.

In this paper, we reveal and exploit a misconception congihe interfer-
ence atask causes a lower priotégk under analysjone of the core concepts
of RTA. The essence of this misconception is that the amolinterference a
higher priority task is causing is occasionally overesteda The misconcep-
tion has its origin in the original RTA presented by Josepth Bandya [JP86]
for Liu and Layland’s classical task model [LL73]. In essendoseph and
Pandya’s RTA simulates the amount of execution-time quendte ready-
gueue of an operating system, i.e. when a (higher priorétsi is released for
execution, its execution time is added to the response tintleeotask-under
analysis. Hence, we call this concept for “released for etten” interference.
For traditional RTA, for tasks without offsets, this contell not cause any
overestimation of calculated response times. Howevergwillshow in this
paper, this concept is an overestimation of the interfexeand when perform-
ing approximate RTA for task with offsets, it results in unessary pessimistic
response times.

Accounting for offsets between tasks gives significantijhter response
times than using the traditional notion of a critical indtarhere all tasks in
a system are considered to be released simultaneously [LL773act, many
systems that will be deemed infeasible by RTA without offsgill be feasi-
ble when taking offsets into account. The first RTA for taskhwffsets was
presented by Tindell [Tin92]. He provided an exact alganitfor calculating
response time for tasks with offsets. However, this alparibecomes com-
putationally intractable for anything but small task sate ¢b its exponential
time complexity. In order to deal with this problem, Tindptovided an ap-
proximation algorithm, with polynomial complexity, whigfives pessimistic,
but safe results (worst case response times are never stideted).

Several researchers have extended the work provided bg[Tihathis pa-
per we focus on the approximate analysis, which was gemechiind formal-
ized by Palencia Gutiérrezt al. [PG98]. They introduced dynamic offsets, al-
lowed offsets and deadlines larger than period, and made Boprovement of
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the approximation algorithm. Palencia Gutiéregal. also provided improve-
ments in order to calculate tighter response times in cesi@iiations [PG99].
Redell further improved their work by giving a method to cddte even lower
response times [Red03].

However, both improvements [PG99, Red03] are only usefutig special
circumstances where task priorities are chosen in a patisay and task jitter
is extremely high.Hence, their improvements are of limited generality. The
focus of their methods is on finding infeasible executioreoschetween tasks
and removing these execution orders from the set of possiltieal instants.
The method we present in this paper is more general and cagtstforwardly
be combined with the above described improvements. In éastapproach
presented here is complementary to these approaches iartbe that the most
improvement for our method is achieved when jitter is low.

In this paper we present a novel interpretation of higheorjiyi task inter-
ference: “imposed” interference, with corresponding geato the response-
time formulae, which will result in less pessimistic resperiimes for tasks
with offsets using the approximation algorithm. We formglrove that res-
ponse times obtained with this novel method are never grdea the method
presented by Palencia Gutiérreizal. [PG98]. Furthermore, we also show that
our method does this without the risk of ever underestingatsponse times.

To quantify the improvements gained with our method we preae eval-
uation, showing that with our method presented in this paper can typically
gain about 15% lower response times in over 50% of the cassgglting in a
12% higher admission probability, compared to existingapimnate methods.
In more extreme cases (just one transaction) about 30%tagineission prob-
ability can be obtained.

Paper Outline: In section 1.2 we present the pessimistic “released for
execution” interference and introduce our novel concepiroposed” inter-
ference. In section 1.3 we revisit and restate the origiffakb RTA [Tin92,
PG98]. In section 1.4 we modify this RTA to use the conceptiofpbsed”
interference instead, and show some consequences and pfaadrrectness.
Section 1.5 presents evaluations of our method, and firsdigtion 1.6 con-
cludes the paper and outlines future work.

LPriority needs to be chosen so that transactions can ‘teteach other, and the jitter needs
to be in parity with, or greater than, the task’s periods.edihise the proposed improvements will
have little or no effect.
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1.2 The Concept of Interference

Classical response-time analysis for Liu and Layland'sopke task model
[LL73] (where a taskr; has a periodl; and worst-case execution-tinge),
presented first by Joseph and Pandya [JP86], states thabtheocase response
time, for a task under analysis;), occurs when it is released at the same time
as all higher priority tasks. Under this assumption the tase response time,
R; is:

R, =C; + Z interferencg(Ri) (1.2)

Vji€hp(t)

where(; is the execution-time of tagkhp(7) is the set of higher priority tasks,
andinterference(t) is the amount of interference tagkcauses during time-
intervalt. The interference formula presented by Joseph and Pan{}Rg6]:

. t

interference(t) = {TJ C;
where the ceiling expressions calculates the number ohriess of taskj.
Here the full interference on each task instar©g) occurs immediately when
the task is released. We denote this concept of interferaaceeleased for
execution” interference.

This, however, is an overestimation of the interference thactually can
experience. In fact, the interferenegperiencedy r; during a time interval
can never exceed the size of the time interval. Or more pehrcithe interfer-
ence experienced can never grow faster than the consideszddl. Formally,
the derivative of the interference cannot be greater thardérivative of the
time interval:

dinterference(t dinterference(t
dinterferencg(t) _dr_  dinterferencg(t) _ 5y
dt dt dt

THEOREM 1.1 Consider a task;, activated at time 0 and subsequently with
period 7}, having execution-timé€’; (0 < C; < Tj). For a positive time-
intervalt = kT; +t' (wherek € Nand0 < t' < Tj), kC; + min(t', C;) is

an upper bound on the interfereneg can impose on any lower priority task
during .

PROOF OF THEOREM 1.1 During k7}, 7; imposes an amount of interfer-
ence ofkC; (task instances are activated periodically), one instafoceevery
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period. During the remaining time intervat;, 7; can, according to equa-
tion 1.2, never impose more interference than the lengthefriterval itself.
Hence kC; +t' is an upper bound on the interferencg can impose during.

However, the last instance of (when activated’ = 0), cannot contribute
with more interference than its execution tidie Hence kC; + C; is also an
upper bound on the interfereneg can impose during.

Combining these upper bounds (by taking the minimum of threengyet
kC; + min(t’, C;) as an upper bound on the interferencecan impose dur-
Ingt. O

— — released for execution
imposed

[ee]
|
T

(2]
|
T

IN
i

interferencej(t)

N
1
T

|y
S S S S B O D B B B B B O R B R
01234567 8 910111213141516171819 20

Figure 1.1: Released for execution vs. imposed interferenc

We denote the concept of interference which is boundedtieyference(t)
and theorem 1.1 with “imposed” interference. As an examgesider a task
with T; = 10 andC; = 4. Figure 1.1 illustrates the difference between “re-
leased for execution” and “imposed” interferenceffer 0. . . 20. The released
for execution interference increases istapped staifashion, whereas the im-
posed interference increases islanted staiffashion (with a derivative of 1 in
the slants).

In figure 1.1 the shaded areas represent the overestimaside by the re-
leased for execution concept. For classical responseatiralysis this overesti-
mation has no effect on the calculated response time, argpli@nd Pandya’s
equation does yield exact worst case response times. Tearéa this is that
the response-time analysis calculation (which is done bgdixt iteration) has
no solutions in the shaded areas (as discussed furthertiorsdc4.3). Also
for exact RTA of task with offsets [Tin92] this overestinatidoes not yield
any pessimism in the calculated response times.
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1.3 Existing offset RTA

This section revisits the existing response-time analgsisasks with offsets
[Tin92, PGI98] and illustrates some intuition behind thelgsia and the for-
mulae.

1.3.1 System model

The system model used is as follows: The systénepnsists of a set df trans-
actionsI'y, ..., I'y. Each transactioh; is activated by a periodic sequence of
events with period; (for non-periodic event$; denotes the minimum inter-
arrival time between two consecutive events). The actigaiivents are mu-
tually independent, i.e., phasing between them is arpitrArtransactionI’;,
contains|T';| tasks, and each task is activated (released for executioah a
relative time offset elapses after the arrival of the external event.

We user;; to denote a task. The first subscript denotes which tramsacti
the task belongs to, and the second subscript denotes thieenwhthe task
within the transaction. A tasks;, is defined by a worst case execution time
(Cy5), an offset O;;), a deadline D;;), maximum jitter (/;;), maximum block-
ing from lower priority tasks B;;), and a priority ;). The system model is
formally expressed as follows:

[:={T1,...,T}}
Ui c={mi1, - 7y 1> Th)
Tij :=(Cij, Oij, Dij, Jij, Bij, Pij)

There are no restrictions placed on offset, deadline arjiite., they can each
be either smaller or greater than the period.

Event arrives Erliest possible release Latest possible release

» time

O” ‘JI]

Figure 1.2: Relation between an event arrival, offsegljitnd task release

The relation between event arrival, offset, jitter and tedkase is graphi-
cally visualized in figure 1.2. After the arrival of the evéhe taskr;; is never
released for execution until its offse?{;) has elapsed. The release may be de-
layed by jitter (maximally untilO;; + J;;) making its exact release uncertain.
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For a more extensive explanation of task parameters see8|P@arameters
for an example transactiol’() with two tasks ¢;;, 7;2) are depicted in fig-
ure 1.3.

Figure 1.3: An example transactidh

1.3.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for aask in the system
by calculating an upper bound on its worst case response tiNeuser,,
(taska, belonging to transaction,,) to denote theéask under analysjs.e., the
task who's response time we are currently calculating.

In the classical RTA (without offsets) thaitical instantfor 7, is when it
is released at the same time as all higher (or equal) pritarstys [JP86, LL73].
In a task model with offsets this assumption yields pessimissponse times
since some tasks can not be released simultaneously duéétd adlations.
Therefore, Tindell [Tin92] relaxed the notion of criticalstant to be:

At least one task in every transaction is to be released atrithe
ical instant. (Only tasks with priority higher or equal tg, are
considered.)

Since it is not known which task that coincides with (is relegat) the critical
instant, every task in a transaction must be treated@didateto coincide
with the critical instant.

Tindell's exact RTA tries every possible combination of diglates among
all transactions in the system. This, however, becomes atatipnally in-
tractable for anything but small task sets (the number ofiptescombinations
of candidates isn™ for a system withn transactions and withn tasks per
transaction). Therefore Tindell provided an approximalé fhat still gives
good results but uses one single approximation functiore&mh transaction.
Palencia Gutiérreet al. [PG98] formalized and generalized Tindell's work.
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We will in this paper use the more general formalism of Pae@utiérrezet
al., although our proposed method is equally applicable to dilisdoriginal
algorithm.

1.3.3 Interference function

Central to RTA is to capture the interference a higher or kqtiarity task
(7:;) causes the task under analysis.{ during an interval of time¢. Since a
task can interfere with,, multiple times during, we have to consider inter-
ference from possibly severiaistances The interfering instances of; can be
classified into two sets:

Setl Activations that occur before or at the critical instant dahdt can be
delayed by jitter so that they coincide with the criticaltars.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transadtigmve will consider
each taskr;. € T';, as acandidatefor coinciding with the critical instant.
RTA of tasks with offsets is based on two fundamental thesrem

1. The worst case interference a tagkcauses,,, is whenSetlactivations
are delayed by an amount of jitter such that they all occunettitical
instant and the activations $¥t2 have zero jitter.

2. The task of"; that coincide with the critical instant (denoted), will
do so after experiencing its worst case jitter delay.

The phasing between a task;, and a critical instant candidate,., becomes
(slightly reformulated compared to [PG98], see Append®):1.

(I)ij(; = (OU — (07(. + Ju‘)) HlOd TL' (13)

From the second theorem we get thatwill coincide with the critical in-
stant after having experienced its worst case jitter dékay,the critical instant
will occur at(O;.+ J;.) mod T;, relative to the start df ;. From this, the def-
inition of ®;;. follows in order to keep the relative phasing (of releases)rg
tasks withinl';. An implication of this is that the first instance of a tagkin
Set2will be released ab, ;. time units after the critical instant, and subsequent
releases will occur periodically evefy.

Figure 1.4 illustrates the four differed;;.-s that are possible for our ex-
ample transaction in figure 1.3. The upward arrows denotertdsases. The
height of the upward arrows denotes the amount of executieased.
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Figure 1.4(a) shows for the case that coincides with the critical instant,
the invocations irSetl(arriving at time 0) and the first invocations 8et2
Figure 1.4(b) shows the corresponding situation whgris the candidate to
coincide with the critical instant.

®,,=5
: ®,,=2
Iy Tril
T T2 s
| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
(@) Tic = Ti1
®,,,=9
®,,=6
}: z-|1 T Til
T|2 TTIZ >
| | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
(b) Tic = Ti2

Figure 1.4:9-s for the two candidates ify;

Given the two sets of task instanc&ef{landSet3 and the corresponding
phase relative to the critical instanik ), the interference caused by task
can be divided into two parts:

1. The part caused by instancesSat1(which is independent of the time
intervalt), I°¢", and

2. the part caused by instancesSet2(which is a function of the time
intervalt), I>¢94¢).

' ije

These are defined as follows:

T+, t— P,
= V] ; ”CJ Ciy  I3eAt) = [T, ”ﬂ Cij  (1.4)
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The interference transactidh poses orr,,, during a time intervad, when
candidater;. coincides with the critical instant, is:

Wie(Tuart) = > (I3+ IRAL)) (1.5)
Vi€hpi(Tua)

Wherehp;(1..) denotes tasks belonging to transacfignwith priority higher
or equal to the priority of,, .

1.3.4 Approximation function

Since we beforehand cannot know which task, in each traosactoincides
with the critical instant, the exact analysis tries everggible combination
[Tin92, PG98]. However, since this is computationally &atiable for any-
thing but small task sets, the approximate analysis definesmgle, upward
approximated, function for the interference caused bysaationI’; [Tin92,
PG98]:

Wi (Tyart) = VCE%?E{TW) Wie(Tua,t) (1.6)
That is, W} (744, t) sSimply takes the maximum of each interference function
(for each candidate;,.).

As an example, consider again transacfigrdepicted in figure 1.3. Fig-
ure 1.5 shows the interference function for the two cand®l@l’;; andW;,),
and it shows howV; is derived from them by taking the maximum of the two
functions at every.

Given the interferencéX;*) each transaction causes, during a time interval
of lengtht, the response time of,, (R.,) can be calculated. Appendix 1.6
shows how to perform these response-time calculations.

1.4 Tight offset RTA

We begin this section with an illustrative example of how diigiinal analysis
overestimates the response time. Consider a simple trigms&g depicted in
figure 1.6 where jitter.(;;) and blocking B;;) is zero.

Also consider a lower priority task,,,, which is the single task in transac-
tion T, with C\, = 2. For this simplified task model whei®,; = J;; = 0,
D,. < T, only one instance of the task under analysis is active at amt
time. This means that the response-time formulae, for tiglesiower priority
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Figure 1.6: A simple example transaction
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task, presented in appendix 1.6, can be reduced and sirdbfie

Ryo = Cua + Z W: (Tuaa Rua) (17)
Vi#£u

The response-time calculation is performed by means ofdirtgteration
(starting withR,,, = 0) as follows:

Ilter#t ¢ Wi1 Wia Wi* R

I3
e

AwWNRFR O
woNO
ooN O
ADMDO
oo hO
moo N O

Where column “lter#” denotes the iteration number in the fixapiterations,

“t” the time interval, W;;,” and “W;,” denotesW,. (74, t) for the two candi-
date tasks;; andr;, respectively. " denotes the value di(7,,, ), and
“R,." the calculated response time for the iteration. In iterathumber 4 the
fix-point iteration terminatesK,,, has the same value as in the previous itera-
tion), and the calculated response timeRig, = 8. However, it can easily be
seen that a task witf',, = 2 can never be preempted by both tasksandr;,
since both tasks are separated by at least 2 units of idle timece, the actual
worst case response timehs,, = 6 and the response time is overestimated.

1.4.1 Using Imposed Interference

One property of the ceiling expressionlﬁi‘%t) in equation 1.4 is that it re-
turns the amount of interference “released for executidih@e ¢. This result
in a stepped staiinterference function. If we modify>24¢) in equation 1.4
so that it returns the interference “imposed’qR we get aslanted staifunc-
tion (as proposed in section 1.2). The two slanted stairtfons for our simple
example transaction from figure 1.6 are shown in figures 1&8{d 1.8(b).

The slanted stairs are obtained by modifyii§§4t) defined in equation 1.4
so that the “last” task instance, of the periodically adtebtasks irSet2 does
not interfere with its full execution time unless the in@ry is sufficiently
large. Our redefined version 6£¢'4t) is:

zjc
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Cij —(t* modT,) ift*>0A(0<t* modT, < Ci)
0 otherwise

(1.8)
where®; ;. is defined in equation 1.3 andis used to generate the slants of the

“imposed” interference function. Figure 1.7(a) illustata sequence of task
releases, and figure 1.7(b) shows how the value wdries accordingly.

CDijcﬂvé Cij

@ 1 1
0 T, 2T, 3T,
X

(b) Cu%

=0

l-f‘ v

Figure 1.7: Relation between task release and

The slanted stair functions, generated by equation 1.8epeted in fig-
ures 1.8(a) and 1.8(b). Figure 1.8(c) shows them overlagihdJour new ver-
sion of I584t) in equation 1.5 we get the maximized slanted stairs intenfee
function, representing the approximation functiéfy, shown in figure 1.8(d).

With the new definition of interference in equation 1.8 we camw use
equation 1.7 to calculate a new response titye for our example as follows:

I te I’# t W'L Wz W: R'u, a

AWNRO
ohNO
ANNO
ABRDNO
ADBMDNO
oo h~N©O
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Figure 1.8: Interferencienposedby our example transaction

We note that our new definition dfj‘ifz(t) makes the analysis able to “see”
the empty slot between tasks andr;2, something the original analysis over-
looked.

Hence, the calculated response time (6) is lower than thtteobriginal
analysis (8), and in section 1.5 we will quantify this impeavent in more
general terms.

1.4.2 Correctness Criteria

For our proposed modification nt?jitz(t) in equation 1.8 to be correct, and not
produce greater response times than the original anatiiség, criteria have to
be fulfilled:

e The new definition of[isjiw(t) is not allowed to be greater than the old
definition (for anyt). If this condition holds, the analysis performed with
the new definition is guaranteed not to yield larger respdinses than
the old definition does.

e The new definition of/2q¢) must not underestimate the interference
caused byset2tasks. If the interference is underestimated, analysis pe
formed with the new definition could yield unsafe responsestesti-
mates.
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e The new definition oﬂfjitz(t) must yield a monotonically increasing in-
terference functioV;* (7,4, t). Monotonicity is required to guarantee
that at least one solution to the response-time formulasexisd that
fix-point iteration finds the smallest existing solution [$3.

THEOREM 1.2 For a given task under analysis,,, and one candidate task,
T;e € T';, our new definition ofisjitz(equation 1.8) is never greater than the old
definition (equation 1.4).

PROOF OF THEOREM 1.2 z, as defined in equation 1.8, is used to decrease
the calculated value off’ﬁtz. Sincez, by definition, is never negative, it can
never contribute to making equation 1.8 greater than equmati.4. 0

THEOREM 1.3 For any time intervalt > 0 our new definition of/524¢)
(equation 1.8) never underestimates the interferenceemhby Set2 task in-
stances.

PROOF OF THEOREM 1.3 Set2 task instances arrive periodically (per defin-
ition) with periodT;, with the first instance arriving a®; ;..

We first treat the time before the first invocation in Set2ti ®;;.. Dur-
ing this time interval* < 0 and hencer = 0. Since;t < ®;;. < T; then
t* > —T; and the ceiling expression in equation 1.8 evaluates to. zéemce,
the whole equation 1.8 is also zero. Since the interferepferd the first invo-
cation obviously is zero, equation 1.8 does not underestirtiee interference
before the first invocation.

For times at or after the first invocation, i.e> ®;;., we have® > 0. Now,
assume* = kT; + t/, wherek € Nand0 < ¢’ < T; (the relation between,
t* andt’ is graphically visualised in figure 1.9). If the interferencalculated
by equation 1.8 is not below ttesafe upper boundefined by theorem 1.1:

safe upper boune: kC;; + min(t', C;;)

then the interference is not underestimated.
We divide the proof into three cases depending on the valtidafa time-
intervalt (the three different cases are depicted graphically in #glr10):

e t' > C;;: The ceiling expression in equation 1.8 evaluates tp 1 and
the interference is thug: + 1)C;; — «. Further, whent’ > C;; thent*
mod T; > C;; resulting inz = 0, hence the interference (& + 1)C;;,
which is not belovsafe upper bound
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Figure 1.9: Relation betweent* and¢’
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Figure 1.10: Three proof cases for

e 0 <t < Cy;: The ceiling expression in equation 1.8 evaluates tp 1
and the interference is thug + 1)C;; — « = kC;; + C;; — x. Further,
when0 < t' < C;; then0 < t* mod T; < C;; andz = C;; —t', hence
the interference i&C;; + C;; — (Ci; — t') = kCy; + t', which is not
belowsafe upper bound

e t' = 0: The ceiling expression in equation 1.8 evaluates tand the
interference is thusC;; — z. Further, whent’ = 0 thent* mod T; = 0
andz = 0, hence the interference Ax”;;, which is not belovgafe upper
bound(sincet’ = 0). 0

THEOREM 1.4 Our new definition of 5¢'4t) (equation 1.8) is (non-strictly)

ijc

monotonically increasing with the time interval

PROOF OF THEOREM 1.4 We prove this by showing that the derivative of
equation 1.8 is never negative. First, we conclude that aatieg derivative
of x cannot contribute to make the derivative of equation 1.8tieg (since
x is subtractedn equation 1.8). We also conclude thatifs disregarded (i.e.
assumed to be 0), then equation 1.8 does not have a negativatde in any
point.

We divide the proof into three cases, depending on the vditfe mod T;
for timest:



72 PAPER A I

e t* mod T; > C;: Inthis caser is continuously 0, hence the derivative
of z is 0, and equation 1.8 cannot have a negative derivative.

e 0 < t* mod T; < Cj;: In this case the derivative af is -1, hence the
derivative of equation 1.8 cannot have a negative derieativ

e t* mod T; = 0: For this case we conclude that equation 1.8 is continu-
ous, since at time+ ¢ (for an arbitrary small and positive) the ceiling
expression has increased wilty; and = has increased witlC;; — e,
hence equation 1.8 has increased with exactlyhus, the derivative of
equation 1.8 at such timess 1. 0

1.4.3 Discussion

At first glance, it is not directly obvious that lowering thaeérference func-
tion W;.(7uq, t) should automatically give lower response times. In faa, th
stepped-stair interference function has been used for means to represent
the interference in RTA [ABD 95, ABT"93], without introducing any pes-
simism.

The reason stepped stairs (in analysis without offsets$ doé introduce
pessimism can be found in our previous work [SH98]. In shb, fix-point
iteration will terminate when the sum of all interferencadtions (demand)
meets the line from origin with slope 1 (supply). Hence, aepig stepped
stairs with slanted stairs (with slope 1) will not contribub earlier fix-point
convergence.

However, in approximate response-time analysis with tdf¢be interfer-
ence functions|¥;.-s, are not used directly in the fix-point iterations. Instea
they are first subjected to a maximisation function (equeti6). This situation
can be compared to floating point addition: if you round upftbating point
numbers at each calculation step, instead of just in theyenodwill loose pre-
cision. This corresponds to passing released for execimierference, instead
of more precise imposed interference, to the maximisatimetfon. Another
view of this is that by using slanted-stair functions as inmjputhe maximisa-
tion function, one essentially “delays” the time it takesdoe low-interference
scenario to overtake a high-interference scenario.

Figure 1.11(a) shows our simple example transaction froordid..6 with
two arrows denoting the two possible scenarios for thecaditinstant (one
“dashed” scenario and one “dotted” scenario). Figures(b)land 1.11(c)
shows the stepped stairs and slanted stairs interferencédnos, respectively,



Il 1.4 TIGHT OFFSET RTA

|
@ \ A L
I I I
0 12
A
6— f—————— _——
|
tl)\
(b) T
I I
t
0 »
I I I I I I
0 12
A
6— Y
/
t1 tZ@/ ,
© ) e
//
_| p .
/ t
0 »
I I I I I I
0 12

Figure 1.11: Stepped stairs vs. slanted stairs



74 PAPER A I

for both scenarios. For times< ¢1, the dotted scenario is the one with high-
est interference. Timel corresponds to the release of the second task in the
dashed scenario. For the stepped stairs case, this mearsliately adding
another 4 units of interference to the dashed scenarioghiemediately mak-

ing it the scenario with the highest interference. Howefagrthe slanted stairs
case, the time¢l means that the dashed line starts to increase, but not until
time ¢2 it catches up with the dotted scenario. Hence, the interwaldent1
andt2 represents the time by which the slanted stairs “delay” shdd sce-
nario to catch up with the dotted scenario. If fix-point cagesce can be
achieved during this interval, then RTA with imposed in¢egince will calcu-
late a lower response time than does RTA with released fayutixa interfer-
ence.

1.5 Evaluation

In order to evaluate and quantify our proposed improvemeathave imple-
mented the approximate response-time equations of app&r@liusing both
the original definition oflfjitz(t) from section 1.3 and our tighter version of

I2¢t) from section 1.4. Furthermore, we have also, as a compaiiishe-

ijc

mented the exact analysis.

Using these implementations and a task-generator we haf@mped sim-
ulations of all three approaches by calculating the respdinge for a single
low priority task, e.g., corresponding to an admission aargituation.

1.5.1 Description of Task Generator

In our simulator we generate task sets that are used as mthé tifferent im-
plementations. The task-set generator takes the follopémgmeters as input:

e Total system load (in % of total CPU utilization),
e The number of transactions to generate,
e The number of tasks per transaction to generate, and
¢ Jitter fraction (in % of the transaction periods).
Using these parameters a task set with the following praseit generated:

e The total system load is proportionally distributed ovétrainsactions.
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e Periods {;) are randomly distributed in the range 1.000 to 1.000.000
time units (uniform distribution).

e Each offset Q;;) is randomly distributed within the transaction period
(uniform distribution).

e The execution times(;;) are chosen as a fraction of the time between
two consecutive offsets in the transaction. The fractiothis same
throughout one transaction, and is selected so that theatcéion load
(as defined by the first property) is obtained.

e The jitter is set to the jitter fraction of the period;{ = f = T3).
e Blocking (B;;) is set to zero.

e The priorities are assigned in rate monotonic order [LL73].

1.5.2 Description of Simulation Setup

The heart of the improvement made to the approximate resgiime anal-
ysis is a new definition oi’isjectz(t). We have implemented the response-time
equations of appendix A which will show the effects of our hayements in
a realistic scenario. However, neither interference fraheotasks irl',, nor
interference from previous instancesmQf, comes into play in the admission
control situation that we simulate. Taking interferenaanirother tasks of',,
into account would yield less improvement of our methodsceiV;” is not
used for them (see appendix 1.6).

The setup of the simulation is as follows: a task set is geedraccording
to input parameters (system load, number of tasks withiarestction, number
of transactions, jitter). To simulate an admission corditniation, we calculate
the response time for a low priority task subjected to adimrissontrol.

We have calculated and compared the response times forghtiertianal-
ysis (Tight), Palencia Gutiérrezt al.'s original analysis (Orig) and the exact
analysis (Exact). The results in section 1.5.3 have beeairgdt by taking
the mean value from 1000 generated task-sets for each moeddh graph.
The graphs in the left and in the right columns also show thé 86nfidence
interval for these mean values.

We have measured three metrics from the simulations:

e “Admission probability (%)” — This metric measures the fiiao of
cases, out of the 1000 generated task sets, the admissitnoldask
passes the admission test (its response time is lower thdedidline).
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e “Response-time improvement (%)” — This metric measurestlegage
and maximum improvement (over Original) in response tinmete task
subjected to admission control. Improvement in respomse for the
tight analysis,R19", is defined ad — RL2™/RS% (and analogous for
the Exact analysis). Note that for this metric the origircbas baseline
and thus only maximum and average improvement of (Tight)Bmect)
(over (Orig)) are plotted. Also note that the maximum vahkiene value
(the maximum) out of 1000, which makes the behavior in theaplegs
statistically uncertain (they show what is possible withquantifying
probability of occurrence).

e “Fraction of tasks with improvement (%)” — This metric meessithe
fraction of admission control tasks that results in a lovesponse time,
compared to the original analysis (Orig). As for previoustnine the
original approximate analysis is used as a baseline, hemaive is
plotted for that method. Note that this metric says nothinoua the size
of the improvements.

The first metric is to show what effect an improvement in resgotime
could have in a realistic situation. The purpose of the last metrics is to
quantify the difference in response time between the thmag/sis methods.

1.5.3 Simulation Results

In the simulations we have varied our four task-generatoapaters in differ-
ent ways. Figures 1.12 to 1.15 show a subset of the simulagiguits. The
exact analysis can only be run on small task sets; hence dtipnesent for
larger tasks sets. For every parameter that is varied we alidtaree metrics
described in the previous section, corresponding to toddlej and bottom-
most graph respectively, in each figure. (Note that, in theréig, “Tasks ="
denotes % tasks/transaction”.)

In all figures we start out at a base configuration where thebenof tasks
per transaction is 6, the number of transactions is 3, syltathis 80% and
the load of task under admission control is 2%. From this lcasdiguration
we vary the number of tasks/transaction (figure 1.12), nurab&ansactions
(figure 1.13), jitter (figure 1.14), while keeping the otharg@meters constant.

Figure 1.12 show the results when the number of tasks isd/beénveen
1 and 13. For more than 5 tasks we can see, in the topmost gtegitthe
admission probability for (Tight) is around 12% higher than (Orig). In
middle graph we see that the average response-time impemntenh (Tight)
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is for 10 tasks over 15%, and that there are task sets (althoarg) where
improvement of more than 50% can be obtained. In the bottashgraph we
see that when the number of tasks grows, so does the prapalbii response-
time improvement.

For figure 1.13, where the number of transactions is varieplit@ differ-
ent picture emerges. The difference between (Orig) anch{ligets smaller
as the number of transactions grows. This is not surprigimge in the case
where the tasks/transaction ratio approaches 1, therecayefew offset rela-
tions among tasks and the analysis approaches the analysasks without
offsets.

Figure 1.14 show what happens when jitter is varied. Not aldgs the
admission probability decrease drastically, but also #iative improvement
of (Tight) over (Orig). This is mainly due to the fact thatgit contributes to
I38", whereas our improvement only affedi¥qt). As I5%*account for an
increasingly larger fraction of the total response time,réiative improvement
of (Tight) decreases. However, the absolute responsettimppvement (not
shown) and the number of improvements (bottommaost grapigtiaoticeably
affected by the jitter. As the jitter grows larger than theige: (or larger than
several periods) the effects of our improvements diministher. However,
systems with such large jitter are rare in control-systentsdh constitute the
majority of real-time systems), where the jitter is typiganly allowed to be a
few percent of the period. Also, for system with such largelis (such as mul-
timedia applications), other methods [PG99, Red03] to cedhe estimated
response time can be used.

Finally, figure 1.15 corresponds to a configuration whererthmber of
transactions is 1, system load 80%, and load of the task watiaission con-
trol is 2%. This type of scenario would occur in a system usihgbrid sched-
uling method, supporting both static cyclic scheduledsgskrresponding to
the single high priority transaction) and priority schestitasks running in the
background of the static schedule [MTS02]. This situatibaves where our
method excels. All tasks have offset relations among thesylting in well
over 30% better admission probability (4-9 tasks) overdDaind an average
improvement of over 50% when the number of tasks/transadionore than
8. Another interesting thing is that (Exact) and (Tight) ajs yield exact res-
ponse times. This comes from the fact that when consideringnsaction in
isolation (no interference among several transactiores}lgnted stair interfer-
ence function captures the worst case interference exactly
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1.6 Conclusions and Future Work

We have presented an improvement that calculates tighaeref) response
times than does earlier approximation methods. We provedmamethod
never calculates greater response times than the meth&G8g]. Further-
more we prove that our method never underestimates thddrgace caused
by higher priority tasks. Hence, it calculates a safe artat tigpproximation of
the actual worst-case response time.

We exploit a misconception in previous methods concerniginterfer-
ence a task poses on a lower priority one. The concept “ingjaséerfer-
ence is introduced, and is shown to more accurately captisenterference
compared to the previously accepted concept of “releasedxecution” in-
terference. This situation is analogous to floating poirditah where “re-
leased for execution” interference corresponds to cdicug with integer val-
ues (rounded up) whereas “imposed” interference correfgptmncalculations
with the more accurate floating point values (resulting iovedr total sum).

Simulations show that the improvement is significant (esblgovhen ta-
sks/transaction ratio is high), typically about 15% tightesponse times in
50% of the cases, resulting in 12% higher admission proitafol low priority
task subjected to admission control. In certain circuncstanhe improvement
is much greater, and with just one transaction (corresptmnastatic schedule)
our proposed method calculates exact response times.

Our tighter analysis is noticeably slower than the origiaa&lysis (even
slower than the exact for small task sets). This is a nattfiedteof using tighter
interference functions since it gives slower fix-point cergence. However, we
have previously proposed a method to speed up the origiaftsia [MTNO4].
In our future work we will adapt that method to our tight arsidy We will also
incorporate complementary improvements to RTA for taské wifsets such
as [PG99, Red03].
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Appendix A: Complete RTA formulae

In this appendix we provide the complete set of formulae toutate the worst
case response timg,,,, for a task under analysis,, as presented in Palencia
Gutiérrezet al.[PG98].

The interference transactidny poses on a lower priority task,,,, if 7;.
coincides with the critical instant, is defined by (see eigumat.5 in this paper):

Wielrat) = 3 Vij ;;I)”CJ + P_ﬁﬂ )Cis

Vj€hp:i(Tua)

(26 in [PG98])

where the phase between tagk and the candidate critical instant task is
defined as (see equation 1.3 in this paper):

q)ijc =T, — (Ow + Jie — O”) mod T; (17 in [PGggl)

The approximation function for transacti@i which considers all candi-
dater;.-s simultaneously, is defined by (see equation 1.6 in thiepap

Wi (Tua,w) = max  Wie(Tua, w) (27 in [PG98))
Veehpi (Tua)

The length of a busy period, fat,,, assumingr,. is the candidate critical
instant, is defined as (Note that the approximation fundsorot used fot",,):

Luae =Bua + (pL,uac — Po,uac + 1)Cua+
Wae(rua Luae) + 3 Wi (s Luae) (30 in [PG98])
ViZ£u

wherepo. ... denotes the first, angy, ... the last, task instance, of,, acti-
vated within the busy period. They are defined as:

P .
e = | 2202 | 4y (29n [PG98)

and

(I)““ﬂ (31 in [PG98])

p — Luac -
L,uac Tu
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In order to get the worst case response timerfgr we need to check the
response time for every instange,c po uac - - - PL,uac, N the busy period.
Completion time of the'th instance is given by:

wuac(p) =By + (P — Po,uac + 1)Cua
+ Wae(Tua: Waae(0) + > Wi (Tua, wuae(p)) (281N [PGO8])
Vitu

The corresponding response time (for instapcis then:

Ruac<p) = wuac(p> - (I)uac - (p - 1)Tu + Oua (32 in [PG98])

To obtain the worst case response timkg,,, for 7., we need to consider
every candidate critical instant,,. (including 7, itself), and for each such
candidate every possible instanpeof 7,,,:

Rya = max [ max (Ruac(p))] (33in [PG98])

VCEhpu,(T“a)U(L P=Po0,uacy---sPL,uac
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Abstract

We present a method that enables an efficient implementatitre approxi-
mate response-time analysis (RTA) for tasks with offse¢s@nted by Tindell
[Tin92] and Palencia Gutiérrezt al. [PG98].

The method allows for significantly faster implementati@isschedula-
bility tools using RTA. Furthermore, reducing computattome, from tens of
milliseconds to just a fraction of a millisecond, as we whbsy, is a step to-
wards on-line RTA in for example admission control systems.

We formally prove that our reformulation of earlier preshequations is
correct and allow us to statically represent parts of theaggn, reducing the
calculations during fix-point iteration. We show by simidas that the speed-
up when using our method is substantial. When task sets grpgnble trivial
number of tasks and/or transactions a speed-up of more B@nirhes (10
transactions and 10 tasks/transaction) compared to thmakianalysis can be
obtained.
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2.1 Introduction

A powerful and well established schedulability analysihtéque is theRes-
ponse-Time AnalysiéRTA) [ABD +95]. RTA is applicable to systems where
tasks are scheduled in strict priority order which is thelpreinant scheduling
technique used in real-time operating systems today. snghper, we present
a method that enables an efficient implementation of thecxapate RTA for
tasks with offsets presented by Tindell [Tin92] and Paler@utiérrezet al.
[PG98].

RTA is a method to calculate worst-case response times $&gstim hard
real-time systems. In essence RTA is used to perform a stislily test,
i.e., checking whether or not tasks in the system will satiekir deadlines.
Traditionally, industrial use of schedulability tests teen limited. However,
with recent advancements in software development and asistiools, such
as UML-based tools [IL, Rat, Tel], schedulability tests tenintegrated in the
normal workflow and tool-chains used by real-time engineers

This kind of tools can be used, for instance, to perform aatmrallo-
cation of tasks to nodes in a distributed real-time systerto @utomatically
derive task priorities (priority assignment) so that tasladlines are guaran-
teed to be met. To be able perform such allocation and/og@s&int tasks,
tools need to be able to perform schedulability tests. Bifjicsuch automatic
allocation/assignment methods are based on optimizatiseaych techniques,
during which numerous possible configurations are evadugfhere can eas-
ily be tens or hundreds of thousands of possible configuratewven for small
systems.) For each configuration a schedulability testipaed in order to
evaluate different solutions. Hence, schedulabilitystestist be fast in order to
be suitable for such systems.

Dynamic real-time systems, with on-line admission contbteal-time
tasks, needs to be able to quickly evaluate whether a dymadynérriving task
can be admitted to the system. In these cases the tolerandel&ys in the
scheduling analysis is even less than in the case of sofevegi@eering tools.

Accounting for offsets between tasks gives significantftér analysis re-
sults than using the traditional notion of a critical indteshere all tasks in the
system are considered to be released simultaneously [LIf&jce, tools for
automatic configuration (as well as on-line schedulabilsts) would benefit
from using this extension; it becomes easier to find feasibidigurations. In
fact, many systems that will be deemed infeasible by RTA euittoffsets will
be feasible when taking offsets into account. However, tieepf taking off-
sets into account is increased execution time of the amalisisting methods
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for RTA with offsets have all been focused on modeling cajas while ig-
noring issues of computational complexity, e.g., [PG9892&Red03, Tin92].

The first RTA for tasks with offsets was presented by TindE&ih92]. He
provided an exact algorithm for calculating response tione¢gfsks with offsets.
However, this algorithm becomes computationally intrblgtdor anything but
small task sets due to its exponential time complexity. kheorto deal with
this problem, Tindell also provided an approximation aidyon, polynomial
in time, which gives pessimistic but safe (worst case respdime is never
underestimated) results. Later, Palencia Gutiéeteal. [PG98] formalized,
generalized and improved Tindell's work.

In this paper we present a method that enables an efficierieimngmta-
tion of the approximate offset analysis given by Tindellf92] and Palencia
Gutiérrezet al. [PG98]. The correctness of our method is formally proven by
demonstrating algebraic equivalence with the originalhods. The method
significantly speeds up the calculation of response timesyeawill show by
simulations.

Paper Outline: In section 2.2 we revisit and restate the original offset
RTA [PG98, Tin92]. In section 2.3 we present our new methoelctisn 2.4
presents evaluations of our method, and finally, sectioe@sludes the paper
and outlines future work.

2.2 Existing offset RTA

This section revisits the existing response-time analgsisasks with offsets
[PG98, Tin92] and illustrates the intuition behind the gs@ and the formulae.

2.2.1 System model

The system model used is as follows: The syst€mg¢onsists of a set of
transactiond’;, ..., I'x. Each transactiof’; is activated by a (periodic) se-
quence of events with peridt (for non-periodic eventd; denotes the mini-
mum inter-arrival time between two consecutive eventsg dttivating events
are mutually independent, i.e., phasing between them isamp A transac-
tion, T';, containgT’;| tasks, and each task is activated (released for execution)
when a timepffset has elapsed after the arrival of the external event.

We user;; to denote a task. The first subscript denotes which tramsacti
the task belongs to, and the second subscript denotes thieenwhthe task
within the transaction. A task;, is defined by a worst case execution time
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(Cs5), an offset O;;), a deadlineD;;), maximum jitter (/;;), maximum block-
ing from lower priority tasks 3;;), and a priority {;;). The system model is
formally expressed as follows:

[:={ly,...,T}}
Lic={mi1, .,y 1> Th)
Tij :=(Cij, Oij, Dij, Jij, Bij, Pij)

There are no restrictions placed on offset, deadline erjitte., they are al-
lowed to be both smaller or greater than the period. Parasfean example
transaction I(;) with two tasks ¢;, 7;5) is visualized in figure 2.1. The offset
denotes the earliest release time of a task relative to #reddtits transaction
and jitter denotes the variability in the release of the ta@hk figure 2.1 the
jitter is not graphically visualized.)

oib=5 J)ia:8 Jiblzl
= / /
PR SCIIN - T=10
C.=2 Cy,=1 | o

Figure 2.1: An example transactidh

2.2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for baask in the system
by calculating an upper bound on its worst case response tieuser,,
(taska, belonging to transaction,, ) to denote théask under analysjs.e., the
task who's response time we are currently calculating.

In the classical RTA (without offsets) thaitical instantfor 7, is when it
is released at the same time as all higher (or equal) pritastys [JP86, LL73].
In a task model with offsets this assumption yields pessimissponse times
since some tasks can not be released simultaneously duéé iElations.
Therefore, Tindell [Tin92] relaxed the notion of criticalstant to be:

At least one task in every transaction is to be released atrithe
ical instant. (Only tasks with priority higher or equal tg, are
considered.)
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Since it is not known which task that coincides with (is relegat) the critical
instant, every task in a transaction must be treated@mdidateto coincide
with the critical instant.

Tindell's exact RTA tries every possible combination of dialates among
all transactions in the system. This, however, becomes uatatipnally in-
tractable for anything but small task sets (the number ofiptescombinations
of candidates isn™ for a system withn transactions and withn tasks per
transaction). Therefore Tindell provided an approximafé Ehat still gives
good results but uses one single approximation functioreémh transaction.
Palencia Gutiérreet al. [PG98] formalized and generalized Tindells work.
We will in this paper use the more general formalism of Pake@utiérrezet
al., although our proposed method is equally applicable to dllisdoriginal
algorithm.

2.2.3 Interference function

Central to RTA is to capture the interference a higher or kqtiarity task
(7i;) imposes on the task under analysig,) during an interval of time.
Since a task can interfere wit), multiple times during we have to consider
interference from possibly severialstances The interfering instances of;
can be classified into two sets:

Setl Activations that occur before or at the critical instant d@hdt can be
delayed by jitter so that they coincide with the criticaltars.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transadtigmve will consider
each taskr;. € I';, as acandidatefor coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental thesrfn98,
Tin92]:

1. The worst case interference a tagkimposes orr,, is whenSetlacti-
vations are delayed by an amount of jitter such that theyalipat the
critical instant and the activations #et2 have zero jitter.

2. The task of"; that coincide with the critical instant (denoted), will
do so after experiencing its worst case jitter delay.

The phasing between a task;, and a critical instant candidatg,., becomes
(slightly reformulated compared to [PG98], see AppendB):2.
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Pijc = (0ij — (Oic + Jic)) mod T; (2.1)

From the second theorem we get thatwill coincide with the critical in-
stant after having experienced its worst case jitter delay, {he critical instant
will occur at(O;. + J;.) mod Tj;, relative to the start df;). This implies that
the first instance of a task; in Set2will be released a®;;. time units after
the critical instant, and subsequent releases will occtuogeally everyT;.

Figure 2.2 illustrates the four differed;;.-s that are possible for our ex-
ample transaction in figure 2.1. The upward arrows denotertdsases (the
height of the corresponding arrow denotes amount of exatuéleased, i.e.,
C;, andCy, respectively). Figure 2.2(a) depicts the situation whgracts as
the candidate critical instant. Shown is the phasing betwge(2) andr;;, (5)
for this situation. Furthermore, figure 2.2(a) also showtsvations for each
task in the transaction. Task instances belongin§dtiare released at time
0, and the first instance belonging $®t2is also depicted (subsequent activa-
tion occur periodically). Figure 2.2(b) shows the corresfing situation ifr;;,
happens to coincide with the critical instant.

®pa =5
cbiaa:2
 m—
Tia Z-ia
17 N
rr 1117 1T T 1T T T 1
0 1 2 3 4 5 6 7 8 9 10
(a)Tic:Tia
Dy, =9
q)iab:6
Tla z-ia
JIle T Trlb N
rf -+ °r 1 1 17
0 1 2 3 4 5 6 7 8 9 10
(b)Tic:Tib

Figure 2.2:9-s for the two candidates iy;

Given the two sets of task instanc&etlandSetd and the corresponding
phase relative to the critical instardt;.), the interference imposed by task
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can be divided into two parts:

1. the part imposed by instancesSet1(which is independent of tim8,
I8 and

ijc !
2. the partimposed by instancesSet2(which is a function of the consid-
ered time interval), I5541).
These are defined as follows:

e | e oy o= |2 o @)

The interference transactidry poses orr,,, during a time intervat, when
candidater;. coincides with the critical instant, is:

Wic(Tuaa t) = Z (Iisjectl+ Iisject2<t)) (23)
Vi€hpi(Tua)

Wherehp;(7.,) denotes tasks belonging to transacfignwith priority higher
or equal to the priority of .

2.2.4 Approximation function

Since we beforehand cannot know which task in each tramsactincides
with the critical instant, the exact analysis tries everggible combination
[PG98, Tin92]. However, since this is computationally actiable for anything
but small task sets the approximate analysis, presentdeiG8§, Tin92], de-
fines one single, upward approximated, function for therfatence caused by
transactior’;:

Wi (Tua,t) =  max  Wie(Tua,t) (2.4)

Ve€hp; (Tua)

That is, W (44, t) simply takes the maximum of each interference function
(for each candidate;,.).

As an example consider again transactigrdepicted in figure 2.1. Fig-
ure 2.3 shows the interference function for the two candislt’;, andW;;),
and it shows howV ;" is derived from them by taking the maximum of the two
functions at every.

Given the interferencelX;*) each transaction imposes on the task under
analysis t..), during a time interval of length, its response timef,,) can
be calculated. Appendix 2.5 shows how to perform these ressptime calcu-
lations.
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Figure 2.3:W;.(7uq,t) and
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2.3 Fast offset RTA

When calculating response times, the functidif (r,,,t) (equation 2.4 on
page 94) will be evaluated repeatedly. For each task andacéion pair £,
andIl’;) many different time-valueg, will be used during the fix-point calcu-
lations. However, sinc® (74, t) has a pattern that is repeated ev&ryime
units (see theorem 2.2 in this section), a lot of computalieffort could be
saved by representing the interference function stagicatid during response-
time calculation use a simple lookup function to obtain @tue. This section
shows how the functio®V (7., t) changes using such pre-computed infor-
mation and how to calculate and store that information.

2.3.1 Approximation function with lookup

The key to make a static representatiorVf (7.4, t) is to recognisee that it
contains two parts:

e A jitter induced part, denoted"%(r,,). This part corresponds to the
task instances belonging 8et1 Note that the amount of interference of
these instances does not depend.on

e A time induced part, denoted"¢(r,,,t). This corresponds to task
instances irBet2 The time induced part has a cyclic pattern that repeats
itself everyT; units of time (as we will prove below).

We redefine equation 2.4 using our new notation as:
Wi (Tuar t) = I (Tua) + T (Tuas t) (2.5)

This partitioning ofW;* (7,4, t) is visualized in figure 2.4Ji"¢(r,,) is the
maximum starting value of each of thg;.(7,., t) functions (i.e. maximum of
all W;.(74a,0), see equation 2.3) which is calculated by:

J"(Tua) = max et 2.6
" (Tua) VCGMW)WWZ(T I (2.6)

The time induced part;"¢(r,,, t), represents the maximum interference,
duringt, from tasks activated after the critical instant, and ishfgically de-
fined as:

Tiind<7—ua7 ﬁ) = VcGI’g?aii ) W[g (Tua? ﬁ) (27)
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Figure 2.4:W; (Tua, t), Ji"(Tua), andT" (74, 1)

7

where

Wil (ruat) = Y (B4 I599¢)) — I (rwa)  (2.8)
Vi€hpi(Tua)

The correctness of our method requires that the definitididfr,,, t) in
equation 2.5 is functionally equivalent to the definitioreguation 2.4.

THEOREM 2.1 W/ (744, t) as defined in equation 2.4 an¥l* (7., t) as de-
fined in equation 2.5 are equivalent.

PROOF REFERENCE The theorem is proved by algebraic equivalence in Ap-
pendix 2.5

Further, in order to be able to make a static representafiédil, (7., t),
we need to ensure that we store enough information to ctyrespproduce
Wi (Tua, t) for arbitrary large values af SinceT;"?(7,,,t) is the only part of
W (Tua, t) that is dependent an the following theorem gives that it is enough
to store information for the first; time units:

THEOREM 2.2 Assumeé = k x T; + t' (wherek € Nand0 < t' < T;), then
Tiind(Tumt) — k% Tiind(Tua»Ti) + Tiind(Tua,t/)

PROOF REFERENCE The theorem is proved by algebraic equivalence in Ap-
pendix 2.5
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We represerﬂ“j”d(ma, t) for the firstT; time units using the concave cor-
ners of the functio"4(r,,,t) (marked with crosses in figure 2.4). The rep-
resentation uses two array$ and7}. T¢[x] represents the maximum amount
of time induced interferenci; will pose on a lower priority task during inter-
val lengths up tdl}[z] (x € 1...|TF]). Using these two arrays we redefine
Ti"(Tyq,t) as follows:

T (Tua, t) =k * TE[|TY ) + T [2]
k=t=+T;
t' =t remT;
z=min{y : ' <T{[y]}

(2.9)

For our example transaction, the time induced interferéreq@esented in
figure 2.4 by crosses) is stored in the arr@ysand T as follows:

T¢ =[ 0, 1, 2, 3
Tt =] 2, 5 9, 10]

Using equation 2.5 and equation 2.9 instead of equatioroZdrhpute the
interference functio®* (7., t) will significantly reduce the time to compute
response times as we will show in section 2.4.

2.3.2 Pre-computing7¥ and T}

To computeT andT} we will first calculate the pattern for eadh, (1,4,t)
from which we will later extract the maximum. Hence, we haveonsider
each task;. in I'; as a candidate to coincide with the critical instant. Foheac
candidate tasks;., we define a set of poins.. Each poinp;.[k] has an: and
ay coordinate, describing how the time induced interferemoe/g over time if
the corresponding;. coincides with the critical instant. The pointsgp. cor-
responds to the convex cornersidf! (4, t) of equation 2.8 ;" andW;,

for our example transaction, are depicted in figure 2.5 ardctthresponding
pia @andp;;, are illustrated by black and white circles respectively.

To calculate the set;., we (without loss of generality) assume that tasks
are enumerated according to their first activation afterctitecal instant, i.e.,
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3 \Ni;____ --X
LV g— :
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Figure 2.5: Visual representation pf. sets

according tod, ;. values. The following equations define the arpay
Dic[l].z =0

pic[l]'y - Z Iisjitli Jiind('rua)
Vj€hpi(Tua)

wk:q)zc
ke, | Pelle = Pu
Piclk].y = piclk — 1.y + Ci,

Eachp;. set represents how the time induced interference growstifaral
instant candidate;., during one period®;). For our example transaction of
figure 2.1, we get the following twp,.-s (corresponding to the black and white
circles in figure 2.5):

pia = [(0,—1),(2,1),(5,2)] black circles
piy = [(0, 0),(6,2),(9,3)] white circles

Now, we have the information generated bymg(rum t)-functions, sto-
red in thep,.-sets. These stepwise functions are represented by onepaoin
step. In order to get a representatiorf®?(r,,, t) in equation 2.7, we extract
the points that represents the maximum ofmfg(rm,t)-s. Thus, we will
obtain the convex corners @f"¢ (7,4, t).

Next, we calculate the set of poinjs, as the union of alb;.-s:

pi = U Dic
Tic€L;

In order to determine what points ji that corresponds the the convex
corners ofT/"4(r,,,t), we define the relatiosubsumeshat says: A point
p;[a] subsumes a poin;[b] (denotedp;[a] > p;[b]) if the presence op;[a]
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yt ° o o L4 pi[a]
° " x o Not subsumed
° T x x  xSubsumed

>

Figure 2.6: Removing points fromy

implies thatp;[b] is not a convex corner. Figure 2.6 illustrates the subsumes
relation graphically, and the formal definition is:

pila] = pi[b] iff pi[al.y = pi[b].y A pilal.x < pi[b].x
Given the subsumes relation the convex corner are foundrbgviag all
subsumed points:
Fromp; removep;[b] if Ja # b : p;[a] > p;[b] (2.10)

Now, p; contains the convex corners of the functfﬁﬁd(rua, t). For our
example transaction we now have:

Pi = [(0’ 0>’ <27 1>7 <5’ 2>7 <97 3)]

All we have to do now is to find the concave corners (illustldig crosses
in figure 2.5) and store them in the arrayé and7}. This is done by the
following algorithm:

for k := 1 to |p;| do
Telk] t = pilHy

if k < |pi| then

THE] 1= pilk+ 1)

el se

done

For our example transaction this gives the followifig and 7} (corre-
sponding to crosses in figure 2.5):

Tic :[ 07 1a 23 3]
T: =[ 2, 5, 9, 10]
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In the special case that some tagkhas®;;. = 0, the first element of ¢
may not be zero. However, sin@&"¢(0) = 0, we need to have at least one
element in7’¢ that is zero. In such cases we prepend both the affapsd T
with a zero (stating that there will be 0 time induced integfece for any time
interval of length up to 0).

2.3.3 Space and Time Complexity

The number of points to calculatg;] is quadratic with respect to the number
of tasks in the transactidn; (|T';| points for each candidate task). Thus, storing
T¢ andT} results in a quadratic space complexity since, in the woase, no
points fromp; will be removed.

The method presented in this paper divides the calculatidi’p into a
pre-calculation and a fix-point iteration phase. A naivelenpentation of the
removal procedure in equation 2.10 requires comparisoadf pair of points;
resulting in cubic time-complexity{(|T';|®)) for pre-calculatingl’s and 7.
During the fix-point iteration phase, a binary search thioagguadratically
sized array is performed (equation 2.9), resultingiflog |T';|?) time com-
plexity for calculatinglV;* according to equation 2.5. The original complexity
for calculatingi; according to equation 2.4 8(|T';|?).

In a complete comparison of complexity, the calculationVigf (., )
must be placed in its proper context (see the response-timaifae in appen-
dix A). AssumeX denotes number of fix-point iterations needed, then the over
all complexity for the original approach (equation 2.4)iX & |T';|?)), whereas
our method (equation 2.5 and equation 2.9) yietd§T;|® + X log |T;|?)).

2.4 Evaluation

In order to evaluate the effectiveness of our method we hapéeimented the
response-time equations in appendix 2.5, using both tiggnatidefinition of

W; from section 2.2 (Old RTA) and our faster versionl@f* from section 2.3
(Fast RTA). Using these implementations and a synthetic-gaserator we
have performed an evaluation, by simulations, of both aggires by calculat-
ing the response times for all tasks in the system.

LIn section 2.4 we use a@(|T';|?logN) implementation based on sorting the points and mak-
ing a single pass through the sorted set.
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2.4.1 Description of Simulation

In our simulator we generate task sets that are used as inhé tdifferent
RTA implementations. The task-set generator takes thewally parameters
as input:

e Total system load (in % of total CPU utilization),
e the number of transactions to generate, and
o the number of tasks per transaction to generate.
Using these parameters a task set with the following prseid generated:

e The total system load is proportionally distributed ovért@nsactions
in the system.

e Transaction periodsi{) are randomly distributed in the range 1.000 to
1.000.000 (uniform distribution).

e Each offset ;;) is randomly distributed within the transaction period
(uniform distribution).

¢ The execution times(;;) are chosen as a fraction of the time between
two consecutive offsets in the transaction. The fractiothis same
throughout one transaction. The fraction is selected drthiesthe tran-
saction load (as defined by the first property) is obtained.

e The jitter (J;;) is randomly distributed between zero and 1.2 times the
transaction period)(.1.27;, uniform distribution).

e Blocking (B;;) is set to zero.
e The priorities are assigned in rate monotonic order [LL73].

We have measured execution times for performing RTA (fotasks in the
system) using both methods (Old RTA and Fast RTA). The ei@ttiimes are
obtained from a laptop with a Pentium Il CPU. For Fast RTA #xecution
times include the time to calculafé and7}. The results in section 2.4.2 have
been obtained by taking the mean values of 50 simulatedsetskfor each
point in each graph. The 95% confidence intervals are shonallfexecution
times (although difficult to see due to their small size).
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Figure 2.8: Relative execution time

2.4.2 Simulation Results

Figure 2.7(a) shows the execution times for Fast RTA and QW When the
number of tasks/transaction is varied from 1 to 10 (whilepkeg the system
load at 9/10 (90%) and the number of transactions at 10). Whemamber
of tasks/transaction is 10, the execution time is less thé&d $econds for Fast
RTA, and about 20 seconds for Old RTA. This amounts to a speef®0
times. Similar execution times are obtained both when wgryfie number of
transactions between 1 and 10 and when varying load betw#&8r{1l0%) and
9/10.

In figure 2.7(b) the complexity of Fast RTA is shown, and by panison
with figure 2.7(a) it can be seen that Fast RTA has a less steep than does
Old RTA. Also, in figure 2.7(b) the amount of time spent prézakating the
arraysT¢ andT} is plotted, and it is apparent that the overhead is negégibl
For the larger task sets, about 0.3% of the total time of Fast B spent on
pre-computingl’s andT?.

Figure 2.7(c) shows the execution-time of the pre-calaabnly. Since
we use & (N? log N) implementation of the pre-calculation the slope is sligh-
tly less than what could be expected from a naive implemiemtg® (N ?)).

In figure 2.8 we show the relative execution time of Fast RTApared to
Old RTA, calculated by p,st/toid, Wheretpqs: is the execution time for Fast
RTA andto;4 for Old RTA. The first plot (+) shows how the relative executio
time changes when the number of tasks/transaction is vémed 3 to 10.
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When the number of tasks/transaction is 1 the relative eimcttime is 0.58
and it rapidly decreases to the values visible in the graph.

The second plotx) in figure 2.8 illustrates when the number of trans-
actions is varied between 2 and 10. When the number of traosads 1,
the relative execution time is 1.01, which means that Fast BElowerthan
Old RTA. When performing RTA for a single transaction, thertvad of pre-
computing7¢ and T} outweighs the benefits obtained during the RTA (the
pre-computed?; is never used). However, as seen in the plot, when the num-
ber of transactions is higher than 1, the overhead is wéifigd since the total
RTA is significantly faster.

The third plot &) in figure 2.8 illustrates when the load is varied between
1/10 (10%) and 9/10 (90%). In this plot we see that the redagixecution time
is not highly dependent on the system load, only a small @éserén relative
execution time is obtained as the system load grows.

In order to compare Old RTA and Fast RTA, in the context of ioe-hd-
mission control, we generated task sets with 9/10 load,dr®&actions with 10
tasks/transaction and performed the RTA for a single taskésponding to a
dynamically arriving task to the system) at lowest prioritye generated 100
different tasks sets using execution times for the singlk between 1000 and
6000. The result was that the average execution time forfEStwas 0.33ms
and 44ms for Old RTA. The speedup for admission control iziah80 times,
which is noticeable greater than in the previous simulatidrine reason is that
the new task is the only task in its transaction, which mebhasW is used
for all interference computations aiid;.. is never used (see Appendix 2.5) and
hence our improvement @ is isolated. In fact, in the preliminary work for
this paper [MTNO3] a speedup of over 600 times was observea sanplified
task-model where fix-point iteration only requiréd* to be computed.

Our conclusions from this simulation study are that: (1L}IRIA performs
significantly better than Old RTA. For anything but triviaBmall task sets the
speedup is at least in the order of a magnitude, (2) Fast Rifgbrdown
execution times for whole scenarios from the order of sesdadractions of
seconds, and (3) Fast RTA brings down execution times fa@leitasks from
the order of some 100ms to the microsecond range. This deciganportant
in order to make RTA a feasible technique to include in, @g:line scheduling
algorithms performing RTA on-line (admission control kgeam example) and
optimizing allocation or configuration tools.
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2.5 Conclusions and Future Work

In this paper we have presented a novel method that allowarfaefficient
implementation of the approximate Response-Time AnalRi®\) for tasks
with offsets presented by Tindell [Tin92] and Palencia &uzet al. [PG98].

The main effort in performing RTA for tasks with offsets isdalculate how
higher (or equal) priority tasks interfere with a task unaleslysis. The essence
of our method is to calculate and store this informationictilly and during
response-time calculations (fix-point iteration), usenapgé table lookup. We
have formally proved that the RTA-equations can be refoateal to allow such
static representation of task interference.

We have, by simulations, shown that the speedup for our rdetbmpared
to [PG98] is substantial. For realistically sized task $&69 tasks), perform-
ing schedulability analysis gives a speedup of about 50gtirdend from our
evaluation we can conjecture that the relative improvemahbe even higher
for larger task sets. In an on-line RTA context, e.g., oe-Brdmission control
systems, our method outperforms previous methods by ateofaator of 100
and reducing the actual time to the micro second range.

Faster RTA have several positive practical implicationk}; Engineering
tools (such as those for task allocation and priority assigmt) can feasible
rely on RTA and use the task model with offsets, and (2) oa-finheduling
algorithms, e.g., those performing admission control, es@accurate on-line
schedulability tests based on RTA.

We have earlier provided a tighter version of the RTA for tasiith offsets
[MTSO03]. Our next step is to extend our method of static regngation of
task interference to our tighter RTA, yielding a RTA that @b significantly
faster and provides less pessimistic response times tleops techniques.
Further, we are currently starting a project where RTA faktawith offsets
will be used in software engineering tools. The RTA will beedisboth to
perform schedulability tests and for automatic allocatésoftware to nodes
in a distributed system.
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Appendix A: Complete RTA formulae

In this appendix we provide the complete set of formulae toutate the worst
case response timg,,,, for a task under analysis,, as presented in Palencia
Gutiérrezet al. [PG98].

The interference transactidny poses on a lower priority task,,,, if 7;.
coincides with the critical instant, is defined by (see eigua2.3 in this paper):

Wic(Tuast) = Z ( \:]ij ‘;;I)iij n P —Tffijc-‘ ) * Cjj

Vi€hpi(Tua)

(26 in [PG98])

where the phase between tagk and the candidate critical instant task is
defined as (see equation 2.1 in this paper):

q)ijc =T, — (Ow + Jie — O”) mod T; (17 in [PGggl)

The approximation function for transacti@ih which considers all candi-
dater;.-s simultaneously, is defined by (see equation 2.4 in thiepap

Wi (Tua,w) = max  Wie(Tua, w) (27 in [PG98))
Veehpi (Tua)

The length of a busy period, fat,,, assumingr,. is the candidate critical
instant, is defined as (Note that the approximation fundsorot used fot",,):

Luae =Bua + (pL,uac — Po,uac + 1)Cua+
Wae(rua Luae) + 3 Wi (s Luae) (30in [PG98])
ViZtu

wherepo. ... denotes the first, angy, ... the last, task instance, of,, acti-
vated within the busy period. They are defined as:

P .
o = | 2202 4y (29n [PG98)

and

(I)““ﬂ (31 in [PG98])

p — Luac -
L,uac Tu
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In order to get the worst case response timerfgr we need to check the
response time for every instange,c po uac - - - PL,uac, N the busy period.
Completion time of the'th instance is given by:

wuac(p) =By + (P — Po,uac + 1)Cua
+ Wae(Tua: Waae(0) + > Wi (Tua, wuae(p)) (281N [PGO8])
Vitu

The corresponding response time (for instapcis then:

Ruac<p) = wuac(p> - (I)uac - (p - 1)Tu + Oua (32 in [PG98])

To obtain the worst case response timkg,,, for 7., we need to consider
every candidate critical instant,,. (including 7, itself), and for each such
candidate every possible instanpeof 7,,,:

Rya = max [ max (Ruac(p))] (33in [PG98])

VCEhpu,(T“a)U(L P=Po0,uacy---sPL,uac
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Appendix B: Proof of Theorems

In this appendix we provide proofs of theorems 2.1 and 2.2 willgperform
all proofs by algebraic manipulation and use braces to lyghthe expression
that is manipulated in each step. We also annotate brachghetequations,
properties, lemmas, or assumptions referred to when peiigrsome manip-
ulations. These proofs are also available in [MTNO4].

When performing the manipulations we will, e.g., rely on tbédwing
properties:

(max) — Themax, operator allows terms that are constant with respect to the
maximization variablew) to be moved outside the maximization opera-
tion:

mgux(Xv +Y)= mgx(Xv) +Y.

(sum) — Summation over a set of terms can be divided into tyarsdée sum-

mations:
Z(Xv +Yv) = ZX’U +Z}/v

v

(ceil) — When taking the ceiling[(]) of a set of terms, terms that are known
to be integers can be moved outside of the ceiling expression

XeN=[X4+Y][=X+]Y]
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THEOREM 2.1 W/ (7y4,t) as defined in equation 2.4 ard’(r,,,t) as
defined in equation 2.5 are equivalent.

PROOF OF THEOREM 2.1

Wi* (Tuav t) = Jimd(Tua) + Tz‘md(Tuaa t) =
———— —_——

Eq.25 Eq.2.7

T (rua) + max Wi (Tua,t) =
VeEhpi (Tua) N —

) Eq.2.8
Ji nd(TuaH‘
max S ISR ISR - i rw)) =
Ve€hpi(Tua) Vi€hpi(tae)

(max)

) e (X (5 150) -

cEhp;i (Tu
c P (Tz a) Vthpi(Tua)
ind —
Jz‘m (Tua) =
———
Setl Set. _
max E (IUC +Izj62(t)) =
Ve€hpi(Tua) .
Vj€hpi(Tua)
Eq.2.3
*
max  Wie(Tua, t) = W (Tua, t)
Ve€hpi(Tua)
Eq.2.4

In proving theorem 2.2 we will use some lemmas.

LEMMA 2.1 Regardless of candidate critical instant I5¢4T;) =

ijc

PROOF OF LEMMA 2.1

T, - o,
Izsfitz(T {Tj-‘ Cij = Cyj

quz
0< @5, < T;(Eq21)
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LEMMA 2.2 Assumé = k * T; + t' (wherek € Nand0 < t' < T;), then
Set _ Set Set

I”iz(t k Izjecz(T‘l) I’L]ecz(t/)

PROOF OF LEMMA 2.2

®,.0 ks T+t — b,
Ig‘itz(t [ Tﬂqj:{ * +TV JWC”:

quz

Assumption
k * E t/ — CI)Z'J'C t/ — (I)ijc
{ I T WC”’O”{T; G =
(ceil) Ak € N
t'— (I)ijc Set Set2/ 1
k Cij + | =5 | Cij = =k ISAT;) + ISSAY)
~~ i
Lem.2.1
Eq.2.2
O
LEMMA 2.3 Ti"d(1,,,T;) = Z Cij
Vj€hpi(Tua)
PROOF OF LEMMA 2.3
T;‘ind(TuaaTii) = max Wi-g(Tua7Ti) =
———— V€D (Tua) N !

Eq.2.7 Eq.2.8

Setl Set d
max (E (I”C —i—I”CZ(T ) Jm ’Tua)) =
Veehp;(Tua)
Vi€hpi(Tua)

(sum)

max (SIS D IAT) " () ) =

Veehpi(Tua)
Vi€hpi(Tua) V]Ehl’z("ua M

Setl d
max (E I7 + E C” Jind( Tua)) =
VCG’LTJ1(T1LQ)

Vi€hpi(Tua) Vi€hp;(Tua)

(max)

Z Cij + max lesjectl de( Tua) =

Veehp;(Tua)

Vji€hpi(Tua) Vi€hp;(Tua)
Eq.2.6
E ind znd §
C'l] + Jl (TUG) J Tua CZJ
Vi€hpi(Tua) Vi€hp;(Tua)
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THEOREM 2.2 Assumeé = kxT; +t' (wherek € Nand0 < ¢’ < Tj;), then

Tz'ind(Tuaa t) =k x Tiind('rua, Tz) + Tiind('ruaa t/)
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PROOF OF THEOREM 2.2

Tiind(Tumt) =W} (Tuaat) =

c

Eq.2.7 Eq.2.8
Setl Set znd
max E 2+ I224¢) "N Tua) =
V(‘EhP'L(Tua) ( zjc ZJCZ( ) ua)
j€hpi(Tua)

Lem22
Jmax Y (I k *Jgit%T +IPA)) -
cehp;(Tua)

Viehp;(Tua)
Lem 2.1

Jznd(Tua) =

S (IS KO+ ISY) — ) =
P @;ehm(ma)

(sum)

max
Veehp;(Tua)

(Do ki + 3 (IS4 IS9RE)) = T (rua) ) =

Vi€hpi(Tua) Vi€hp;(Tua)

(max)
Setl Set: znd _
D KCyt  max 3 (IS IEAY)) = I () =
Ve€hp;(Tua)
Vi€hp;(Tua) Viehp;(Tua)
———
k * Ci; + max ety Isett
S0+, mas (8 )
Vi€hpi(Tua) Vi€hp;(Tua)
Lem.2.3 d
in
Ji" N (Tua) =

ke T (Tua, Th)+
max Y (IS4 IEAH)) — J" (Tua) =

Veehp; (Tua)
Vi€hp;(Tua)

Eq.2.8

k * Tiind(Tuav E) + max W+ (7““7 tl) =

’c
Veehpi(Tua)

Eq.2.7

ks TN 7ya, Ti) + T (Tya, )
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Abstract

In previous work, we presented a tight approximate resptinseanalysis for
tasks with offsets. While providing a tight bound on respaises, the tight
analysis exhibits similarly long execution times as doedthditional methods
for calculating response-times for tasks with offsets. &kisting method for
fast analysis of tasks with offsets is not applicable to itettanalysis.

In this paper we extend the fast analysis to handle the digitthing trait
of the tight analysis; continuously increasing interfa@functions. Further-
more, we provide another speedup; by introducing pessirrighe modeling
of interference at certain points, we speed up the conveggefthe numerical
solving for response-times without increasing the pessimof the resulting
response-times.

The presented fast-and-tight analysis is guaranteed tuleté the same
response-times as the tight analysis, and in a simulatiay ste obtain speed-
ups of more than two orders of magnitude for realisticathgditasks sets com-
pared to the tight analysis. We also demonstrate that thafastight analysis
has comparable execution time to that of the fast analyssackl, we conclude
that the fast-and-tight analysis is the preferred analgsiBnique when tight
estimates of response-times are needed, and that we do embtmeacrifice
tightness for analysis speed; both are obtained with theafad-tight analysis.
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3.1 Introduction

Response-Time AnalyiRTA) [ABD +95] is a powerful and well established
schedulability analysis technique. RTA is a method to datewupper bounds
on response-times for tasks in hard real-time systems.skenee RTA is used
to perform a schedulability test, i.e., checking whethenairtasks in the sys-
tem will satisfy their deadlines. RTA is applicable for, egystems where tasks
are scheduled in priority order which is the predominantsciing technique
used in real-time operating systems today.

Fast RTA has several practical implications, e.q., failig the use of res-
ponse time calculations in an iterative workflow includingamatic priority
assignment and/or task allocation, or for admission coimron-line sched-
uling algorithms. Tighter response time allow for more édint hardware uti-
lization. Consequently, analysis speed and tight responmseare desirable
features in engineering resource constrained real-tirsess.

To be able to calculate less pessimistic response timessitersg where
tasks may have dependencies in their release times, Timtieltluced RTA
for a task model with offsets [Tin92]. Palencia and Harbamfalized and
extended the work of Tindell in [PG98]. In [MTNO4b] we haveosm that
the RTA for task with offset presented in their work calcaktinnecessarily
pessimistic response-times. As a remedy, we presenteibbuanalysis. The
main source for this improvement comes from more accuratieling of inter-
task interference. In [PG98, Tin92] the interference onlyréases at discrete
points in time, whereas in our tight analysis the interfeeecan increase con-
tinuously over time. There is, however, a slight price to fanthis accuracy,
slower fix-point convergence which can result in longer gsialtime.

In this paper we extend our previous fast analysis for taskis offsets
[MTNO4a] to enable its application to the tight analysispyding a new me-
thod that calculates tight response times at fast analgsids The fast analysis
has been shown to achieve two orders of magnitude speedupdiistically
sized task sets [MTNO4a]. The essence of this approachfattoally store the
discrete points in time during the first period where therfietence increases,
and during equation solving use a simple and fast table jpoku

However, the approach taken in [MTNO4a] is not directly &gaddle to the
tight analysis since it uses a more accurate interferenaehwhere interfer-
ence does not increase at discrete points in time. As a coeseg, this intro-
duces an additional problem; the interference does no fagdebit a simple
periodic pattern. Hence, the basic assumption of the fadysis does not hold
for the interference model of the tight analysis. One of tleémecontributions
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of this paper is to extend the fast analysis to cope with thedts of the tight
analysis, enabling a fast-and-tight analysis.

Another main contribution is that we introduce, for the tighalysis, a me-
thod to speed up the numerical convergence during equaileimg when cal-
culating response-times. The method is based upon thehirtsigt response-
time equations cannot have solutions at arbitrary pointisria (which we for-
mally prove). At such points we modify the interference fiimes in such a
way that numerical convergence is accelerated. Since trdificadions are
done only at times where no response-time solutions ekisy, do not affect
the final calculated response-time. Hence, the resultiatyais will calculate
exactly the same response-times as does the tight analyhis. method is
incorporated into the fast-and-tight analysis method.

Our third main contribution is a simulation study where wewtihat ap-
plying above methods to our tight method, the executiongiofehe resulting
fast-and-tight analysis are comparable to those of theafaalysis. That is, we
conclude that one does not have to sacrifice analysis speetiieve accuracy,
or vice versa, when using fast-and-tight analysis.

Paper Outline: Section 3.2 revisits our tight offset RTA [MTNO4b]. In
section 3.3 we present our tight and fast RTA. Section 3.4emts an evalua-
tion study, followed by conclusions in section 3.5.

3.2 Tight offset RTA

This section revisits our existing tight response-timelysia for tasks with
offsets [MTNO4b] and illustrates the intuition behind thealysis and the for-
mulae.

3.2.1 System model

The system model used is as follows: The systénepnsists of a set df trans-
actionsI'y,...,I'y. Each transactior’; is activated by a periodic sequence
of events with periodl’; (For non-periodic event§; denotes the minimum
inter-arrival time between two consecutive events). Thevating events are
considered mutually independent, i.e., phasing betweem #ire arbitrary. A
transactionl’; contains|T';| number of tasks, and each task is activated (re-
leased for execution) when a relative tinoéset elapses after the arrival of the
external event.
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We user;; to denote a task. The first subscript denotes which tramsacti
the task belongs to, and the second subscript denotes thieenwhthe task
within the transaction. A task;, is defined by a worst case execution time
(Cy;), an offset ), a deadline ;;), maximum jitter (/;;), maximum block-
ing from lower priority tasks 8;;), and a priority {;;). The system model is
formally expressed as:

[ ={Ty,....T}}
Ui c={mi1, - 7y 1> Ti)
7ij =(Cij, Oij, Dij, Jij, Bij, Pij)

There are no restrictions placed on offset, deadline @rjitt.g., they can
each be either smaller or greater than the period. In [PG@8hic offsets are
introduced, however they are modelled with the static o#isel jitter parame-
ters, and therefore the analysis technique presented Isersteaightforwardly
applies to tasks with dynamic offsets. We assume that tteedbthe system,
and each of the transactions, is less than 160%.

Parameters for an example transactidy) (with two tasks ¢;1, 7;2) are
depicted in figure 3.1. The offset denotes the earliest seléime of a task
relative to the start of its transaction and jitter (illied by the shaded region)
denotes the variability in the release of the task. The ugvwearows denote
earliest possible release of a task and the size of the awowsponds to the
released tasks execution time.

Oi2=5 Jiz=1
Oi1=2 Ji1:8
— \
T=10
| Cu=2 Tciz=1 |  Time
| | >

I

0 1 2 3 4 5 6 7 8 9 10

Figure 3.1: Example transaction

1This can easily be tested, and if not fulfilled some respoimsest may be infinite; rendering
the system unschedulable.
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3.2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for bdask in the system
by calculating an upper bound on its worst case response-thve user,,
(taska, belonging to transaction,,) to denote théask under analysjs.e., the
task whose response time we are currently calculating.

In the classical RTA (without offsets) ttwgitical instantfor 7,,, is when it
is released at the same time as all higher (or equal) pritastys [JP86, LL73].
In a task model with offsets this assumption yields pesgimissponse-times
since some tasks can not be released simultaneously duéséd i#lations.
Therefore, Tindell [Tin92] relaxed the notion of criticalstant to be:

At least one task in every transaction is to be released atrithe
ical instant. (Only tasks with priority higher or equal tg, are
considered.)

Since it is not known which task coincides with (is releasdtlze critical
instant, every task in a transaction must be treated@didateto coincide
with the critical instant.

Tindell’s exact RTA tries every possible combination of diates among
all transactions in the system. This, however, becomes atatipnally in-
tractable for anything but small task sets. Therefore Tinwevided an ap-
proximate RTA that still gives good results but uses a sirglproximation
function for each transaction. Palencia Gutiereeal. [PG98] formalized and
generalized Tindell's work.

3.2.3 Interference function

Central to RTA is to capture the interference a higher or eqtiarity task
(7i;) causes the task under analysig,{ during an interval of time (where
t = 0 at the critical instant). Since a task can interfere with multiple times
duringt we have to consider interference from possibly seviesthnces The
interfering instances af;; can be classified into two sets:

Setl Activations that occur before or at the critical instant dahdt can be
delayed by jitter so that they coincide with the criticaltar.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transadtiomve will consider
each taskr;. € T';, as acandidatefor coinciding with the critical instant.
RTA for tasks with offsets is based on two fundamental theste
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1. The worst case interference a task causesr,, is whenSet1 activa-
tions are delayed by an amount of jitter such that they allupet the
critical instant and the activations #et2 have zero jitter.

2. The task ofl"; that coincide with the critical instant (denoted), will
do so after experiencing its worst case jitter delay.

The phasing between a task;, and a critical instant candidate,., becomes:
Pije = (0ij — (Oic + Jic)) mod T; (3.1)

This definition implies that the first instance of a taskin Set2 will be re-
leased at time = ®;;., and subsequent releases will occur periodically every
Figure 3.2 illustrates the four differedt;;.-s that are possible for our ex-
ample transaction of figure 3.1. The upward arrows denotertdsases (the
height of the corresponding arrow denotes amount of exatuéleased, i.e.,

C;1 or C;o respectively). Figure 3.2(a) the case thatcoincides with the criti-
cal instant, where the phasing#g is 2 and tor;s is 5. Figure 3.2(b) shows the
corresponding situation wher, is the candidate to coincide with the critical
instant.

P, =5
@, =2
Tril Tril TriZ IL
| | | | | | | | | | |~
0 1 2 3 4 5 6 7 8 9 10
(@) Tic = i1
q)i22:9
®,,=6
T T
fo [ Tt
| | | | | | | | | | |~
0 1 2 3 4 5 6 7 8 9 10
(b) Tic = T2

Figure 3.2:®-s for the two candidates ip;
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Given the two sets of task instancé&{1 andSet2) and the corresponding
phase relative to the critical instardt.), the worst-case interference during a
time-intervalt caused by task;; can be divided into two parts:

1. The part caused by instancesdet1 (which is independent of the time
intervalt), I>°%

1 ije
2. The part caused by instances9at2 (which is a function of the time
intervalt), I>89t).

' Hije

These are defined as follows:

ySetl _ {MJ Cij

'L]C Tl
I>#At) = r Cii —x
ijc - T‘z )
t* =t — Byje
o= )G = (" modT,) ift*>0A (0<t* modT; < Cjy)
o otherwise

(3.2)

Note that,lisj‘itz(t) is redefined compared to [PG98], resulting in lower (but stil

safe) response times. For more details and correctnests mes [MTNO4b].
The total interference transactidn imposes orr,,, during a time interval

t, when candidate;. coincides with the critical instant, is:

Wic(Tuaa t) = Z (Iisjectl+ IisjecQ(t)) (33)
Vi€hpi(Tua)

Wherehp;(7.,) denotes tasks belonging to transacfignwith priority higher
or equal to the priority of,,.

3.2.4 Approximation function

Since we beforehand cannot know which task in each tramsactincides
with the critical instant, the exact analysis tries everggiole combination
[Tin92, PG98]. However, since this is computationally aatiable for anything
but very small task sets the approximate analysis definesiogée, upward
approximated, function for the interference caused bystationI”;:

Wi (Tua,t) =  max  Wie(Tua,t) (3.4)

Veehpi(Tua
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W*(Tua, t) Simply takes the maximum of each interference function (one
each candidate;.). As an example consider again transacfigrdepicted in
figure 3.1. Figure 3.3 shows the interference function fertthio candidates
(W;1 and W;2), and it shows howV is derived from them by taking the
maximum of the two functions at evety

Vvic A V\[Il —_—— VVI A
6T . 6T
1 \/\/i2 ...... ’__-__.‘._ 1
Ve
4 4+ ,—7 4 +
O /./. .......... - -
7/
R 2 1
-t =

I I I I I I I I I I I I I I I I I I
012345678910 012345%6 78 910
Figure 3.3:W,.(7ua, t) andW;* (7,4, t) functions for example transaction

Given the interferencel;*) each transaction causes the task under anal-
ysis (ru.), during a time interval of length, its response timeH,,) can be
calculated. The complete response time formulas proviggB®98] can also
be found in appendix 3.5.

3.3 Fast and Tight Analysis

When calculating response times, the functiyi(r..., t) in equation 3.4 will
be evaluated repeatedly. For each task and transactiofrpaiandI’;) many
different time-valuest, will be used during the fix-point calculations. For
the traditional response-times analysis for tasks witkeiff, a repetitive and
periodic pattern foi?*(7,,, t) can easily be found, and a lot of computational
effort is saved by representing the interference functtatically, and during
response-time calculations using a simple lookup fundiioabtain its value
[MTNO4al].

However, since the tight analysis deals with continuoustyeasing inter-
ference functions which do not exhibit a simple periodictqrat, the frame-
work of [MTNO4a] is not directly applicable to the tight agals. This section
shows how to find, calculate and store the periodic intenfezénformation for
the tight RTA method. We also present how the funcfiifi(r,,,t) changes
using such pre-computed information.
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Furthermore, the continuous nature of interference in itlet tanalysis
gives the tight analysis a computational disadvantage eoeapto the origi-
nal analysis [PG98, Tin92]. In this section we will show hawrémove this
computational disadvantage by replacing the continudesference functions
with discretely increasing functions without introduciagy pessimism in re-
sulting response times.

3.3.1 The Periodicity of the Interference

The fundamental pre-requisite to statically represenirttezference for a tran-
saction, is that a repetitive pattern can be found (suchitisaiffices to store
that pattern and use it to calculate the amount of interferdar any time in-
tervalt). In our previous fast analysis [MTNO4a], the full intedece of each
task within the transaction occurs within the first perioddetask is released
exactly once during each period). Hence, we could strdgfwtardly repre-
sent the interference during the first period and reuse iater periods.

However, in the tight analysis, the imposed interferenca tafsk released
towards the end of the period may not be fully included withieperiod. Even
though the task is released within the period, the slantexiference function
causes some of the interference to occur in the subsequeéod pEigure 3.4
shows an example critical instant candidate where theferesice from task
spillsinto next period.

e

2 4 6 SjO 12 14 16 18 20 22 24 26 28 30 32

~
T;=10
Figure 3.4: Interference spilling into the next period

As seen in figure 3.4, the interference for the first periotedsffrom that
of later periods. Obviously, there can be no spill duringfttst period, since
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tasks arriving before the critical instant (i.e. whiert 0) are accounted for in
Iisji”. For subsequent periods, however, the effect of a taskrepdlver period
boundaries will be identical. This means that for- 7; the interference is
repetitive (with period =I;) and allows for a static representation. The con-
sequence of this is that we have to represent the interferfiemahe first and
subsequent periods separately.

3.3.2 Preliminaries

To prepare for subsequent calculations, we define threatipes (order, me-
rge, and split) that will be performed for each critical an#t candidate be-
fore we proceed with calculation of a transactions’ intexfeee pattern. These
transformations will not change the load or the timingbébrawf the interfer-
ence, they only help us to restructure the information withiransaction.

Operation: Order Tasks are enumerated according to their first activation
after the critical instant, i.e., according to increasing. values.

Operation: Merge Each taskj’ that is released before a previous tadias
a chance to finish its execution, i(@;;. + C;;) mod T; > ®,;., are merged
into one task with execution time;; + C;;» and offset of®;;.. This operation
is performed until all possible tasks have been merged (mce the load of a
transaction is less than 100% the process is guaranteedverge).

Operation: Split When splitting a task, we defirspill of a taskj, belonging
to transactior’; for the critical instant candidate tasKc < I';), denotedS; .,
as the amount of execution time that “spills over” into thetneeriod. Since
taskj is released at timé;;., the amount of spill is:

3.5
®,;c+ Ci; —T;  otherwise (3.5)

To make the spill explicit, we split each tagkvith a positive spill into 2
new tasks, denotef and;”. j’ represents the amount of interference of task
that occurs within and at the end of the current perigdis called aspill task
and represents the amount of interference that occurs diteiiening of the
subsequent period. The definitions are:

Cl]' = C” — Sij(: Oij” = SZJ(,
0

@i‘j/c = ¢1j(1 éij”c — (3.6)
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3.3.3 Jitter and time induced interference

The key to make a static representation®f (7.,,,t) is to recognisee that it
contains two parts:

e A jitter induced part, denoted!"?(r,,). This part corresponds to task
instances belonging t8et1. Note that this interference is not dependent
ont.

e A time induced part, denoted"?(r,,,t). This corresponds to task
instances ofSet2. With exception for the first period, the time induced
part has a cyclic pattern that repeats itself evEr{as proved below).

We redefine equation 3.4 using our new notation as:
Wi (Tuast) = S (Tua) + T, (Tuas 1) (3.7)

This partitioning of W (7,4, t) is visualized in figure 3.5.7:"%(7,,) is
the maximum starting value of each of thHé (7., t) functions (i.e. max of
Wie(Tua, 0), See equation 3.3) which is calculated by:

J"(1,,) = max Z et (3.8)
Vi€hpi(Tua)

Ve€hpi(Tua) e

Figure 3.5:W; (Tua, t), Ji"(Tua), anAT" (T, 1)
The time induced parTf”d(Tum t), represents the maximum interference,
during ¢, from tasks activated after the critical instaﬂfj”d(ma,t) is alge-
braically defined as:
TZ’"d(Tua,ﬁ) = max W, (Tus,t) (3.9)

Ve€hpi (Tua) e
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where

Wik(ruat) = > (IS + 52 () = T (Tua) (3.10)

Vi€hpi(Tua)

Correctness criteria for our method requires that our nefinitien of
W*(Tua, t) in equation 3.7 is functionally equivalent to the definitiarequa-
tion 3.4.

THEOREM 3.1 W} (74, t) as defined in equation 3.4 anl* (., t) as de-
fined in equation 3.7 are equivalent.

PROOF REFERENCEProved by syntactic equivalence to Theorem 2.1 and cor-
responding proof.

Further, in order to be able to make a static representafioil,q(7,,, t),
we need to ensure that we store enough information to ctyregproduce
Wi (Tua, t) for arbitrary large values of SinceT!"4(r,,,t) is the only part
of W} (7ua,t) that is dependent o the following theorem gives that a peri-
odicity of T; exists in the interference:

THEOREM 3.2 Assume spill tasks are accounted for, ane= &k * T; + t/
(wherek € Nand0 < ¢ < T;), then

Timd(Tumt) — kx ﬂind(TumTi) + Tiind(Tua,t/)

PROOF REFERENCE The theorem is proved by algebraic equivalence in Ap-
pendix B.

3.3.4 Representing time induced interference

In this section we show how the interference pattermﬁﬁ(rua,t) can be
calculated and represented statically. Since the firsogesfiould not account
for any spill task, but subsequent periods should, we dithdepresentation
into two cases, one where spill task are not accounted fooardtase where
they are.
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Spill task not accounted for

For each critical instant candidate,, tasks are ordered, merged, and split ac-
cording to section 3.3.2. Spill tasks are removed. We defisetaf points
pic, Where each point;.[k] has an: (representing time) andsa(representing
interference) coordinate, describing how the time induo¢elference grows
over time wherr;. acts as the critical instant candidate. The pointg;ircor-
respond to the convex cornersiof.’ (7,4,t) of equation 3.10. The following
equations define the array.,.:

Dic[l].x =0

picll].y = Z Ifjitlf T (T0a)
Vi€hpi (Tua) (3.11)
pic[k‘]..%‘ =Pkc + Cik ke2... ‘Fi|

pic[1].y gives the initial relation (i.e. vertical distance at timeb&tween
different critical instant candidates, and is given by tliecence in jitter-
induced interference. Furthermore, the time-inducedfietence should be
zero at time zero (illustrated in figure 3.5) which is achiklg subtracting the
maximum of all jitter-induced interference (storedf*¢(r,,)) when initial-
izing p;.[1].y in equation 3.11.

.
o1 wi----
W eeecences
12 _O
2 ..__:o-g'—'—
7 54
P
odoodeZ b >t
T T T T
—_— 5 10

Figure 3.6: Visual representation pf. sets

The W, andW}, for our example transaction, are depicted in figure 3.6
and the corresponding; andp;, sets are illustrated by black and white circles
respectively. For this example transaction we get theviohig two p;.-s:

pi1 = [(0’ _1>a <47
Pi2 = KO? O>7 (8,

1),(6,2)] black circles
2),(10,3)] white circles
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Now, the information generated by aﬂ’;(mmt)—functions is stored in
the p;.-sets. To obtain the convex cornersTif*¢(r,,,t), we need to extract
the points that represent the maximum of &J} (7., t)-s. To this end, we
calculate the set of pointg;, as the union of alb;.-s:

bi = U Dic

Tic€L;

In order to determine the points ji corresponding to the convex corners
of Ti"4(7,,,t), we define aubsumeselation: A pointp;[a] subsumes a point
p;[b] (denotedp;[a] > p;[b]) if the presence op;[a] implies thatp;[b] is not
a convex corner. Figure 3.7 illustrates this relation giegdlty with a shaded
region, and the formal definition is:

pila] = p;[b] iff
pilal.y > pibl.y A (pilal.x — plal.y < pi[bl.e — p[bl.y)

¥4 ° o o e pia]
'°“x‘f"x—“"‘ o Not subsumed
X x x , Subsumed

>

Figure 3.7: The subsumes relation

Given the subsumes relation, the convex corners are founerbgving all
subsumed points:

Fromp; removep;[b] if Ja # b : p;[a] > p;[b]
For our example transaction of figure 3.1 we have:

bi = [<O7 O>’ <47 1>7 <6’ 2>’ <1O> 3>]

Spill task accounted for

Computing the set of points when accounting for spill taslenotedp}, is

analogous to computing, with the following differences:

e Spill tasks from the split operation are not removed. Nog&t ihcluding a
spill task might require an additional merge and order djmra
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e Inequation 3.11 on page 13Q.[1].y defines the initial relation (difference
in 172" between different critical instant candidates. Sipgeepresents
the time induced interferencd;"?(r,,,t), for t > T, p.[1].y should
reflect this relation at the end of the first period. The irgerfice for a
critical instantc at the end of the first period is representedvhyf|T;|].y,

consequently we get the following modification to equatiahil3

Pie[ly = picl|Til]-y — max pic[[Ts)-y

3.3.5 Increasing performance by removing slants

Assume that a set of poingg (with or without spill tasks) has been calcu-
lated, representing the convex corners of the time indutedference function
Ti"(1,4,t) during one period’;. The points for our example transaction is
illustrated in figure 3.8. Note that in the absence of spiiki&a the setg; and

p} are identical.

5 10

Figure 3.8: Remaining points and removal of slants

It can be proven that the fix-point iterative solution to E§.i@ [PG98]
(see Appendix A), which is the equation where the interfeeefunction is
used, cannot have any solution during the slants.

THEOREM 3.3 Equation 28 in [PG98] cannot have a solution at a tirhe
where any approximate interference function has a dernreagjreater than or
equal to one.

PROOF REFERENCE The theorem is proved in Appendix C.

2Analogous to equation 3.11, we normalize the points to staf, éience we subtract the
maximum of allp; . [|T;[].y.
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No solutions to the response-time equation can exist dain@glant of any
interference function. Furthermore, the closest possibletion will be when
the derivative of the interference function becomes zerendd, we can re-
move the slants and replace them with a stepped stair funa®illustrated
by the grey areas of figure 3.8, without introducing any pessn in the result-
ing response times. However, progress in the fix-pointti@nas proportion-
ally increased with any overestimation of the interferendence, by adding
overestimation in the grey areas of figure 3.8 we will speedhapfix-point
convergence without modifying the calculated responsedi

We will remove the slants by transforming the convex cortersoncave
corners (illustrated by crosses in figure®.8he rules for finding the concave
cornersy;, from a set of convex cornersg;, is as follows:

vilkl.y =pi[1].y

vilkl.x = pilk + 1.2 — (pilk + 1.y — pilkl.y)  if k < |pi]

=9 k) if k= |pi
kel... |pi

The interpretation ob; is as follows: Fort < T, v;[k].y represents the
maximum amount of time induced interferericewill impose on a lower pri-
ority task during interval lengths up tg[k].z (k € 1... |v;|). For our example
transaction of figure 3.1;; becomes (indicated by crosses in figure 3.8 on the
preceding page):

Vj = [<3a 0>7 <5’ 1>7 <97 2>’ <105 3>]

Note, especially that the final point (denoted|v;|]) contains the sum of all
interference during the peridt.

In the special case that some tagkhas®;;. = 0 (e.g. in the case for spill
tasks),v;[1].z will not be zero. However, sincg&"¢(0) = 0 (follows from
equation 3.9), the first element of needs to have-value that is zero. In such
cases we add the poifd, 0) to v; (stating that there will be O time induced
interference for any time interval of length up to 0).

SWhile the last point in the set does not strictly representrecave corner, it is still necessary
for us to keep track of the amount of interference at the enteoperiod, hence that point will be
included among the concave corners and is thus marked wittsa zr¢he figure.
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Discussion: Removal of slants

By removing the slants, we essentially revert to the steggeid interference
functions used in the original analysis [PG98, Tin92]. Ttdslld seem sur-
prising, since the tight analysis is based on the insightstepped-stair inter-
ference functions are overly pessimistic. However, asrdra.3 states, there
could be no response-time solutions during a slant. Herstegslantguring
fix-point equation solvingoes not increase the precision of the anal{sis.

However, wherderivingthe interference function it is imperative to use a
faithful model (using slants) for the different sourcesmkrference. Hence,
once we have derived the interference function (as done wafeering the point
setp;), we no longer need to represent the slants and can revestapped-
stair interference function.

An analogy could be made to calculations using floating-{peatues. If
rounding values up before each calculation step, the regudirror will be
greater than if the calculation is done using floating-peaities, and only the
final result is rounded up.

3.3.6 T/"(1,,,t) using lookup

Since we need to represent the interference for the two frsbgs separately
we will calculate the two point sejs (first period) and; (second period) ac-
cording to section 3.3.4. Next we will remove the slants foththese point
sets as described in section 3.3.5 and store the new pointsimdv, respec-

tively.

Using the point sets; andv; we can calculate the interference frdm
for an arbitrary timet. For the first period the interferencen is used, and
whent > T; we will start using the interference irj. Using these point sets
T}"d(rua, t) can be reduced to fast lookup function, as follows:

4This is why the original response-time analysis [JP86] armaEanalysis for tasks with offsets
[PG98, Tin92] does not overestimate response times.
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in vinly ifk<1
L d(T““’t):{v[ | if > 1

V =villvill.y + (k = 1) = villoill.y + viln'].y

k=t+T, (3.12)
t' =tremT;

n=min{m : t' <v;[m].x}

n' =min{m : t' <v)[m].x}

wherek represents the number of whole period@¥) (n ¢, andt’ is the part of
t that extends into the final period. It could be noted thi;|].y contains the
sum of all interference during the first period, arjlv;|].y contains the sum
of all interference during the length of one period for supsnt periods.

3.3.7 Space and Time Complexity

The number of points to calculate;} is quadratic with respect to the num-
ber of tasks in the transactidry (2|T';| points for each of thél’;| candidate
tasks). Thus, storing; andv; results in a quadratic space complexity since,
theoretically, no points from the,. sets will be removed when calculatipg

The method presented in this paper divides the calculatioi’p into a
pre-calculation and a fix-point iteration phase. A naive lenpentation of
the removal procedure in equation 3.12 requires compaw$@ach pair of
points; resulting in cubic time-complexity)(|T;|?)) for pre-calculating); and
v}.% During the fix-point iteration phase, a binary search thtoagjuadrati-
cally sized array is performed (eithey or v} in equation 3.12), resulting in
O(log |T';|?) time complexity for calculatingV* according to equation 3.7.
The original complexity for calculatingy/; (equation 3.4) i£)(|T;|?).

In a complete comparison of complexity, the calculationVgf (7, )
must be placed in its proper context (see the response timaufas in ap-
pendix 3.5). AssumeéX denotes number of fix-point iterations needed, then
the overall complexity for the original approach (equatiof) is O (X|T;|?)),
whereas our method (equations 3.7 and 3.12) yieli$l{;|® + X log |T;|?)).
Typically the size of a transactiofi{;|) is small (less than 100) and the number

5In section 3.4 we use a@(|T';|?log|T;|) implementation based on sorting the points and
making a single pass through the sorted set.
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of fix-point iterations ) is large (tens or hundreds of thousands), hence our
method results in a significant reduction in complexity.

3.4 Evaluation

In order to evaluate and quantify the efficiency (with re¢peexecution time
of RTA) of our proposed method, we have implemented a set jpfoegimate
response-time techniques, using the complete set of resgones equations
in appendix 3.5. We use these implementations to perfornx@msive simu-
lation study. We compare five RTA methods:

o fast-tight presented in this paper and is the method that is optimhmed t
farthest with respect to both analysis speed and tightnElse.goal of
this simulation study is to quantify its efficiency with regpto execution
time of the analysis.

¢ fast-slantedpresented in this paper but without removing the slants (se
section 3.3.5). The reason for including it in the analysioi investi-
gate the impact of reverting back to a stepped stair intenf@ function
during response time calculations.

e tight, presented in section 3.2 and [MTNO4b]. It is only optimized
wards tightness. These three methods all produce the exagt 8ght
response times.

e orig, presented by Palencia Gutierrezal. [PG98], which is not opti-
mized either for tightness nor for analysis speed. It isudet in the
evaluation to see if the relative performance degradatfaighbt, com-
pared toorig, remains irfast-tightwhen compared téast-orig

o fast-orig, our speed-up method ofig presented in [MTNO4a]. It is the
fastest known RTA for tasks with offsets. It yields the saresponse
times a%orig. Itis included to see if the performance gairfadt-tightis
comparable to those ddist-orig

3.4.1 Description of Simulation Setup

In our simulator, we generate task sets that are used astimpie different
RTA implementations. The generated task-sets have thewiolf characteris-
tics:
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e Total system load is 90%.

e The number of transactions is 10.

e Jitter (J;;) for each task is 20% of its transaction period.

e Blocking (B;;) is zero.

e The number of tasks/transaction is a variable parameter.

e The priorities are assigned in rate monotonic order.

e Transaction periodsI{) are randomly distributed in the range 1,000 to
1,000,000 time units (uniform distr.).

e Each offset ;;) is randomly distributed within the transaction period
(uniform distribution).

e The execution timeg({;;) are chosen as a fraction of the time between two
consecutive offsets in the transaction. The fraction isstimae throughout
one transaction. The fraction is selected so that the tctinsdoad of 9%.

The execution time for performing the RTA in section 3.4.2éhbeen ob-
tained by taking the mean value from 50 generated task-eetsaich point
in each graph. We have measured the execution time on a Red#tiaptop.
The execution times are plotted with 95% confidence intdorahe mean val-
ues. Note that, fofast-orig, fast-slanted andfast-tightthe execution times
also include the time to perform the pre-calculations preegkin Sects. 3.3.4
and 3.3.5.

3.4.2 Simulation Results

Figure 3.9(a) shows how the execution time of the five (algihe 3 fast me-
thods are indistinguishable) RTA analysis varies with irsgyasks/transaction
(all methods are listed in decreasing execution time ord&ft)en the number
of tasks/transaction is 2@ght takes about 86 seconds wheréast-tighttakes
around 0.63 seconds, which is a speed up of well over two safenagnitude.
Note also thattight has a slight penalty to pay, comparedtday, due to more
accurate interference modeling.

Zooming in on the three fast analysis methods in figure 3,.9(®) see
that fast-tight and fast-orig are quite comparable in execution times. There
are two, mutually opposing, factors that affect their fietatiming: Thefast-
tight method shortens its execution time since it sometimes ledésilower
response-times than thHast-orig method (and hence terminate in fewer fix-
point iterations). On the other hand tfeest-tight method has to spend more
time performing pre-calculations and also perform lookupwo different ar-
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rays during each fix-point iteration. In figure 3.9(b) we deat fast-tighthas
consistently slightly longer execution time.

In figure 3.9(b) we also see thaist-slantegays a price of slower fix-point
convergence due to the slanted interference function atsgiiitoverorig. We
conclude from figure 3.9(a) and 3.9(b) that the main contidouof speeding
up the response times comes from static representationoakdp, but that
reverting back to a stepped stair function gives an additispeedup of over
20%.

In figure 3.9(c) we compare the pre-calculations of the tfesemethods.
Here we can see that the pre-calculationgast-tightandfast-slanteds ap-
proximately twice that ofast-orig This is expected since they calculate two
sets of arrays as opposed to a single sefast-orig  Comparing with fig-
ure 3.9(b) one can see that the pre-calculations constésgethan 1% of the
total analysis time. One can also discern the complexith®pre-calculations,
and the slope is less steep than what would be expected ofaingilemen-
tation with worst-case complexity 6¥(|T';|?), this is partly due to our (sorting
based)O(|T';|?log|T;|) implementation of the pre-calculations, and partly be-
cause the worst (theoretical) case, wjth|? elements in the pre-calculated
arrays, never occurs.

We have also simulated an admission control situation. ladmission
control situation, a single (low priority) task is added to(atherwise schedu-
lable) set of already admitted tasks, and its response-gnoalculated and
compared with its deadline (to decide if the task can be addib the sys-
tem or not). In the admission control the pre-calculatiorthef already ad-
mitted tasks is not included in the execution time. In thésaukations, for
20 tasks/transaction, thigiht method takes about 92 milliseconds whereas the
fast-tighttakes 0.19 milliseconds, which is a speedup with a factodrabst
500. When performing admission control, the speed up in ouhodkeis iso-
lated due to two factors: (1) pre-calculations are alreamhedand (2) no inter-
ference from other tasks in the same transaction needs toccbearsted for. As
can be seen in appendix 3.5, the exact interference-funistiosed to account
for interference from tasks in the same transaction. Siasktightonly im-
proves the approximate interference-function, we isadateimprovement by
not needing to account for interference from tasks in theestamsaction.

This evaluation shows that combining fast and tight metHfodsesponse
time analysis, one gets the best of two worlds; a respongedimalysis method
that is both fast and tight, outperforming previous methmgdseveral orders of
magnitude.
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3.5 Conclusions

In this paper we have presented a novel method that calsudgeroximate
worst-case response times for tasks with offsets. Dist#ding feature of the
method is that it calculates tight response times in a shatyais time. We
have successfully extended our framework of fast RTA [MTa|0# be able
to apply it to our tight method [MTNO4b]. Our improvementg arthogonal
and complementary to other proposed extensions to thenatigffset analysis
such as [PG99, Red03].

The main effort in performing RTA for tasks with offsets is ¢alculate
how higher priority tasks interfere with a task under anialysThe essence
to calculate fast response times is to find a repetitive pati@d store that
pattern statically, and during response time calculatidmspoint iteration),
use a simple table lookup. Our tight analysis [MTNO4b] eiplthe fact that
the interference imposed by higher priority tasks is owéreted in traditional
RTA. By removing this overestimation, significantly tightesponse-times can
be calculated. The fast-and-tight analysis presentedsmtiper successfully
does both, resulting in a fast and tight RTA.

Faster RTA has several positive practical implications) Ehgineering
tools (such as those for task allocation and priority asamgnt) can feasibly
rely on RTA and use the task model with offsets, and (2) oa-finheduling
algorithms, e.g., those performing admission control, es@accurate on-line
schedulability tests based on RTA. Tighter RTA has the prakimplications
to allow more efficient hardware utilization. Either moredtions can be fit-
ted into the same amount of hardware, or less powerful (&dg@rdware
can be used for the existing functions. Hence, our fasttaid-analysis is a
very attractive choice to include in engineering tools anddmission control
software for resource constrained embedded real-timemsst

In a simulation study we see that our novel analysis has \iBes com-
putational requirements to that of the fast analysis. Haflgave notice that
the computational disadvantage of the tight analysis (@egpto the original
analysis) is completely removed when comparing the fadttght with the
fast analysis. Example benchmarks include a speedup ofl®@times for
response-time analysis of entire task-sets and a speecalmo$t 500 times
for single tasks, e.g., corresponding to an admission cbsituation.
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Appendix A: Complete RTA formulae

In this appendix we complete the set of formulas to calcutfa¢eworst case
response timeR,,,, for a task under analysis,,, as presented in Palencia
Gutierrezet al. [PG98].

The length of a busy period, fat,,, assuming-,. is the candidate critical
instant, is defined as (Note that the approximation funasarot used foi",,):

Luac =Bua + (pL,uac — Do,uac + 1Cuat+
WuC(Tua; Luac) + Z W,L* (Tuaa Luac) (30 in [PGQB])
ViFu

wherepg .q. denotes the first, ang, ... the last, task instance, of,,, acti-
vated within the busy period. They are defined as:

. Dac .
Po,uac = — \\WJ +1 (29 N [PG98])
and
PL,uac = {L“T%‘] (31 in [PG98))

In order to get the worst case response timerfgr, we need to check the
response time for every instange,€ po uac - - - PL,uac, N the busy period.
Completion time of the'th instance is given by:

wuac(p) :Bua + (p — Po,uac + 1>Cua

+ Wuc(’Tua, 'lUuac(p)) + Z Wi*(Tua7 wuac(p)) (28 in [PG98])
Vitu

The corresponding response time (for instapicis then:
Ruac<p) = wuac(p> - q)uac - (p - 1)Tu + Oua (32 in [PGgS])

To obtain the worst case response tirkg,, for 7., we need to consider
every candidate critical instant,, (including 7, itself), and for each such
candidate every possible instanpeof 7,,:

Ruya=_max [  max (Ruac(p))] (33in [PG98))

Ve€hpy (Tua)Ua P=Po,uacs--PL,uac
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Appendix B: Proof of Theorem 3.2

We will perform the proof by algebraic manipulation and usaces to high-
light the expression that is manipulated in each step. Wealsotate braces
with the equations, properties, lemmas, or assumptiorsresf to when per-
forming some manipulations.

When performing the manipulations we will, e.g., rely on tbédiving
properties:

(max) — The max, operator allows terms that are constant with respect to
the maximization variablev] to be moved outside the maximization
operation:

mfxx(Xv +Y)= mﬁx(Xv) +Y.

(sum) — Summation over a set of terms can be divided into two separat

summations:
(X 4+Y)=> Xu+ > Y,

v

(ceil) — When taking the ceiling[(]) of a set of terms, terms that are known
to be integers can be moved outside of the ceiling expression

XeN=[X+Y]|=X+[Y]
In proving Theorem 3.2 we will use some lemmas.

LEMMA 3.1 Assume spill tasks are accounted for, then regardless alican
date critical instant:: I5¢"(T;) = Cy;

PROOF OF LEMMA 3.1 For a given critical instant;, perform split accord-
ing to equation 3.6.

For an unsplit taskr;; then ®;;. + C;; < T; (equation 3.5). For each
task7;;; and 7;;~ that is the result of splitting the®;;,. + C;;» < T; and
(I)ij”c + C,‘j// < T; (equation 3.6)

For any taskr;; where®;;. + C;; < T; then

T, — @y
Set2 7 ijc
Iiji (T3) = {T Cij — Z
Eq“32 ! T; — @5 mod Ty > Cyj

0< @5, < T; (Ea31)

= 1Cij -0 = Cij
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Hence, for an unsplit task;; thenIZ<¥2(T;) = C;;. For each task;; that

ijc
is Sp”t tOTij/ andnju, thenlgiﬂ(ﬂ) = Cij/ + Cij// =Cy;
Since this holds for each critical instaatthe lemma holds. O

LEMMA 3.2 Assume spill tasks are accounted for, and k = T; + ¢’ (where
ke Nand0 < ¢’ < T;), thenI 2 (t) = k + IS (Ty) + 15672 (t)

ijc 1jc

PROOF OF LEMMA 3.2

t— By
e = [
——

T;
Eq.3.2 )
Assumption
k*ﬂ—f—t/—q)i‘c
{ T WC”_CU:
k*ﬂ t/—(I)i'c
{ T, Tiﬂc”_x:
(ceil) Ak € N
t/_(bi'c
(H[ T, DC“_:C:
t/_(I)i'c
kczj-i-’V le-‘Cw xr =

k*ISetQ(Ti) + ISet2(t/) 0

ijc ijc

LeEMMA 3.3 Assume spill tasks are accounted for from 0, then

T (1,4, T;) = Z Cij

Vjehpi (Tua)
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PROOF OF LEMMA 3.3

nind(71ta7 T‘l) = max W+ (Tua7 TZ) =
~———— —

c
Veehp;(Tua)
Eq.3.9 Eq.3.10

max ( Z (Igitl IS?Q(T )) de(Tua)) _

Ve€hp;(Tua)
Vi€hpi(Tua)

(sum)

Setl Set2 ind
max E I: + E I: —J" (T ) =
VCEhpl(Tua) ( Z]C Z]C ( ua)

Vi€hpi(Tua) Vi€hp;(Tua
Lem.3.1

Setl ind
max (Z IUC + Z Cij — J; (Tua)) =
Veehpi(Tua)

Vi€hpi(Tua) Vi€hp;(Tua)

(max)

Syt max Y ISt gind(r,,) =

) Vec€Ehp; (Tua)
V]Ehpi(Tua) Viehp;(Tua)

Eq.3.8

S Cii+ M (Tua) = T (ua) =Y Cy O

Vi€hpi(Tua) Vj€hp;(Tua)
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THEOREM 3.2 Assume spill tasks are accounted for, anek k  T; + t/
(wherek € Nand0 < ¢ < T;), then

Tiind('ruavt) — k% Tiind(TuaaTi) 4 Tiind('rua,t/)
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PROOF OF THEOREM 3.2

Timd(Tua,t) = W*(TW, t) =

c

Eq.3.9 Eq.3.10
,, nax Z (I{ji“ + If;iﬂ (t)) — I (1,4) =
c€hpi(Tua) .

Vic€hpi(Tua)
Lem.3.2

e ST (IR ks IR0 + IR () -
€ i(Tua

Vi€hp;(Tua)
Lem.3.1

Jgnd(Tua) =

e (L5 4 RCy + IR () = T (rua) =
et U%% hpi(Tua)

(sum)

max
Veehpi(Tua)

(D kCs + 30 (15 + I522(0) = 7 () =

Vi€hp;(tua) Vi€hp;(Tua)

(max)

Setl Set2 (41 ind _
> kCij+, max )E (L + L3P (t) = T (Tua) =
Vi€hp;(Tua) CViEnRp (Tua)
———
Setl Set2 4/
k‘*g Ci; + max E (Iijc +1I;5. (t))—
Veehp;(Tua)
Vi€hp;(Tua) Vi€hpi(Tua)
Lem3.3 nd
J"N(Tua) =

k * Tiind(Tuaa Tz>+
max Z (I3 + I392(¢)) — T (1ya) =

Veehp;(Tua)
Vji€hpi(Tua)

Eq.3.10

k * Tiind(Tuaa E) + max WZ—L_ (Tua7 t/) =

Veehp;(Tua)

Eq.3.9

ks TN 7ya, Ti) + T (7Tya, ') O
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Appendix C: Proof of Theorem 3.3

In proving Theorem 3.3, we will use eq. 28 in [PG98] (see Apmjiers.5),
definition ofw,..(p), the worst case response timerf, with 7. as the one
coinciding with the critical instant, simplified and revieih as a function of
time, f(t):

F#) = K1+ WaelTua, t) + Y Wi (Tuast) (28)

Vi#£u

where K is some constant value. We note that a solution to eq. 28tsxis
and fix-point convergence is reached, whn) = ¢, for somet. Since both
exact (V,,.) and approximatel{’;*) interference functions are monotonically
increasing, we conclude th#ft) is also monotonically increasing.

LEMMA 3.4 The smallest solution to eq. 28’, denotedcannot exist where
f(t) has a derivative greater than or equal to 1 (i.e. wh¢fé&) > 1).

y
y=t

y=f(t)

f(s)=s
o) ===~

) o e - —————

T o o S -

Figure 3.10: Fix-Point Iteration whefi (t) > 1

PROOF OF LEMMA 3.4 From [SH98] we know that:

1. For any monotonically increasing response-time equafior anyp < s,
f(p) > pholds.

2. We can start fix-point iteration from any point< s and still find the
smallest fix-poins.

3. Atapointp < swheref’(p) > 1, consider figure 3.10, the line= f(p)
cannot be converging with ling = p (which has a derivative of 1).
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Assume that is a point wheref’(¢) > 1 then (by the continuousness of
f(¢)) there exists a point = s — e (for some smalk) wheref’(p) > 1. Then
by 1 f(p) > p, and by 3 the lines will not be converging. However, by 2 it
should be possible to start fix-point iterationzaind converge ints.

A contradiction has been reached and the assumption dodwithtHence
the lemma holds. O

THEOREM 3.3 Equation 28 in [PG98] cannot have a solution at a time
where any approximate interference function has a dengatjreater than or
equal to one.

PrROOF OF THEOREM 3.3 None of the terms itf(¢) has a negative deriv-
ative. Hence, if for a time¢ any of the approximate interference functions
Wi (Tua, t) has a derivative of orfe then the functiory(¢) has a derivative
greater than or equal to one. Then, by lemma 3.4, the theorddsh O

6The derivative of an approximation functioi’* (Tuq, t) is either one (for a slant) or zero (for
a stair).
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Abstract

This paper will show how advanced embedded real-time systeiith func-
tionality ranging from time-triggered control functioitglto event-triggered
user interaction, can be made more efficient. Efficient wegpect to develop-
ment effort as well as run-time resource utilization. Tleigchieved by using
a hybrid, static and dynamic, scheduling strategy. Theaaayr is applicable
even for hard real-time systems since tight response tinagagtees can be
given by the response time analysis method for tasks wigetdf

An industrial case study will demonstrate how this appraatéibles more
efficient use of computational resources, resulting in apkeor more com-
petitive product since more functionality can be fitted itgégacy, resource
constrained, hardware.
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4.1 Introduction

As the complexity of embedded real-time systems keeps ggvioth by in-
creases in size and in diversity, the developers are factdtine increasing
challenge of modeling, analyzing, implementing and teghoth the functional
as well as the temporal behavior of these systems. This palperesent ways
to simplify some of that complexity by introducing methodsserify the tem-
poral correctness for a larger class of such systems.

Traditionally, one of the design parameters has been wieaiéion model
to choose. Two common and widespread execution models argtdtic and
dynamic execution models:

e Static scheduling where a schedule is produced off-line. The schedule
contains all scheduling decisions, such as when to exeauate task or
to send each message. During run-time a simple dispatchgatdhes
tasks according to the schedule. Static scheduling is someeteferred
to as time-triggered scheduling.

e Dynamic scheduling where scheduling decisions are made on-line by
a run-time scheduler. Typically some task attribute (sulréority or
deadline) is used by the scheduler to decide what task taiexedhe
scheduler implements some queueing discipline, such as fiserity
scheduling or earliest deadline first. Dynamic schedulgngametimes
referred to as event-triggered scheduling.

Since both models have their pros and cons, the design de@$iwhich
one to use is not simple. A few trade-offs when choosing ei@tunodel are:

e Overhead- Since all scheduling and synchronization decision areemad
off-line in the static approach, the run-time overhead fdregluling is
kept low. In dynamic scheduling these decisions are madmeneften
resulting in a larger overhead.

e Responsiveness Statically scheduled systems are inflexible and have
therefore limited possibility in responding to dynamic et resulting
in poor responsiveness. Dynamically scheduled systemghewnther
hand, handles dynamic events naturally and can providedeghee of
responsiveness.

e Resource usage In order to provide some degree of responsiveness for
dynamic events in the environment, statically scheduletesys tend to
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waste resources on redundant polling, whereas evenetegglynamic
schedulers only handle the actual events, enabling betteics to soft
or non-real time functionality when events do not occur &irtimaxi-
mum rate.

Overload — In static scheduling the effects of overload are highly pre
dictable. The exact capacity, e.g. in terms of number oftapandled,

is known and the effect of lost events, e.g. due to slow pgllcan be
predicted. In dynamic scheduling, no natural overload rabig inher-
ent. Instead, ad-hoc mechanisms are used to prevent,aeilly, §ensors
from flooding the systems with interrupts. A dynamicallysdbled sys-
tem which becomes overloaded is unpredictable, it is oftéfitwlt to
assess which buffer will overflow and thus which tasks wilssntheir
deadlines.

Determinism — A statically scheduled system is highly deterministic,
it executes according to the pre-defined schedule each Andgnami-
cally scheduled system, on the other hand, may exhibitréifficoehavior
each time the system is run, due to, e.g., race conditionhares re-
sources. This has a major impact on reproducibility, and tdgo on
the functional testability, of the system. Determinisnoaanplifies the
verification process which is a major part when certifyinfgsacritical
applications.

Complex constraints— Statically scheduled systems can handle more
complicated inter-task relation constraints. For examptetrol sys-
tems, where control performance is important, need to hanad! §input
and/or output) jitter, which is easier to accommodate irmticscheduler
than with simpler dynamic scheduling parameters.

Adding new functionality — Once a static schedule has been constructed
it can be very hard to add new functionality in the system, raetely
new schedule has to be constructed. For a dynamically stduedys-
tem, new functions can be added with a minimum of impact omroth
parts of the system.

For further discussions on these trade-offs see [Loc92¢hvhdvocates cyclic
scheduling), and [XP00] which advocates dynamic, fixedrfiyicscheduling.
As can be seen, both approaches have their virtues and @mevafthes to
have both approaches available when developing embeddetime applica-
tions. This desire is clearly illustrated by the last fewngeaf development in
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the area of field busses for automotive applications. TherCler Area Net-
work (CAN) [CAN92] has been predominant in the automotiveuistry. CAN
provides dynamic scheduling (using fixed priority scheaglli However, the
automotive industry felt a need for a more dependable andiqgiadle bus ar-
chitecture. So when Kopetz brought attention to his Timggdered Protocol
(TTP) [KG94], which provides static scheduling, many autdre manufac-
turers and their sub-contractors embraced the new tedayoltt was soon
recognized that TTP was a lio static. Hence, a consortium of automotive
manufacturers and sub-contractors started the develdpmhé&texRay [Flx],
which provides both static and dynamic scheduling. Alsotr@noperating-
system side, products that support both static and dynachiedsiling have
emerged. For instance, Arcticus Systems’ operating syRebus [Arc], and
the open source real-time operating system Asterix [Astfatt, most priority
driven operating systems can implement hybrid static améuohc scheduling
by letting a dispatcher (a time-table) execute at highastipy.

Thus, we see that the need to combine static and dynamicdaigtave
led to some practical solutions available today. Howeveg problem with
systems that tries to combine static and dynamic schedidititat they often
consider the dynamic part as non real-time, e.g. [Arc, FBfjat is, dynamic
scheduled tasks/messages are not given any responsedarantges, only
best-effort service is provided. However, in order to fulljlize the potential
of combining static and dynamic scheduling in hard reaktisgstems, both
the dynamic and the static parts need to be able to provigemnes-time guar-
antees. A recent study of industrial needs recognizes trebbthe key issues
for embedded systems is analyzability [MFNO4].

This paper presents a method to model hybrid, staticallydymamically,
scheduled systems with the task model with offsets [MTN®Mith this model,
and the corresponding response time analysis, tight respiime guarantees
can be given also for dynamically scheduled tasks. The rfestigystem can be
realized with commercially available operating systenppsut. Furthermore,
in a case study we show how a legacy system at Volvo ConstruEGjuipment
could benefit from this approach by migrating functionafitym the resource
demanding statically scheduled part to the dynamicallgdated part, freeing
system resources while still fulfilling original temporairstraints.

Paper Outline: Next, section 4.2 describes the type of systems studied in
this paper. Section 4.3 shows how these systems can be erbdsihg the task
model with offsets. Section 4.4 discusses related workti@ed.5 illustrates,
through a case study, how this approach can be applied toaaylexystem,
migrating functions from a static schedule, freeing systesources. Finally,
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section 4.6 presents our conclusions.

4.2 System description

In this paper, we address the issue of providing tight respdime guaran-
tees to dynamically scheduled tasks running “in the baakagpld of a static
schedule. The system model contains:

e Interrupts . There may be multiple interrupt levels, i.e., an internupty
be preempted by higher level interrupts.

e A static cyclic schedule

— A set of periodic static tasks (functions) are scheduletéstched-
ule. Each task has a known worst case execution time (WCET).

— The schedule has a length (a duration) that is equal to the LCM
(least common multiple) of all statically scheduled fuontiperi-
ods. The schedule is constructed off-line by a schedulinh to

— Each function is scheduled at an offset relative to the stattie
schedule. This is also referred to as a functioalsase time

— The static cyclic scheduler activates each function in dhedule
at its release time. When the whole schedule has been exebated
schedule is restarted from the beginning.

Interrupts may preempt the execution of statically schediflinctions.

¢ A set dynamically dispatched tasksWe call each such taskdynamic
task These tasks executes in the time slots available betwéemipts
and statically scheduled functions. Dynamic tasks aredidid by a
fixed priority preemptive scheduler. They are assumed tcebiedgic or,
at least, to have a known minimum time between two invocation

We assume that a static cyclic schedule has been constiquitedo the
analysis of dynamic tasks. Furthermore, we assume thattrezlsle is valid
even if its functions are preempted by interrupts. How a dulex can generate
a feasible schedule, with interfering interrupts, is diésd in [SEF98].
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ol I

I I
0 5 10 15 20

Figure 4.1: Example of static cyclic schedule

4.2.1 Example system

Figure 4.1 shows a static cyclic schedule of length 20, witimétions released
attimes 0, 5, 10 and 15, with WCETs 4, 1, 1 and 3 respectively.

In figure 4.2 we see an example execution scenario when éxgdhie
schedule from figure 4.1, with one interfering interruptr®euand one dynam-
ically scheduled task (two instances of that task are getija We make the
observation that both interrupts and the static schedulikachigher priority
tasks from the dynamic tasks’ point of view.

Interrupt }J : : I I_{

Static Schedule —l!_| !_| _| |
.

Dynamic Task | I,_I I

Arrivals and
Execution Times

Execution Pattern ‘]_\ —|_| l!_| F_Il

Figure 4.2: Example execution scenario

One of the main objectives of this paper is to enable resptimsecalcula-
tions for dynamic tasks. The goal is to model static sched{dad interrupts)
S0 as to incur as little interference on dynamic tasks eiatwds possible.
Thus, modeling both functions’ WCETSs as well as their reldames as accu-
rately as possible.
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4.3 Modeling the system

Classical response-time analysis (see e.g. [ABB, BW96, JP86]), assumes
that a critical instarttoccurs when all tasks are released simultaneously. Using
this model, the static schedule described in section 412, beamodelled as
4 tasks. These tasks would have a period of 20 and WCETSs of 4, dndl
3 respectively. However, this approach is overly pessimghce it assumes
that all four static tasks can be released for executioneasstme time. In
our example, assuming no interrupt interference, a dyngasicwith a WCET
of 1, would have a response time of 10 (4+1+1+3+1). Howewskihg at
figure 4.1 one can see that the actual worst possible respiomsés 5 (if the
dynamic tasks coincides with the static function schedateidne 0).

In static schedules it is impossible for all static tasksttotsat the same
time. The task model with offset introduced by [PG98, TinB24ble to cap-
ture the time separation in static schedules, and thus eethg pessimism.
In [MTNO4] we further reduced the pessimism in the corresjiog response
time formulae.

4.3.1 Task model with offsets

The task set[, in [MTNO4] consists of a set of transactions]'y, ..., ;.
Each transactioh; is activated by a periodic sequence of events with pefjod
Atransactior’;, containgT’;| number of tasks, and each task is activated when
a relative timepffset elapses after the arrival of the event.

7;; is used to denote a task. The first subscript denotes whiesection the
task belongs to, and the second subscript denotes the nofrithertask within
that transaction. A task;; is defined by a worst case execution tinig;(, an
offset (O;;), a deadline ;;), maximum jitter ¢/;;), maximum blocking from
lower priority tasks B;;), and a priority ;). The task setI" is formally
expressed as follows:

I :={Ty,...,T}
Ly :=({71, .7, 1 1)
7ij :==(Cij, Oij, Dij, Jij, Bij, Pij)
There are no restrictions placed on offset, deadline erjifthe maximum
blocking time for a tasks;;, is the maximum time it has to wait for a resource

Ipoint in time, where the task under analysis is released ferugion, resulting in the longest
possible response-time.
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which is locked by a lower priority task. In order to calceldhe blocking
time for a task, usually, a resource locking protocol likeopty ceiling or

immediate inheritance is needed. Algorithms to calculddeking times for
different resource locking protocols are presented in9BlitPriorities can be
assigned with any method (e.g. rate monotonic, deadlineotnait, or user
defined priorities). One must assume that the load of thegesls less than
100%?2

Oi2=5 Jip=1
1
(6] |1:2 ‘ Ji1:8 ‘
Ti=10
Cy=2 TCiz=l | Time
| A -

T

0 1 2 3 4 5 6 7 8 9 10

Figure 4.3: Example transaction

Parameters for an example transactiby) (vith two tasks ¢;; andr;s) is
depicted in figure 4.3. The offset denotes the earliest plesstlease time of
a task relative to the start of its transaction and jittéugtrated by the shaded
region) denotes maximum possible variability in the acretdéase of a task.
The upward arrows denotes earliest possible release okaltabthe height
of the arrow corresponds to the amount of execution releaBlee end of the
shaded region represents the latest possible releasesk.a ta

4.3.2 System model

The system in section 4.2 can be modelled, and dynamic taflseguently
analyzed for response times, with the above task model Esv(subscripts
i, s, andd denote a generic interrupt, static, and dynamic transactepec-
tively):

e Each interrupt will be modelled as a transactiohy, containing one
single task (i.e.|T';| = 1) with 7; set to minimum inter-arrival time of
the corresponding interrupt. These interrupt tasks wikehne highest

2This can easily be tested, and if not fulfilled some respoimsestmay be infinite; rendering
the task set unschedulable.
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priorities in the system. If there are several interrupglsypriorities are
assigned accordingly, i.e., highest priority to highetirupt level.

e The static schedulds modelled as one transactidn,, where each re-
lease time in the schedule is modelled as one tagkwhere the offset
,0s;, is set to the corresponding release time. The worst caseigoe
time, Cy;, is set to the corresponding functions WCET. The prioritg on
suffices, for static tasks must be lower than for any interrogt higher
than those for dynamic tasks.

Our example schedule of figure 4.1 will be modelled as a tictima
(Ts = 20) with 4 tasks, with offsets 0, 5, 10, 15 and worst case exenuti
time of 4, 1, 1, 3 respectively.

e Dynamic taskswill have the most variability on how they are modelled.
In the simplest case they are modelled exactly the same wiateasupts
but with lower priorities. This situation corresponds tmple periodic
(or sporadic) dynamic tasks with no jitter, no time separafoffsets),
and no blocking. However depending on the nature of the dintasks
their corresponding transaction can be extended by:

— jitter if there is variability in their periodicity,

— by blocking if they share resources and providing the roretsys-
tem supports an analyzable resource sharing protocol, and

— offsets if there are temporal dependencies, such as precede
among dynamic tasks.

Note that dynamic tasks cannot communicate with staticstask loc-
ked resources, since they must not affect their tempora\ieh How-
ever, there exist methods to communicate between these/ttenss that
will not affect the temporal behavior of static tasks, seg (NNT04].

Assuming the dynamic task of figure 4.2 is a sporadic task wit-
imum inter-arrival time of 10 time units and a release jiér3 time
units, it is modelled as a transaction with = 10 containing one task
with Jg; = 3. The execution time is 2 and since it is the lowest priority
task the blocking is zerd{y; = 2 andBgy; = 0).

The formulae to calculate the response times rely on a rélesitical in-
stant assumption stating that only one task out of everg#etion has to coin-
cide with the critical instant. The complete formulae cafdued in [MTNO4],
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and would, for our example system of figure 4.2, result in aoase time of 5
time units for a dynamic task witfiy; = 1, assuming no interrupt interference.
Since all type of tasks, interrupt, static, and dynamic, lsamnalyzed for
responsiveness, the inability of providing response timargntees will no
longer be a basis for rejecting an execution model for a fancthus making
hybrid static and dynamic scheduling suitable even for headttime systems.

4.4 Related work

There has been number of research projects addressingtieedscombining
several execution models [RS01, SRLK02, BBLBO03]. These/igmreser-
vation-based guarantees where task characteristics afallygdknown in ad-
vance. Furthermore, no commercially available real-timperating system
support exist for them. Our approach is to model existingesys, supported
by commercial RTOSes, where task attributes are fully knatwesign time.
However, [RRW 03] aims at modeling real situations through hierarchycall
modeling different schedulers. They cover preemptive amdpreemptive pri-
ority schedulers and do not model static schedulers. Intlaetvork presented
in this paper could extend their more general framework \thth ability to
model also static schedulers.

4.5 Case Study

A case study [HRO3] conducted at Volvo Construction Equipnfe¢CE) [Vol],
with the objective of finding a way to use available resoumn@smore efficient
way has studied the design trade-offs between static anahaigrscheduling.

VCE has a tradition in statically scheduled systems. Thisamly due to
the safety critical nature of their control systems in tieiavy machinery, e.g.,
articulated haulers, trucks, wheel loaders and excavaRubus OS by Arcti-
cus [Arc], used by VCE, has run-time support for the systendehdescribed
in section 4.2.

Currently at VCE, all safety critical functionality is imganented in the sta-
tic part and only soft real-time or non real-time activitgides in the dynamic
part. In recent interviews (in an ongoing research projbety state that about
20-25% of their applications are considered safety clitizainly residing in
transmission and engine control. However, some operdtinodes, have sta-
tic schedule utilization as high as 74%.
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The demand on more functionality in next generation mackireegrow-
ing. However, the static schedule is getting close to fuillzation, leaving
little or no room for new functionality. This can either bedaelssed with new
and more expensive hardware or to find a better way of utgizire current
hardware resources.

Demand on responsiveness (i.e. deadlines) for functignalithe static
part ranges from a few milliseconds up to several secondss dduld po-
tentially result in very large schedules (with correspogdiigh memory con-
sumption). VCE's solution to this has been to fix the schetirigth at 100ms,
which result in waste of computing resources due to redunaiating for any
function with a responsiveness demand higher than 100res fewctions with
responsiveness demand within 100ms but associated withsaeat occur sel-
dom will in this case waste computing resources). A solutiia could get rid
of this redundant polling, while still guaranteeing thep@ssiveness and with-
out increasing the schedule length, would be highly dekdrab

4.5.1 Anexample system

Here we will present an example system that can be viewed ampifeed
version of one of the systems constructed by VCE. A complgteesn would
consists of several hundreds of tasks [HRO3] and would bectmoplex to
present in this paper. We will show how functions currentgiding in the
static part can be moved to the dynamic part and, by usingethigonse-time
analysis of [MTNO4], still guarantee that the function déaek will be met.
Type of functionality that could be moved, according to [FBRCconsists of
events that by nature are event-triggered, visual intenaatith driver, and
logging of operational statistics. Another example of fimality that may be
moved to the dynamic part is control functionality that i$ part of sampling
or actuation. Control performance is often sensitive teritn sampling and
actuation and therefore often placed in a static schedute9®}. However,
the control calculation and updating of control state do mte these strict
requirements on jitter and their responsiveness requineimenly restricted by
the corresponding output action and sampling in the nexbgeespectively.
Therefore control and updating control state functiogatituld be moved to
the dynamic part.

For our example, the task specification in table 4.1 on the page will
be used. (For simplicity we will in this example ignore intgst interference.)
Tasks F and G handle events that may occur once every 2000dhwijth a res-
ponse time requirement of 100ms. Placing tasks F and G irtia stdnedule,



Il 4.5 CASE STuDY 163

[Taski | T, G D, [U™ U™ ]
A 10 2  10[ 20% 20%
B 20 2 5| 10%  10%
c 50 1 2| 2% 2%
D 50 6 50| 12%  12%
E | 100 8 100 8% 8%
F | 2000 7 100 7% 0.35%
G |2000 8 100| 8% 0.4%
H | 2000 8 2000 8% 0.4%

Table 4.1: The set of tasks in the Static system

means that they would have to be polled at the rate of theillohea(100ms)
instead of their period (2000ms) (since we do not know eyadtlen the events
are going to occur). Task H, however, could be polled at tke whits period
(2000ms), however, the resulting schedule would becométge and mem-
ory consuming (it would have to extend for 2000ms and thuseore over
20kb of ROM). Setting the schedule length to 100ms would legjadte for all
tasks except task H. Hence, the schedule length is set tos,@0m a resulting
schedule can be seen in figure 4.4.

In table 4.1,U1% represents the task utilization when scheduled in a static
schedule with a period of 100ms, abid represents the utilization when tasks
are scheduled with their period.

Bl [ e [B [ ¢ B[ o HA] F B o o w [El] [ |
]

0 10 20 30 40 50 60 70 80 90 100

Figure 4.4: Static schedule for table 4.1 task set

The total utilization of the static schedule is 75%. Addimgwfunctional-
ity, requiring some kind of temporal guarantee, to thisesystan be difficult,
there are not many free time-slots in the schedule, espeifitiere has to be
room also for interrupts and non-real-time functionality.

Improving the system

However if tasks F, G, and H could be made event triggered Jdwing them
in the dynamic part of the Rubus OS, some resources couldelee.fr The
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resulting static schedule can be seen in figure 4.5. Theatiiin for the static
schedule now becomes 52%. The utilization for the three myoéasks are
1,15%, resulting in a total utilization of just above 53% uhby moving these
three tasks from the static schedule we free nearly>2@he CPU resources.

FA [ el P o[l FHoR  BE
[ [ [ [ |
0 10 20 30 40 50 60 70 80 90 100

S

Figure 4.5: Schedule without tasks F, G and H

Now, it remains to see whether the three tasks will meet ttheadlines
when running as dynamic tasks. To be able to calculate regptimes for
tasks F, G, and H we model the static schedule as a transadtloff, = 100.
WCETSs and offsets are set as follows:

Csj:(57 107 4> 27 107 3u 107 27 47 2)
O,; = (0, 10, 20, 30, 40, 50, 60, 70, 80, 90)

Assuming that F, G, and H have priorities high, medium, andrespec-
tively, we can calculate the response times for the threestascording to
[MTNO4]. And the result is:

Rp =26 Rg=44 Ry =064

We see that all three tasks will meet their deadlines of tdhle In fact,
their responsiveness is considerably increased comparéeéihg statically
scheduled every 100ms. It could be mentioned that by rergadsks F, G
and H from the schedule we have enabled shorter responsefomether dy-
namic tasks, that might have existed in the system, as wélkk sthedule in
figure 4.4 has a longest busy period of 54ms (between 30—-8#reas the
new schedule in figure 4.5 has a longest busy period of 14nwé¢ka 10—24).
Since any dynamic task (in the worst case) will have to waittffie longest
busy period, we now have significantly reduced that time.

With the approach presented in this paper the static sceeduild be kept
small (with respect to memory consumption as well as utilizg. By model-
ing the static schedule as one transaction, response tiatgsanfor task with
offsets can be used to evaluate timeliness for the dynanmnic pa

SIncrease in overhead for tasks F, G, and H as dynamic tasksbwitharginal, hence not
considered here.
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Our solution reduce utilization by moving functionalityigpiously polled
excessively, from the static schedule to the dynamic paxir r@ethod also
gives a possibility to shrink the static schedule since fions with long peri-
ods can be moved from the static schedule. It should be nmattibowever,
that all tasks in the static schedule share a common stacireat moving
tasks from the schedule to the dynamic part may require tleehate sep-
arate stacks, hence increasing the memory consumptionyfanaic tasks.
However, using a resource locking protocol such as the inatethheritance
allows also dynamic tasks to share a single stack [But979%]or

The possibility to selectively migrate functions from stagcheduled le-
gacy systems to dynamic scheduled systems will substinfadilitate for
companies to gradually move into the area of dynamic sciregiuhnd thus,
in the long run, help companies to use cheaper hardwarerfét,roore func-
tions into, their products. Also the development procesoives easier be-
cause event triggered functionality does not have to beeféitted into a static
model.

4.6 Conclusions

As stated in [MFNO4] analyzability is one of the major contéar embedded
systems development. We have in this paper shown how a hytatic and
dynamic, scheduling model can be modelled and dynamic &s&lyzed for
responsiveness. The type of system presented can be ddayizemmercially
available OS support, e.g., Rubus OS by Arcticus [Arc]. lot,fany fixed
priority OS complemented with an external static schedtderimplement this
type of system with the static schedule as a task at highiesttpr

A hybrid, static and dynamic, scheduling model simplifiesdiesign trade-
offs of which scheduling model to choose. Appropriate scliad model can
be chosen on function level instead of system level. Sincgpoeal guaran-
tees can be provided, this approach will also be applicablddrd real-time
systems. Choosing the most appropriate model for eachifumdhstead of
force-fitting it to an overall model, not only simplifies thesign choices but
also gives the possibility to save system resources andirepesponsiveness.
This is demonstrated in a case study [HR03] at Volvo Constrmd&Equipment
using the commercial real-time operating system Rubus Iayiéus [Arc].
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APPENDIX A
RTA Formulae

This appendix presents RTA formulae for some of the extessinade to the
basic RTA presented by [JP86]. The task model for basic RES i®llows. A
taskr; is specified by:

e Aperiod,T;.
e Worst case execution timé€;.
e Deadline,D;.
e Priority, P;.
The followingassumptionsmust hold in order for the analysis to be valid:
e There can be no synchronization between tasks.
e Tasks must not suspend themselves.
e Deadlines must be less or equal to corresponding peri@dshi. < T;.
e Tasks must have unique priorities.

The response time for tagk, R;, consists ofr;-s own worst case execution
time and higher priority task interference:

Ri=Cit+ Y, Hﬂ C;
viehp(i) ' 7
Wherehp(i) denotes the set of tasks having higher priority than
The extensions presented in this appendix aim at incredisengpplicabil-
ity of RTA either by extending the task model or lifting sonfefwe restrictions
in the assumptions.
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Adding blocking
Assuming the blocking factor, the time a task has to wait fehared resource

held by a lower priority task, can be bound®g, the response time, fat, can
then be obtained by:

Ri=Ci+Bi+ Y, {RZ—‘C,
)

| T
Vji€hp(i

Adding jitter

Assuming there is a uncertainty of the periodic release e, tjitter, by an
amount of.J;, the response time can be obtained by:

w; + J;
w; = C; + Z ’V T j-‘Cj

Vi€hp(i) J
Ry =w; + J;

Adding offsets — approximate approach

Adding offset relations to the basic model means that aksasin no longer
be released for execution at the same time. Tasks with mafisgt relations
are grouped into transactionB;}, each with their own period time&/f). The
definition of critical instant is relaxed to: One task out g€y transaction is
released at the critical instant. This means that thereaarybe a simultaneous
release of some tasks. Task denotes task of transactionl’;. OffsetO;;
denotes the release of a task relative to the start of thedcdion.

Assuming one knows what task out of every transaction cdégivith the
critical instant, let us call such a task a critical instaagktr;., the phasing
between the critical instant task and any other task canloalated as:

(‘Dijc = (Oij — Ou) mod Ti

That is,®;;. denotes the time of a subsequent (or perhaps simultaneease
of 7;;, relative to the release @f, at the critical instant.

With 7;. as the critical instant task @f;, the interferencé’; poses on a task
under analysisz,,, during timet, is:
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t— Pije
Wic(Tuaat) = Z ’7,1—;“ Cij
)

Vi€hpi(Tua

Where hp;(7,.) denotes the set of tasks with higher priority#g, and
which belongs to transactidry.

Since one can not know which task coincides with the criticsiant be-
forehand, the exact approach must examine every possitikioation of crit-
ical instant tasks in the different transactions. This Inee® computationally
intractable for anything but small task sets. Thereforemor@imate interfer-
ence ofl";, considering each transaction in isolation, is given by:

W (Tya,t) = ma Wie(Tua, t
i (Tua> 1) ecnax | (Tua; )
With this exact and approximate interference, the resptimsefor a task
under analysisR,,) can calculated as:

R’LL(Z - Cua ( W* ua Rua WZC uas Rua )
+vCeh£?7)-in)Ua Wziu i )+ (7 )

With this definition we see that the approximate interfeesfunction is
used for all but-,,-s own transactiol,,. ForT",, the exact interference is used
and thus one must examine each task (includipg in I, as coinciding with
the critical instant.

Communications device — CAN

CAN is a non-preemptive fixed priority resource where a mgssan only be
interrupted during the time it takes to send one hjt,, over the communica-
tion channel. The response-time formulae thus becomes:

w;
Wi = Tpit + Z {T-‘ Cj
) J

Vji€hp(i
R; = w; + C; — Tyin
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Response time larger than period

Assuming the response time is allowed to be greater thanehedofor 7;,
implies that there can be several active task instances aftive simultane-
ously. In calculating the response time, another iterattep is added. First,
the length of level-busy period (processor is busy executing tasks with pyiorit
higher or equal ta;) is determined. The response time for each task instance,
in that busy period, has to be calculated, and the maximuimeofi tconstitutes

the worst case response time for

Length of levels busy period:

Vj€hp(i) J

Obtaining the worst case response time:

R, = max _ R;, where

Rip=kCit+ Y ﬁ’ﬂcj—(k—lm
J
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APPENDIX B
Table of concepts

Concept

Meaning |

Activation time

The time of the event occurrence triggering a task.

Blocking time

The time a task under analysis must wait for a lower
priority task to release a shared resource.

Critical instant (c.i.)

Point in time leading to maximum response time for a
task under analysis.

Imposed interference

Interference actually imposed on a task during a time
interval.

Jitter Difference between earliest and latest possible release of
a task.

Offset Time difference between the earliest and latest possible
release of a task.

Released for execution Interference of tasks released for execution, i.e., sum|of

interference

WCET of tasks placed in the ready queue.

Release time

The time the task is released for execution, i.e., placed

in the ready queue.

Response time

Time from activation to completion of a task.

Self suspension

A task voluntarily suspending itself, e.g., by a delay call.

Set 1 task instances

Task instances released before c.i. and delayed by jit
to be released at c.i.

Set 2 task instances

Task instances released after the c.i.

Worst case
execution time

Longest possible execution time of a task if it could ru
uninterrptedly on the CPU.

er
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APPENDIXC
Table of abbreviations

Abbreviation |

Meaning

BCRT Best case response time

C.i. Critical instant

EDF Earliest deadline first

ET Event-triggered

FPS Fixed-priority scheduling

LCM Least Common Multiple
MRTC Malardalen Research and Technology Cer
RM Rate Monotonic

RTA Response-time analysis

TT Time-triggered

TTP Time-Triggered Protocol

VCE Volvo Construction Equipment
WCRT Worst case response time

WCET

Worst case execution time

tre
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APPENDIXD
Table of symbols

| Symbol Meaning
Bi; Blocking factor of taskr;;
Cij WCET of taskr;;
D;; Deadline of taskr;;
I; Transaction
zf,.e;l Amount of interference of task instances in Set 1
Iiegz(t) Amount of interference of task instances in Set 2 duting
Jij Jitter of taskr;;
T (Tya) Jitter induced part of the approximate interferenc® of
O;j Offset of taskr;;
P;; Priority of taskr;;
Djjc Relative phasing between critical instant tagkand;;
R;j Response time of task;
RF The kth fix-point iteration in calculatingR;
T; Period of taskr; or transactiorl’;
Te, T! Arrays representing; "% (tua, t) up toT;. T¢[n] is the maximum
amount of interference up to time intervals of len@tt{n]
Tua Generally: Task: of transactior,,. Also, taskunder analysis
Tic Critical instant task, i.e., the task Ity that coincides with the c.i.

Time induced part of the approximate interferenc& pf

Point set representing; ™% (7yq, t) Up toT;. v[n].y is the
amount of interference up to time intervals of length].z

Point set representiiy"?(ruq, t) for T; < t < 2T}

!
Ui
Wi (Tua,t) Approximate interference imposed ex, by I'; duringt
Wic(Tua, t) Exact interference imposed e, by I'; duringt,

assumingr;. coincides with the critical instant









