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Abstract

Rectified linear unit (ReLU) based neural networks (NNs) are recognised for their re-
markable accuracy. However, the decision-making processes of these networks are often
complex and difficult to understand. This complexity can lead to challenges in error iden-
tification, establishing trust, and conducting thorough analyses. Existing methods often
fail to provide clear insights into the actual computations occurring within each layer
of these networks. To address this challenge, this study introduces a mechanistic inter-
pretability method called ReLU Region Reasoning (Re3). This method uses the known
piecewise-linear characteristics of ReLU networks to offer insights into neuron activation
and accurately assess how each feature contributes to the final output and probability. Re3
effectively determines neuron activations and evaluates the contribution of each feature
within a specified linear region. Experiments conducted on multiple benchmark datas-
ets, including both tabular and image data, demonstrate that Re3 can replicate individual
predictions without error, align feature importance with domain expertise, and maintain
consistency with current explanatory methods, thereby avoiding the typical randomness.
Analysing neurons reveals activation sparsity and identifies dominant units, thus providing
clear targets for model simplification and troubleshooting. By ensuring transparency and
algebraic accessibility in each stage of a ReLU-based NN’s decision process, Re3 can be
a valuable practical tool for achieving precise mechanistic interpretability.
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1 Introduction

Neural networks (NNs) exhibit state-of-the-art performance in various applications, includ-
ing computer vision, language processing, and scientific research. However, their internal
decision-making processes remain difficult to understand. These models are often described
as black boxes, as even a single forward pass involves thousands or millions of hidden units
interacting through complex, non-linear transformations (Guidotti et al., 2018). This lack
of transparency undermines trust, particularly in safety-critical domains such as healthcare
and finance, where stakeholders require clear explanations for a model’s classifications or
predictions. Furthermore, without transparency, diagnosing failures, detecting biases, and
ensuring regulatory compliance become significantly challenging. Consequently, there is
a growing consensus on the need to develop methods that enable the exploration of NNs
and provide human interpretable explanations for their decisions (Goodfellow et al., 2016).

Existing interpretability approaches for NNs can be divided into post-hoc surrogates and
exact model introspection (Lipton, 2018; Madsen et al., 2022; Velmurugan et al., 2023).
Post-hoc methods, like Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro
et al., 2016) and SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017), create
simpler and interpretable models, usually linear regressions (LR) or decision trees (DT)
based on small changes in the input data (Salih et al., 2025). They treat the NNs as a black
box (Stadlhofer & Mezhuyev, 2023). While these methods are flexible and can work with
different types of models, they only provide approximations of the actual decision bound-
ary. Their explanations can also vary significantly depending on random factors such as
sampling noise, the choice of kernel bandwidth, or the random seed. Again, exact-extrac-
tion techniques such as OpenBox (Chu et al., 2018) and TropEx (Trimmel et al., 2021)
take advantage of the fact that a ReLU network is a piecewise-affine function. They aim
to extract every linear segment where the network behaves exactly linearly. However, the
number of these segments increases exponentially as the network gets deeper and wider,
making simple extraction impractical for anything but very small networks.

While LIME and SHAP offer intuitive approximations of model behaviour, they often
obscure the true internal logic of NNs. Conversely, exact interpretation techniques for ReLU
networks can expose the underlying piecewise-linear structure, but they typically lack per-
sample attribution and are not easily integrated into standard development workflows.
These methods, often developed for formal verification, can be computationally intensive,
sometimes requiring days to analyse even small networks, making them impractical for
real-time or developer-facing applications (Bak et al., 2020). These limitations highlight a
fundamental need for a method that not only reveals the predictions made by the model but
also explains how and why those predictions are reached, down to the level of individual
neurons and features. To address these gaps, a set of guiding questions was formulated to
shape the design of the proposed approach. These questions reflect the practical needs of
developers and researchers working with NN systems in real-world settings.

e How can the internal processes of NNs be revealed and explored? Understanding
how a network’s neurons activate and interact is crucial for ensuring transparency and
trust in safety-critical applications.

e How do NNs create decision regions? NNs form linear decision regions in the input
space through layer-wise transformations. Analysing region formation, training-testing
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similarity, sample distribution, and stability can improve reliability.

e How do neurons get activated and interact within the hidden layers? Neuron acti-
vation patterns indicate how features are abstracted and combined. Identifying sparsity,
redundancy, or specialisation among neurons can enhance pruning strategies and archi-
tectural improvements (Montavon et al., 2018).

o How do features move from the input through the hidden layers to the final deci-
sion of the network? Tracing information flow across layers enables precise attribution
and deeper insights into model predictions and their causes (Samek et al., 2021).

The goal of this study is to develop a practical tool for understanding how ReLU-based NNs
function. By taking advantage of the piecewise-linear nature of these networks, the tool will
identify inactive or minimally changing neurons and discover linear regions where each
behaves like a simple decision rule. Within each of these regions, it will be possible to calcu-
late precisely how each feature affects both the raw class score and the softmax probability,
without approximations. By combining these individual contributions across various test
samples, a consistent and reliable ranking of feature importance will be generated. Experi-
ments conducted on several benchmark datasets will show that this straightforward, piece-
wise-linear approach accurately reproduces every prediction and produces feature rankings
that align with established knowledge, without the unpredictability or errors associated with
black-box explainers. Based on this foundation, the study offers six key contributions:

e Proposed Interpretable Method: Introduces Re3, an efficient approach that calculates
the exact per-sample affine mapping of any trained ReLU network, revealing its internal
computations.

e Practical, Developer-Oriented Pipeline: A lightweight toolkit combining NumPy and
PyTorch makes it easy to handle training, analytic forward passes, and visualisation all
in one seamless workflow.

e Local and Global Insights: Exact probability contributions illustrate how individual
features influence specific predictions, and these contributions are aggregated across the
dataset to produce stable global feature rankings.

e Empirical Validation and Comparison: The method was evaluated using benchmark
datasets that consist of tabular and image data, leading to quantitative comparisons. This
systematic validation instils confidence that the method’s precise explanations align
with established theories.

e Linear Region Analysis: This method counts both active and inactive neurons, iden-
tifying the linear region. It helps in understanding region characteristics and provides
insights for model improvement.

e Exact What-If Analysis: Calculating the exact per-sample affine mapping, the method
offers a precise linear mapping for each input. This representation enables true what-if
analysis, allowing developers to algebraically adjust any feature value and instantly
calculate the precise change in the model’s output without any approximations.

The organisation of this article is as follows. Section 2 presents related work on network
interpretability. Section 3 outlines the methodology used in this study. Section 4 provides
extensive experiments conducted on five benchmark datasets, including measures of accu-
racy, explanation quality, and statistical validation. Section 5 discusses the findings in rela-
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tion to the guiding questions and contributions. Finally, Sect. 6 summarises the article and
proposes directions for future research.

2 Related Works

In machine learning (ML), interpretability methods are generally categorised into different
groups (Murdoch et al., 2019). The authors of the article (Doshi-Velez & Kim, 2017) dif-
ferentiate between methods that incorporate transparency directly into the model and those
that provide explanations for a trained black box. In the article Lipton (2018), approaches
are further divided into transparent models where the entire reasoning process can be scruti-
nised and post-hoc methods, which analyse predictions after they have been made. Guidotti
et al. (2018) classify explanations as either model-agnostic or model-specific, and discuss
the trade-offs associated with each type. More recently, Islam et al. (2022) performed a
systematic review of explainable Al methods across various application domains and tasks,
emphasising the increasing significance of domain-specific interpretability and the necessity
for robust evaluation metrics.

Post-hoc techniques are designed to provide local approximations of complex models.
For instance, LIME (Ribeiro et al., 2016) uses simple linear regressions to explain indi-
vidual predictions, while SHAP (Lundberg & Lee, 2017) leverages Shapley values to fairly
attribute contributions from various features. On the other hand, gradient-based methods
like Integrated Gradients (IG) (Sundararajan et al., 2017) and Layer-wise Relevance Propa-
gation (LRP) (Bach et al., 2015) work by tracing importance back through the layers of the
network. Although these approaches are versatile and applicable across different models,
they can introduce errors due to sampling or approximations.

ReLU networks break down their input space into various regions, each defined by a
straightforward linear function of the form f(z) = A x + D (Goodfellow et al., 2016;
Montufar et al., 2014; Raghu et al., 2017). Tools like OpenBox (Chu et al., 2018) and Tro-
pEx (Trimmel et al., 2021) take advantage of this approach to identify all the different linear
sections. However, they often struggle with a huge number of potential regions as the net-
works get larger. Recent studies, including the work by Berzins (2023), suggest using edge-
based subdivision to reduce unnecessary overlap during the extraction process.

Several studies focus on simplifying NNs to make them easier to understand. For exam-
ple, Neuron Importance Score Propagation (NISP) examines the back-propagated gradients
to rank hidden units (Yu et al., 2018), while Liu et al. (2017) introduced Network Slim-
ming, which creates sparsity in channels using learned scaling factors. Hooker et al. (2019)
investigate how different pruning methods impact the stability of explanations after the
fact. Meanwhile, Molchanov et al. (2016) suggest a method for ranking and removing con-
volutional filters based on a second-order Taylor expansion of the loss, aiming to improve
efficiency during inference.

Recent studies are breaking down neural circuits into parts that are easier to understand.
For example, Olah et al. (2018) examined features of individual neurons and layers in vision
models. Nanda et al. (2023) developed a system that automatically discovers smaller cir-
cuits in transformer models. In contrast, the proposed method distinguishes itself from post-
hoc approaches like LIME, SHAP, Integrated Gradients, and LRP, which rely on sampling
or gradient techniques to interpret a network’s behaviour. Instead, it provides precise attri-
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butions for each feature by directly simplifying the complex areas of the network. Unlike
OpenBox and TropEx, which can be costly because they analyse every individual linear
region, this approach employs weights of training and identifies inactive neurons. This strat-
egy reduces the number of regions while still ensuring accurate results.

While other pruning methods, such as NISP, Network Slimming, and Taylor-based filter
pruning, focus on aspects like reducing the network size or stabilising explanations, this
technique centres on how each neuron learns. This ensures that only the truly useful neurons
are kept for explanations. Finally, while many large-scale efforts break down entire trans-
former models, this approach applies similar ideas to smaller ReLU networks, providing
clear, mathematical contributions for each feature.

3 Methodology

This section outlines the methodology of this study, which consists of several steps, from
dataset to evaluation, as illustrated in Fig. 1.

3.1 Dataset

In this study, five benchmark datasets from the UCI Machine Learning Repository' were
utilised to evaluate the proposed methodology. The well-known Iris dataset presents a
small, well-understood multiclass problem, consisting of 150 samples characterised by four
parameters: sepal length, sepal width, petal length, and petal width. These samples belong
to three species: setosa, versicolor, and virginica. Similarly, the Seeds dataset comprises
210 wheat kernel samples, each described by seven geometric features: area, perimeter,
compactness, kernel length, kernel width, asymmetry coefficient, and groove length. This
dataset is divided into three varieties: kama, rosa, and canadian.

To evaluate scalability and binary classification performance, three larger datasets were
used. The Accelerometer Gyro Mobile Phone (AGMP) dataset encompasses 31,991 records
from six sensor readings: accX, accY, accZ, gyroX, gyroY, and gyroZ. Each record is labelled
as either standing or walking, presenting a time-series classification challenge. The CDC
Diabetes Health Indicators (CDCDHI) dataset contains 253,680 health survey entries with
21 recorded variables, of which 16 were selected for modelling. These variables include
HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity,
Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, GenHIth, MentHIth, PhysHIth, and
DiffWalk, which are used to classify individuals as having diabetes or not having diabetes.
Lastly, the Spambase dataset features 4,601 samples characterised by 57 continuous attri-
butes, classified as either spam or not spam. Due to the large number of features, the com-
plete list is omitted here. Collectively, these datasets encompass a variety of sizes, feature
dimensionalities, and class complexities, providing a solid foundation for assessing both
network behaviour and explanation fidelity.

This study demonstrates the applicability of Re3 beyond tabular datasets by using the
MNIST and Fashion-MNIST datasets for a convolutional neural network (CNN) architec-
ture. Both datasets contain 70,000 grayscale images with dimensions of 28“x 28 pixels

Uhttps://archive.ics.uci.edu/ml/index.php.
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and consist of 10 classes each. The MNIST dataset includes handwritten digits, while the
Fashion-MNIST dataset features clothing items.

3.2 Neural Network (NN)

NN is a computational model that draws inspiration from the way the human brain functions
(Agatonovic-Kustrin & Beresford, 2000). It is composed of layers of units called neurons
that connect with one another. These neurons process incoming signals by using weighted
connections and activation functions. The learning process happens through a backpropaga-
tion where the model fine-tunes the connection weights based on the difference between
what the network predicts and the actual outcomes (Goodfellow et al., 2016; Rumelhart et
al., 1986). More information about it can be found in Goodfellow et al. (2016) and Aga-
tonovic-Kustrin and Beresford (2000). This study evaluates three simple NN architectures
with increasing depth to explore the impact of layer size and network depth on neuron acti-
vations. The input layer is designed to correspond with the number of features in the dataset,
while all hidden layers use the rectified linear unit (ReLU) activation function. For classifi-
cation purposes, the softmax function is applied in the output layer, which is customised to
accommodate the number of target classes.

The first and simplest model consists of a single hidden layer with 8 neurons. The sec-
ond model introduces an additional hidden layer that contains 4 neurons. The final model
employs three hidden layers with neuron configurations of 16, 8, and 4, respectively.
Through this structured approach, the study aims to provide insights into how variations in
architecture influence performance in classification tasks.

3.3 RelLU Region Reason (Re3)

This work proposes the ReLU Region Reason (Re3) method for identifying the active ReLU
region of a trained NNs and collapsing it into a single linear function. Each ReLU hidden
unit segments its input space into two half-spaces: active and inactive. Here, active refers
to instances when its pre-activation is positive, and inactive otherwise. For a given input
sample x, the combination of on/off patterns across all units is represented by a binary vec-
tor . Within the corresponding region, the network behaves as an affine function defined by:

f(z) = Az + Dy, )

where (Eq. 1), A, denotes the collapsed weight matrix obtained by masking out inactive
neurons in each layer’s weights, while D, represents the collapsed bias vector formed by
combining the original biases under the same mask. By directly computing A,. and D,., the
proposed method reveals the precise linear rule that the network uses for the specific input.
This accurate description illustrates how each feature traverses the active neurons to gener-
ate the final output.
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3.3.1 Piecewise-Affine of ReLU Networks

To demonstrate how ReLU activations divide the input space based on each sample’s affine
form in Eq. 1, it is essential to show that the network behaves like a simple linear map in
specific regions.

A function f : R? — R* is called piecewise-affine if its input space can be divided into
a finite number of convex regions, where f behaves like an affine function in each region.
In a ReLU network, the only source of nonlinearity is the activation function max(0, z).
Consequently, although the network as a whole is non-linear, it behaves like a single linear
function, as shown in Eq. 1, whenever the input  remains within one of these regions. To
understand how these regions are formed, the next step is to analyse how each hidden unit
divides its input space.

Consider each neuron ¢ in layer [ that computes a pre-activation defined by the equation:

2V = w2 4+ by )

where 2(©) = z. The value zl(l) can be compared to zero, which defines a hyperplane
described by:

{z w4 by = 0} (3)
This hyperplane divides its input into an active half-space where zlm > 0 and an inactive

half-space where zgl) < 0. Collecting these active and inactive tests for all n; neurons in
layer [ return a binary mask:

SO =1(W; 2 + b, > 0) 4)
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Fig. 1 Overview of the methodological pipeline
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where 1(-) is the indicator function that returns 1 for active neurons and 0 for inactive ones.
The complete set of masks {S™), ..., S(Z=1} uniquely labels a region 7 of the input space
R?. With these masks established, it is possible to collapse the entire network into a single
affine map that is valid within region r. Inside region r, every inactive neuron contributes
nothing to the computation. By inserting a diagonal matrix diag(S®") after each weight
matrix W, all inactive paths are automatically excluded from the calculations. Therefore,
by chaining these masked matrices and summing the corresponding biases, it is possible to
produce exactly the single affine mapping introduced in Eq. 1 for every x in region 7.

An illustration of the process is provided by a NN with two hidden layers, as described
below. Let’s consider an input € R™ and denote the parameters of the first hidden layer
as follows:

wh ermxn - p) ¢ RM (5)
For the second hidden layer, the parameters are:
W(2) c R"2 ><n17 b(2) c R"2 (6)
The output layer is defined by:
W(3) c ka"lQ? b(3) c ]Rk (7)
For a given input x, computes the pre-activation of the first layer:
ZM —w® g4 pM (8)
Then apply the ReLU activation function to Z(!) to produce H():
HY = max(0, ZW), )
This can also be expressed using the mask S(V) = 1(Z() > 0) as:
HY =5W g zW (10)
Next, proceed to the second layer, where the computation of the pre-activation is as follows:
7@ —w® g 4 b(2>, H® — max(07 Z(Z)) =S@ 5 Z(Z), (11)

with S =1(Z® > 0). Finally, the output of the network is given by the affine
transformation:

output = W& H®? 4 p®), (12)
Knowing the binary masks S(!) and S(?) identifies the region r to which x belongs. Inserting

diag(S(M)) and diag(S)) in between the weight matrices zeroes out any inactive neurons,
allowing all three layers to be collapsed into the single affine mapping of Eq. 1.
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A, = WS diag(5®) W diag(sW) w® (13)
D, = b3 + W diag(S@) b + W diag(S®) W diag(SW) b, (14)

Here, A, represents all active weight pathways from input to output, while D,. accumulates
the corresponding biases. Thus, for every x in region r, the network’s computation is given
by f(z) = Arz + D,.

In an L-layer NN, a similar approach can be applied. Specifically, a diagonal mask,
represented as diag(S("), is inserted between each pair of weight matrices to control the
flow of information between layers. After applying the mask, matrix multiplication is per-
formed to create the output denoted as A,.. Additionally, bias terms are incorporated into a
combined term known as D,.. The computational cost associated with this process scales
linearly with the number of layers, as each layer requires only one mask application and one
matrix multiplication. The theoretical foundation of the approach is formally established in
Sect. 3.3.2.

3.3.2 Formal Justification

To establish the mathematical basis of Re3, a formal proof demonstrating the piecewise-
affine property of ReLU networks is presented below.

Proposition 1 Let f : R? — R be a feed-forward NN composed of affine transformations
and ReLU activations. The input space R? can be divided into a finite collection of regions
{R}, each characterised by a unique activation pattern of the hidden units, such that for
every © € R the network reduces to an affine map

f(z) = Arz + Dk,
where Ap € R€*? and Dy € R depend only on the region R.
Proof Consider a single hidden layer with weights W (1) € R”*9 and bias b(") € R™. The
pre-activation is given by,

ZM — wWg 4 p),

The activation mask S™) € {0,1}™ is defined with entries S’Z-(l) =W where W

Z( 1) >0°
denotes the indicator function. Applying the ReLU activation yields,

HY = (Z2M) = diag(SM)(W Wz 4 b)),
For a fixed mask S, this mapping is affine in x.
For a second hidden layer with weights W) € RF¥*™ and bias b(?) € R¥, the output

becomes,

H® = oW HD 4 @) = diag(S(Q))(W(2) diag(SMY(W Wz + M) + b(2)),
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where S(?) denotes the activation mask of the second layer. Again, for fixed masks
(S, 5()), this mapping remains affine in x.

The argument extends by induction: if the composition of the first (¢ — 1) layers is affine
under fixed masks, then adding the ¢-th layer (an affine transformation followed by a fixed
ReLU mask) preserves this affine structure. Thus, for any network of finite depth, the output
is affine in x whenever all activation masks remain fixed.

The collection of masks across all layers uniquely determines a region R. Within each
such region, the network can be expressed as,

f(z) = Arz + Dk,

where Ap and D result from composing the masked affine transformations layer by layer.
Since the network contains finitely many neurons, the number of distinct mask configura-
tions and hence the number of regions is finite.

Partition of the input space. The regions { R} form a partition of the entire input space
R?. Each region R corresponds to a fixed activation pattern across all hidden layers. For-
mally, for a network with L layers and n, neurons in layer ¢, a region R is characterized by
a tuple of masks (S, S ... () where S() € {0,1}".

Each region can be described as the set of points satisfying a system of linear inequalities
determined by the sign patterns of the pre-activations:

R={zeR?:sign(WOH "V (2)+0®)) =80 w=1,... L}

where H(®) () =  and H®) denotes the output of layer ¢. These regions are convex poly-
topes formed by intersections of half-spaces, and together they tile the input space without
overlap. The formal proof that ReLU networks induce such a partition is given in Lemma 2
of Montufar et al. (2014), which establishes that the regions are mutually disjoint and cover
R%..

Universality over datasets. Since { R} forms a partition of R, any point 2 € R? lies in
exactly one region R. This property is determined entirely by the network architecture and
its learned parameters, independent of any particular dataset. Consequently, for any dataset
D = {(x;,y:)}_,, each sample z; belongs to exactly one region of the partition, and the
network’s prediction on z; is given by the corresponding affine map for that region. |

Corollary 1 Let f : RY — RC be a ReLU network with regions { R} forming a partition of
R? and corresponding affine maps {(Ag, Dg)}. For any dataset D = {(x;, y;)}?—,, each
sample x; lies in exactly one region R;, and its prediction is

f(l‘z) = AR.i-Ti + DRi-
3.3.3 Implementation of Algorithm
The proposed method consists of four key components. The first component is Algorithm 1,
which serves as the primary driver. This algorithm oversees the entire process by iterating

through each sample. Once all samples have been processed, it computes feature ranking
frequencies, assesses feature contributions, computes region analysis and generates accu-
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racy and classification reports. The second component is Algorithm 2, which accepts a sam-
ple along with the network’s weights and biases. It identifies which ReLU units are active
and condenses the network into a single affine map. The third component is Algorithm 3,
which utilises A,., D, the logits, and the prediction, along with the names of features and
classes, to calculate logit and probability contributions. Finally, the fourth component Algo-
rithm 4 generates regions using the region profile from Algorithm 2. After all samples are
processed, the explanations are aggregated into a comprehensive table, and model perfor-
mance metrics are generated.

Require: Final weights (w1, w2, w3) and biases (b1, b2, b3) of each layer, testSamples

- Test Samples, featureNames - Feature names, classNames - Class names

Ensure: featureContribution - Sample-wise logit and probability contribution

10:

11:
12:

of each feature, featureRanking - Summary of sample-wise feature ranking
classi fication Report - Sample-wise classification report

. Initialize featureContribution, featureRanking, classificationReport and

all Regions

: for i in testSamples do

Initialize A, - Aggregated affine weights, D, - Aggregated affine biases, ¢ -
Logits, and pred - Predictions

sample < testSamples|i]

Ay, D, 0 pred,cl, c2,regions — ComputeRegionAffine(sample,
wl, bl, w2, b2, w3, b3)

classi fication Report < pred

all Regions < regions

featureContribution — ComputeExplain(sample,
A, D, L, pred, feature Names, classNames)

: end for
regionResults — RegionAnalysis(all Regions, testSamples,
classi ficationReport, featureNames, classNames, wl,bl, w2, b2, w3, b3,
purityThreshold)
featureRanking < featureContribution
return featureContribution, featureRanking, classificationReport,
regionResults

Algorithm 1 Re3 algorithm
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Require: sample, wl,bl, w2,b2, w3, b3

Ensure: A, D, ¢ pred

: // Hidden layer 1

: Compute pre-activation: Z1 < wl sample + bl

: Build mask: S1 + [Z1 > (]

: Compute post-activation: H1 < max(Z1,0)

: // Hidden layer 2

: Compute pre-activation: Z2 < w2 H1 + b2

: Build mask: S2 « [Z2 > 0]

: Compute post-activation: H2 < max(Z2,0)

: // Output layer

: Computer logits: £ + w3 H2 + b3

: Compute prediction: pred < arg max(¥)

: // Aggregate weights

. Compute mask inactive weights: W27 + w20 S17
. Compute mask inactive weights: W3" + w3 0 527
: Ay — W3 (W2r wl)

: // Aggregate biases

: Dy b3+ W37 02+ W3" (W2 b1)

: Compute neuron contribution for layer 2: ¢2 «+— H2 ® W3"[pred]
: Compute neuron contribution for layer 1: ¢l + H1 ® W3 [pred] - W2"
: Compute regions: regions < concatenate(S1, .52)
. return A,., D, 0, pred, cl, c2,regions

I e e e e e e e T e T
= O © 0 9 O U k= W N = O

Algorithm 2 ComputeRegionAffine

Require: sample, A, D,., ¢, pred, featureNames, classNames

Ensure: allLogit ProbContribution - A DataFrame with index = featureNames and
columns logit and probability contribution

: Compute logit-level contributions: fiogis < A [pred] © sample

: Compute Jacobian row for predicted class: J < softmaxJacobianRow(pred)

: Compute probability-level contributions: fprop <= J (Ar )

. allLogit ProbContribution < fiogit, fprob

: return allLogit ProbContribution

aos W N =

Algorithm 3 ComputeExplain
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Require: allRegions, testSamples, classificationReport, featureNames,
classNames, w1, bl, w2, b2, w3, b3 purityT hreshold

Ensure: regionStatistics, Coverage, featureProfiles

: // Region similarity between train and test

: Compute train regions: Rypqin < set of regions from all Regions

: Compute test regions: Ryest < set of regions from all Regions

: Compute similarity: similarityCount < |Rirain N Riest|

: Compute didsimilarity: dissimilarityCount < |Ryest \ Rtrainl

: // Per-region class purity

: for each region r € R.st do

I, < indices of samples in region

Yr < Ytest [Ir]

Count class frequencies in y,

purity « (max class count) / |I,|

isConfusion < (purity < purityT hreshold)

: end for

: // Compute coverage metrics

: Sort regions by size (descending)

: Computer top 1 coverage: topl <« (largest region size) / Niest

: Computer top C coverage: topC < (sum of C largest regions) / Niest

: // Feature importance profiles

: for each region r in allRegions do

Ay, D, + ComputeRegionAffine(sample, w1, bl, w2, b2, w3, b3)

Compute majority class profile: mean(Ag[cma;] © Xr)

Compute per-class profiles: mean(Ag[c] ® X, ) for each class

. end for

. return regionStatistics, Coverage, featureProfiles

© 0 N TR W o

P T T T N N o S Gy o
AW N = O © N0 TR W N = O

Algorithm 4 RegionAnalysis

3.4 Evaluation

To assess the accuracy and dependability of the piecewise-affine attributions compared
to two well-known explanation methods: LIME and SHAP. Both methods determine fea-
ture importance by closely examining the model’s decision-making, but they use different
approaches to achieve this.

LIME is a popular technique designed to explain the predictions of any black-box ML
model in a locally faithful manner. It was introduced by Ribeiro et al. (2016) in a most
influential paper Why Should I Trust You?. The main idea behind LIME is to build simple,
interpretable models, like linear regressions, around individual predictions to mimic the
behaviour of the complex model within a small neighbourhood of the input. LIME works by
generating perturbed samples around the instance of interest and observing the correspond-
ing changes in predictions. This local surrogate model highlights which features were most
influential for that particular decision. More insights about LIME can be found in articles
(Christoph, 2020; Garreau & Luxburg, 2020; Guidotti et al., 2018).

SHAP is a well-known method used to explain how ML models make predictions. It
was introduced by Lundberg and Lee (2017) and uses ideas from cooperative game theory
to determine the importance of each input feature. Essentially, it breaks down a model’s
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predictions to show how much each feature contributes, considering every possible com-
bination of features. One of the great things about SHAP is that it has solid theoretical
foundations, which means that it can give reliable explanations that are trustworthy. It works
well with various types of models and can provide both specific explanations for individual
predictions as well as broader insights for understanding the model as a whole. For further
reading on SHAP and its computational strategies, see articles Christoph (2020), Covert et
al. (2021) and Kumar et al. (2020).

4 Experiment and Result
4.1 Experimental Setup

Each benchmark dataset, as outlined in Sect. 3.1, was carefully examined for any missing
or null values, and none were found. When the target variable was categorical, it was con-
verted into integer class labels to facilitate processing. To ensure that all features were on
a comparable scale and to enhance the stability of the training process, continuous inputs
were standardised. A StandardScaler was applied to the training data, and the same scaling
was applied to the test data. The datasets were then divided into train and test sets, with
80% allocated for training and 20% for testing, which helped maintain the class proportions
in both groups. No separate validation set was created because the primary objective of
these experiments was to analyse the model’s behaviour rather than to focus on improving
predictive performance. After training in different architecture settings, evaluation on their
test sets showed classification accuracies over 80%, with deeper networks achieving better
results, as detailed in Online Appendix A.

4.2 Experimental Result on Linear Region Characterization

The piecewise-affine nature of ReLU networks plays a crucial role in characterising their
linear regions and reveals distinct clustering patterns within the learned decision structure.
Each linear region is associated with a unique activation pattern across the network’s neu-
rons, providing a clear framework for understanding the network’s behaviour. A detailed
analysis of the neuron activation patterns can be found in Online Appendix B. By examining
these linear regions, it is possible to gain deeper insights into how the network organises
feature space and executes its decision-making process.

4.2.1 Region Discovery Across Networks

Distinct linear regions were identified throughout the training process for each dataset and
architecture. The total number of these regions serves as a valuable indicator of the complex-
ity inherent in the learned decision boundary, as well as the partitioning strategy employed
by the network. Presented in Table 1 is the number of distinct linear regions identified for
each dataset across various layer configurations.

The result reveals notable variation in region counts across different architectures and
datasets. For the Iris dataset, single hidden layer networks create 12 regions, while two-
layer and three-layer networks produce 17 and 35 regions, respectively. The Seeds dataset
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Table 1 The number of linear regions identified by the trained model in three different layer configurations

Dataset Features Single hidden layer Two hidden layes Three hidden layers
Iris 4 12 17 35

Seeds 7 26 33 52

AGMP [ 66 116 1,226

CDCDHI 16 14 30 1,456

Spambase 57 195 357 1,981

Table 2 The similarity between the training and testing regions, as well as the coverage of samples across
various network settings

Dataset Train region  Test region Similar Dissimilar Top-1 Top-C
coverage  Cov-
(%) erage
()
Single hidden
layer
Iris 12 8 8 0 46.67 80.00
Seeds 26 15 13 2 19.05 54.76
AGMP 66 58 56 2 12.56 23.46
CDCDHI 14 14 14 0 66.61 87.78
Spambase 195 139 133 6 10.97 16.72
Two hidden layers
Iris 17 8 7 1 33.33 70.00
Seeds 33 14 13 1 28.57 59.52
AGMP 116 91 88 3 7.06 13.81
CDCDHI 30 29 29 0 21.57 42.82
Spambase 357 207 171 36 15.64 26.06
Three hidden layers
Iris 35 11 9 2 26.67 56.67
Seeds 52 25 17 8 16.67 38.10
AGMP 1,226 722 636 86 3.81 7.16
CDCDHI 1,456 1,035 958 77 5.42 10.85
Spambase 1,981 507 272 235 4.35 8.36

follows a similar trend, with 26, 33, and 52 regions for single, two, and three hidden layers.
In contrast, the AGMP dataset shows moderate growth from 66 regions with a single layer to
116 with two layers, then escalating dramatically to 1,226 with three. The CDCDHI dataset
also demonstrates rapid growth, increasing from 30 to 1,456 regions when moving from
two to three hidden layers. The Spambase dataset exhibits more linear growth, showing
195 regions with a single layer, 357 with two layers, and 1,981 with three. Overall, sim-
pler networks and datasets yield fewer regions, while more complex combinations result in
significantly more regions, illustrating varying levels of decision boundary fragmentation.

4.2.2 Similarity Between Train and Test Regions
Gaining insights into the linear regions present during both training and testing is crucial

for understanding a network’s generalisation behaviour. Table 2 displays the discovery of
regions during testing, indicating how many are similar or dissimilar to training, as well as
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the sample concentration patterns observed across all datasets and architectures. The dis-
similar regions represent portions of the decision space that the network finds while using
test samples, but are not available in training regions.

Region similarity: The similarity between training and testing regions indicates how
well a model generalises to unseen data. Single hidden-layer networks often show strong
similarity across most datasets. For instance, the Iris and CDCDHI datasets show perfect
similarity, while the Seeds, AGMP, and Spambase datasets exhibit minimal dissimilarity.
This indicates that shallow networks activate similar decision pathways for both training
and testing samples, suggesting stable generalisation.

As the network depth increases, the complexity of the learned patterns also grows. In the
Iris dataset with three hidden layers, 11 test regions were identified, of which 9 were similar
to training regions, and 2 were not. The Seeds dataset contained 25 test regions, of which 17
were similar, and 8 were not. The AGMP dataset, also with three layers, produced 722 test
regions: 636 similar to training and 86 exclusive to the test. The CDCDHI dataset gener-
ated 1035 test regions, 958 similar, and 77 not. Interestingly, the Spambase dataset showed
a significant difference: it has 1981 training regions but only 507 test regions, resulting in
272 similarities and 235 differences. This suggests that even with fine-grained partitioning
during training, test samples activate only a portion of those regions, revealing many new
activation patterns.

Sample coverage in regions: To evaluate test sample coverage across regions, two met-
rics were used. The Top-1 measures the percentage of samples in the largest region, while
Top-C combines larger regions based on C, which is the number of classes. For three classes
scenarios such as Iris and Seeds, C is set to 3, whereas for binary classification tasks such as
AGMP, CDCDHI, and Spambase, C is set to 2.

In shallow networks, sample grouping varies across datasets. For example, the Iris data-
set shows strong grouping, with Top-1 coverage of 46.67% and Top-3 of 80%, indicating
three main regions contain most of the test samples. The CDCDHI dataset shows even better
grouping, with 66.61% for Top-1 and 87.78% for Top-2, clustering around two main classes.
In contrast, the Spambase dataset has a scattered distribution, with only 10.97% coverage
for Top-1 and 16.72% for Top-2, reflecting a wide spread of samples across many regions.

As networks deepen, coverage patterns shift. In the Iris dataset, Top-1 coverage drops
from 46.67% with a single layer to 26.67% with three layers, while Top-3 coverage falls
from 80.00 to 56.67%. The Seeds dataset follows a similar trend. For more complex datas-
ets, fragmentation increases significantly. The AGMP dataset with three layers exhibits only
3.81% Top-1 and 7.16% Top-2 coverage, with 93% of samples spread across 720 regions.
CDCDHI and Spambase display similar trends to AGMP. The results in Table 2 show that
as the model increases in complexity, decision rules evolve from a few simple ones to many
specialised local rules for handling diverse input patterns.

4.2.3 Region-Wise Sample Distribution and Feature Importance

The distribution of samples by region and the importance of features illustrate how samples
are classified within distinct linear regions and which features primarily impact the model’s
decisions. Figure 2 presents this analysis for models with 2 and 3 hidden layers, while
additional details for a single hidden layer are in Online Appendix C. The left side displays
the distribution of test samples, and the right side shows averaged feature importance pro-
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Region-wise Feature Importance
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Fig. 2 Sample distribution and feature importance across regions for the Iris dataset under two different
network settings. Sub-figures a, ¢ present sample distribution, and b, d represent feature importance

files. A region is considered pure for a class if all samples belong to it, with a 0.7 threshold
applied when multiple classes are present, requiring at least 70% of samples to belong to the
dominant class for labelling. This approach enhances decision-making while considering
class overlap.

Figure 2a, b show clear class separation with the two largest regions demonstrating high
purity. Region 1, mainly Virginica, has 90% purity and relies on petal length and width.
Region 2, primarily Versicolor, has 83% purity and focuses on sepal length. Misclassifica-
tions occur when a false Virginica in Region 1 uses sepal features instead of petal features,
and a false Versicolor in Region 2 has the same issue. Regions 3 and 4 are pure Setosa
regions, balancing all features, while four separate Versicolor regions emphasise sepal
width, with sepal length complicating classification and requiring reliance on other features
for accurate categorisation.

Figure 2c, d show increased fragmentation in 11 regions, particularly in the confusion
zone. Region 1 has 8 pure Setosa samples, while Region 2 has 5 samples with only 60%
purity due to mixed contributions from Versicolor and Virginica. The heatmap indicates
that pure Setosa regions, especially Region 1, rely heavily on all features. Singleton Setosa
regions 9 and 10 focus on sepal and petal features. In Region 2, conflicting contributions
confuse classification, with Versicolor showing negative petal values and Virginica show-
ing positive ones. Virginica regions 3 and 5 depend mainly on petal features, while other
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pure Versicolor regions use different strategies with weak sepal contributions, highlighting
unique decision pathways based on specific feature combinations.

4.2.4 Region Size and What-If Validity Analysis

To enhance the sample distribution and feature importance analysis, region size analysis is
performed, along with an evaluation of region stability through what-if perturbation tests.
To measure the sizes of different regions and understand the limits of what-if analysis, the
distance from each test sample to the nearest boundary of the ReLU was calculated. A neu-
ron is at a decision boundary when its pre-activation value is zero. The normalised distance
to this boundary for a neuron, denoted as p;, is defined by the formula p; = |ZJ(»Z) |/ ||WJ(»Z) 2.
The overall boundary distance for a sample x is determined as the smallest distance across
all neurons in all hidden layers: p(x) = ming ; p,. This value indicates the smallest adjust-
ment needed to change the sample into a different region.

For what-if analysis, the validity curve is used, which measures how many test samples
stay in their original linear regions when faced with varying input perturbations. For each
step size s, the percentage of samples with p > s is determined, and these samples can with-
stand perturbations up to s without crossing region boundaries. Step sizes are chosen based
on the empirical distribution of boundary distances, including the minimum distance, the
first quartile (Q1), the median (Q2), the third quartile (Q3), and a conservative upper limit.
The analysis reports three safe range thresholds: €99 (10th percentile of p, ensuring 90%
validity), 75 (Q1, ensuring 75% validity), and €59 (median, ensuring 50% validity). Figure
3 displays findings with what-if validity curves on the left and region size distributions on
the right, using violin plots for 2 and 3 hidden layer settings with the iris dataset. The results
for a single hidden layer show clear differences in the sizes of regions. More details are
available in Online Appendix D.

The two-layer network significantly reduces regions, with a median of 0.145. Figure 3b
shows a violin plot illustrating this narrowing, resulting in an IQR of 0.351 and a range of
0.010 to 1.009. Safe thresholds have decreased: g is 0.032, 75 is 0.087, and €5 is 0.145.
The validity curve in Fig. 3a reveals an initial 96.7% validity at a step size of 0.01, drop-
ping to 23.3% at 0.5, compared to 26.7% for the single-layer network. Overall, the reduced
median and narrower IQR indicate that greater network depth leads to smaller, more uni-
form regions with less variability.

The reduction in region size and compression of distribution are evident in Fig. 3c, d
for three layers. The median decreases to 0.109, the IQR narrows to 0.170, and the maxi-
mum value falls to 0.726. The violin plot in Fig. 3d shows concentrated lower values with
minimal density above 0.4. Safe thresholds have been significantly lowered: €99 = 0.012,
e75 = 0.046, and €50 = 0.109. The validity curve in Fig. 3c shows a steep decline from
93.3 to 73.3% at €75, and down to 6.7% at a step size of 0.5, indicating network fragility.
Perturbations over 0.5 units can invalidate 93% of samples in the deepest network compared
to 73% in the shallowest.

The results from Fig. 3 indicate that the distribution experiences asymmetric compres-
sion across different architectures. Although the validity curves converge at small pertur-
bations, the patterns suggest that deeper networks tend to eliminate larger regions. This
primarily affects stability under moderate to large perturbations rather than small ones.

@ Springer



Machine Learning (2026) 115:17 Page 19 of 35 17

Overall Distribution of Boundary Distances (p)

o What-If Validity Curve with Symmetric Safe Ranges 1.0 q === €90 (290% valid)
1 : £75 (275% valid)
=@= % valid —=- £50 (250% valid)
o
804 Safe Ranges 23 0.8
» £90 safe band 8
< : £75 safe band 3E
E 601 i £50 safe band z g 0.6
(%] : ) g
< H H [}
5 401 : 25 04
= 1 : le)
= 18 (8 23
1o i ~
20 4 ‘S S LYY
8 2| [IEIIZ ]
o 3 i J S (S S U N s o
0.0 0.1 02 03 0.4 05 0.0 b
Step Size Samples
(a) Two hidden layers (b) Two hidden layers
Overall Distribution of Boundary Distances (p)
What-If Validity Curve with Symmetric Safe Ranges 074 —=- £90 (=90% valid)
100 1 T e % valld £75 (275% valid)
o Vet 064 —=- £50 (250% valid)
50 Safe Ranges B2
" £90 safe band [
8 5505
= £75 safe band Q3
£ 60 £50 safe band 23 4
5] o8 04
%] S5 5
° E o Q
= 404 : ©< 0.3
g ] 52
R g 23 021
20 1 S Ax
H
) 0.1 o == = ——— = = =
0.1 0.2 0.3 0.4 0.5 oo TTmTEEEIEIT i ————
Step Size Samples
(c) Three hidden layers (d) Three hidden layers

Fig. 3 Region size and what-if validity result for Iris dataset. Sub-figures a and ¢ for validity curves and
sub-figures b and d for violin plots of boundary distance distributions. The rows represent the following
architectures: a, b for two hidden layers; ¢, d for three hidden layers

The analysis shows that deeper networks create more linear regions, affecting processing
efficiency. Online Appendix E examines how L1 activation and L2 weight decay regularisa-
tion influence region formation and model stability. Results indicate the necessity of regula-
risation to control regions while maintaining classification performance.

4.3 Experimental Result on Decision Pathways

Decision boundaries across different architectures were analysed through region analysis.
Sankey diagrams, created using sample number 5 from the Iris test set, illustrate how sam-
ples move through identified regions for both 2 and 3 hidden layer settings as presented in
Fig. 4. Further information on the single hidden layer is available in Online Appendix F.
Each network architecture recorded nonzero ReLU activations and calculated the absolute
weight multiplied by the input for each connection, determining the thickness of links in the
Sankey diagrams. This clearly shows each feature’s contribution to the neurons and how
their outputs influence the final class logit.

The Sankey diagram in Fig. 4a for two hidden layers identifies virginica and reveals the
influence of petal width on neurons 2, 3, and 8. Petal length and sepal length strongly affect
neurons 3 and 6, while sepal width impacts neurons 8, 3, 7, and 5 fairly evenly. Neurons 2,
3, and 8 are the main feature detectors in layer 1, with minor contributions from neurons 5,
6, and 7. In layer 2, neuron 1 integrates inputs from neurons 2, 3, and 8 and predominantly
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Fig.4 Shanky diagram of two configurations using test sample number 5 from the Iris dataset: a with two
hidden layers and b with three hidden layers

activates the virginica logit. This highlights how the network captures key features of petal
width and length and channels them through neuron 1 for classification.

The three-hidden-layer model predicting virginica, shown in Fig. 4b , illustrates the flow
of signals through 16 first-layer neurons, eight mid-level routers, and four top-level selec-
tors. Petal length and width are the primary influences at the input, with petal width most
strongly affecting neurons 6, 8, 12, 14, 15, and 16. Petal length impacts neurons 12, 14, 16,
and 19, while sepal features show less influence. Neurons 14, 15, and 16 detect petal dimen-
sions, and neurons 1 and 4 in layer 2 act as major routers, receiving strong signals from core
first-layer neurons. The network efficiently consolidates information into three main mid-
level streams before reaching the final layer.

4.4 Experimental Result on Feature Importance

By visualising how samples move through decision pathways in the network in different
configurations, the next step is to quantify which input features influence these decisions at
both local and global levels.

4.4.1 Experimental Result on Local Explanation (LIME, SHAP and Re3)

To quantify the influence of each input feature on the model’s final confidence, per-feature
probability contributions were calculated for each network depth. These contributions inte-
grate the collapsed affine weights, input values, and the softmax Jacobian, clearly illustrating
how each feature affects the predicted class probability. Per-feature probability contribu-
tions presented in Online Appendix G for a single sample across three different architecture
settings, indicating which features significantly affect the model’s confidence in its predic-
tions. The values indicate that a deeper network relies more on the strongest signals.

To evaluate the contributions of features in the Re3 model, a comparison was conducted
using LIME and SHAP. This analysis used a sample from the test set of the Iris dataset
and examined models with different numbers of hidden layers. Although there were minor
differences, the results for models with single and two hidden layers, detailed in Online
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Appendix B, indicate that all three approaches agree that petal measurements are the pri-
mary factors influencing the network’s decisions.

Figure 5 illustrates the results obtained from the model with three hidden layers. In Re3,
depicted in Fig. 5a , petal width shows a strong positive influence on the prediction, while
petal length also plays a significant role. Meanwhile, the contributions from sepal features
largely cancel each other out. LIME, shown in Fig. 5b , exhibits a similar trend, but notes
a slight negative effect for sepal width and a modest impact from sepal length. In SHAP,
represented in Fig. 5c , petal width is again the most influential factor, followed by petal
length, with sepal features nearly neutral in their contributions.

4.4.2 Experimental Result on Global Explanation (LIME, SHAP and Re3)

To assess how well the feature attributions of the proposed method align with established
explainers at the dataset level, global importance scores were calculated by averaging the
contributions of each feature across all Iris test samples for each architecture. Figure 6 com-
pares the average scores for the proposed method, LIME, and SHAP across models with
single, two, and three hidden layers. The subplots in Fig. 6 illustrate how each method ranks
the sepal and petal dimensions when aggregated globally. This comparison provides a clear
basis for evaluating their overall agreement and highlights any shifts in feature emphasis as
the network depth increases.

Figure 6a shows the global feature importance for a single hidden layer model, where
petal width is the most critical feature, followed by petal length, while sepal dimensions
play a minor role. In Fig. 6b , the two-layer model indicates that petal width and length are
nearly equal in importance for Re3, although LIME and SHAP still emphasise petal width
more. By the three-layer model in Fig. 6¢ , the proposed method significantly amplifies the
importance of petal width and also increases the significance of petal length, while sepal
measurements drop to nearly zero. Despite minor differences, LIME and SHAP consistently

Local Re3 Explanation for Test Instance Local LIME Explanation for Test Instance
(Predicted: Virginica) (Predicted: Virginica)
3 3
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Fig.5 Local interpretation of a sample from the Iris dataset using a model with three hidden layers, show-
ing a Re3, b LIME, and ¢ SHAP
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agree on the ranking, underscoring the importance of petal dimensions for Iris classification.
These findings demonstrate that deeper architectures better highlight key features, with the
proposed method aligning closely with established techniques.

4.4.3 Experimental Result on Statistical Evaluation

To measure how well the global feature rankings of the Re3 align with LIME and SHAP,
three key metrics are used: Normalised Discounted Cumulative Gain (NDCG), Spearman’s
rank correlation, and Pearson’s correlation. NDCG focuses on agreements at the top of rank-
ings, Spearman’s measures the correlation between ranking orders, and Pearson’s assesses
linear agreement of importance scores. Table 3 displays these metrics across datasets for
models with single, two, and three hidden layers, highlighting agreements and significant
differences among the methods.

In the Iris experiments, the proposed method aligns perfectly with LIME and SHAP in
feature ordering, evidenced by NDCG and Spearman’s p both reaching 1 at all depths. Addi-
tionally, Pearson’s r exceeds 0.85, indicating nearly identical scores. For the Seeds dataset,
NDCG remains above 0.80, with Spearman’s p in the mid-0.90s for single and two layers,
dropping to around 0.75 in the three-layer model. Pearson’s r stays in the low-0.80s, reflect-
ing minor changes in mid-ranked features.

In the AGMP dataset analysis, top rankings maintain strong NDCG values above 0.90,
while Spearman’s p ranges from 0.71 to 0.94 and Pearson’s r varies from 0.68 to 0.90,
indicating some shifts in less important sensor axes. The CDC diabetes indicators show
high consistency, with NDCG values between 0.97 and 0.99, Spearman’s p from 0.81 to
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Table 3 Agreement between Re3 and LIME or SHAP evaluated using NDCG, Spearman, and Pearson cor-
relations across three different NN depths and five datasets

Dataset LIME vs Re3 SHAP vs Re3

NDCG Spearman p Pearson r NDCG Spearman Pearson
Single hidden layer
Iris 1.00 1.00 0.93 1.00 1.00 0.99
Seeds 0.99 0.92 0.98 0.98 0.75 0.89
AGMP 0.93 0.77 0.76 0.93 0.77 0.94
CDCDHI 0.97 0.90 0.89 0.99 0.97 0.99
Spambase 0.94 0.60 0.74 0.93 0.84 0.86
Two hidden layers
Iris 1.00 0.80 0.87 1.00 1.00 0.97
Seeds 0.99 0.96 0.95 0.96 0.82 0.87
AGMP 0.93 0.88 0.82 0.99 0.94 0.97
CDCDHI 0.98 0.87 0.91 0.99 0.98 0.99
Spambase 0.94 0.61 0.74 0.95 0.85 0.85
Three hidden layers
Iris 1.00 1.00 0.88 1.00 1.00 0.97
Seeds 0.92 0.92 0.74 0.86 0.75 0.69
AGMP 0.95 0.77 0.78 0.95 0.77 0.95
CDCDHI 0.95 0.84 0.84 0.99 0.92 0.98
Spambase 0.93 0.48 0.65 0.95 0.79 0.81

0.89, and Pearson’s r ranging from 0.90 to 0.99, reflecting strong agreement among clinical
features. Conversely, the Spambase dataset shows wider rank correlation variations, with
Spearman’s p from 0.47 to 0.62, despite a solid NDCG of 0.93—0.95 and Pearson’s r from
0.69 to 0.84, highlighting differing rankings for less common words. Overall, these results
confirm that the proposed method effectively replicates the top-ranking structure seen in
LIME and SHAP across various datasets and models.

To evaluate the significance of the highest ranked features compared to the lowest, paired
t-tests were conducted. This involved comparing the average importance of the top and bot-
tom features. For the Iris dataset, the two most influential features were compared with the
two least. For other datasets, the top five and bottom five features were analysed. Table 4
presents the average importance, differences, and results of the paired t-tests, including the
t-value and p-value. A p-value below 0.05 is generally considered statistically significant.

In the single hidden layer models, the proposed approach shows a notable difference in
feature importance between the top and bottom features of the Iris dataset, with a ¢ value of
4.12 and a p value of 0.15, which is not significant. However, the differences in the larger
Seeds, CDC, and Spambase datasets are significant, with the Spambase dataset showing a
t value of 7.67 and a p value of 0.01. LIME and SHAP yield consistent results, highlight-
ing significant differences in Seeds, CDC, and Spambase, but weaker evidence in Iris and
AGMP.

Increasing the number of hidden layers improves data separation. The Iris model shows
significance at p < 0.05, whereas other datasets exhibit very strong effects, such as the
Spambase dataset, which shows ¢ = 10.18 and p < 0.001. Both LIME and SHAP show
clear differences between important and less important features across most datasets, indi-
cating that deeper networks enhance these distinctions. The method with three hidden layers
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Table 4 Paired r-tests to compare top and bottom feature importances across Re3, LIME, and SHAP methods
for each dataset and model depth)

Dataset Re3 LIME SHAP

Diff t p Diff t D Diff t p
Single hidden layer
Iris 0.030 4.124 0.151 0.064 2.510 0.241 0.074 4512 0.138
Seeds 0.020 24.037 0.001 0.040 3.650 0.021 0.033 4292 0.012
AGMP 0.002 1.890 0.131 0.003 1.543 0.197 0.003 1.993 0.117
CDC 0.026 4.874 0.008 0.038 7.508 0.002 0.033 5.412 0.005
Spambase  0.025 7.667 0.001 0.096 7.615 0.001 0.032 10.630 0.000
Two hidden layers
Iris 0.058 35.962 0.017 0.067 68.034 0.009 0.105 7.842 0.080
Seeds 0.013 8.574 0.001 0.031 5.787 0.004 0.033 3.438 0.026
AGMP 0.002 2.362 0.077 0.003 1.640 0.176 0.002 1.124 0.100
CDC 0.022 6.085 0.003 0.039 7.970 0.001 0.031 5.661 0.004

Spambase  0.024 10.182  0.001 0.096  9.388 0.001 0.034  9.561 0.001
Three hidden layers

Iris 0.102 9.199 0.068 0.076 2.182 0.273 0.159 10.134 0.062
Seeds 0.011 3.619 0.022 0.022 5.323 0.006 0.027 9.265 0.001
AGMP 0.003 2.432 0.071 0.004 1.219 0.289 0.004 1.932 0.125
CDC 0.025 5.953 0.004 0.039 7.847 0.001 0.032 5.359 0.005

Spambase  0.021 13.626 0.000 0.097 8.831 0.001 0.029 13.505 0.000
The reported values include the difference (Diff), #-statistic (¢), and p value (p)

shows significant separations on datasets such as Seeds, CDC, and Spambase, whereas Iris
and AGMP are near the 0.05 significance level. SHAP yields the highest ¢-statistics, such
ast =13.63 and p < 0.001 in Spambase, indicating a clear distinction between important
and less important features. Overall, this approach, along with LIME and SHAP, effectively
highlights crucial features, particularly in datasets with many inputs, with sharper differ-
ences in deeper networks.

4.4.4 Experimental Result on Stability Analysis

To evaluate the reliability of feature importance explanations, a stability analysis was con-
ducted comparing Re3 with LIME and SHAP. This analysis was performed across 50 runs
using different random seeds on 15 test samples with 3 hidden layers. Three metrics were
measured: Spearman correlation of feature rankings, coefficient of variation of importance
magnitudes, and top-1 feature changes. Table 5 summarises stability results across five data-
sets, where Re3 showed perfect stability, with a correlation of 1.000, a coefficient of varia-
tion of 0.000, and no changes in top-1 features. LIME proved to be much less stable, with
correlations between 0.094 and 0.732, and many top-1 changes, ranging from 276 to 648
shifts. SHAP exhibited moderate stability, with correlations from 0.508 to 0.941, but its
performance declined with high-dimensional data. The results suggest that sampling-based
methods become less reliable as the number of features increases, while exact methods
like Re3 provide consistent interpretations. A detailed explanation is provided in Online
Appendix H.
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Table 5 Stability comparison Dataset Method Rank stability =~ Mean  Top-1
across 50 independent runs with (Spearman p) cvV changes
different random seeds Iris LIME 0.677+0.109  0.071 302
SHAP 0.941 +0.053 0.081 60
Re3 1.000 £+ 0.000 0.000 0
Seeds LIME 0.671 £0.072 0.113 276
SHAP 0.915+0.064 0.086 84
Re3 1.000 £+ 0.000 0.000 0
AGMP LIME 0.669 + 0.028 0.176 233
SHAP 0.807 +0.063 0.258 108
Re3 1.000 £ 0.000 0.000 0
CDCDHI LIME 0.732 £ 0.034 0.131 390
SHAP 0.720 + 0.055 0.294 160
Re3 1.000 + 0.000 0.000 0
Spambase LIME 0.094 +0.022 0.185 648
SHAP 0.508 + 0.052 0.350 419
Re3 1.000 + 0.000 0.000 0
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CNN (learned features)
2 ) 8,678
& 8000 S 8000
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Fig. 7 Classwise sample distribution Iris

4.5 Experimental Result on Image Data

Extending Re3 from low-dimensional tabular data to high-dimensional image data poses
computational and interpretability challenges. Raw pixel inputs can excessively fragment
decision boundaries. This study explores the impact of convolutional feature extraction on
region structure and Re3’s scalability. Using the MNIST and Fashion-MNIST datasets, two
architectural paradigms were compared: an NN that processes flattened 784-dimensional
pixel vectors and a CNN architecture that extracts 128-dimensional features, which are then
processed by MLP classifiers. Re3 was applied solely to the MLP, treating CNN layers as
fixed preprocessing stages. Three depths were evaluated for both NN and CNN-MLP con-
figurations to systematically analyse how feature learning affects decision structures.

The analysis in Fig. 7 reveals significant fragmentation in NNs. MNIST has a nearly
one-to-one sample-to-region ratio, with 9921 to 9996 regions, indicating highly individual-
ised decision boundaries. Fashion-MNIST has better clustering due to higher within-class
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variability, with 4220 to 8678 regions. CNN-MLP architectures reduce region counts for
MNIST by 50 to 67%, ranging from 3227 to 6623 regions, and for Fashion-MNIST by 10
to 20%, between 6334 and 6960 regions. An exception occurs in a single-layer Fashion-
MNIST scenario, where the number of regions increases from 4220 to 6523 due to shal-
low CNN fragmentation. The MNIST CNN-MLP exhibits a depth-dependent decrease in
regions, from 6623 to 4957, suggesting that deeper networks refine features. In contrast,
Fashion-MNIST maintains increased fragmentation, reflecting its complexity.

5 Discussion

In this section, every aspect of the proposed method and its key findings are analysed. The
study began by posing four fundamental questions about NNs, as mentioned in the introduc-
tion (Sect. 1). These questions aim to uncover the inner mechanisms, neuron behaviour, and
decision rules.

The use of established benchmark datasets ensures reproducibility and accessibility
while requiring minimal preprocessing. This focus on ready-to-use datasets allows for a
deeper examination of NN behaviour without extensive data wrangling. They provide con-
sistent evaluation conditions, facilitating experiment replication. The selected datasets vary
in dimensionality and sample size, maintaining sufficient complexity to clearly demonstrate
neuron activation and feature attribution, while balancing clarity with effective illustration
of the proposed algorithm’s insights.

Simple NN architectures were chosen to make it easier to observe and understand how
the network works. However, this doesn’t mean the proposed algorithm is only for basic
models. Using just one to three hidden layers with a small number of neurons keeps every-
thing transparent. With only a few units, it’s clear which neurons activate, how the two-layer
setup creates a single affine map, and how each input feature influences the final output.
Even in larger networks, the same calculations apply.

5.1 How Can the Internal Processes of NNs be Revealed and Explored?

NNs are complex due to their complicated mathematical relationships and numerous param-
eters, making it difficult to trace how inputs influence outputs. Understanding their function-
ing is crucial for identifying errors and ensuring trustworthy results.

LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017) assess feature impor-
tance through input perturbation or cooperative game theory, but don’t explain the internal
workings of the network. Gradient-based methods like Integrated Gradients (Sundararajan
et al., 2017) analyse model sensitivity but lack specific insights for each sample. In con-
trast, piecewise-affine analysis utilises the linear sections of ReL.U-activated networks for
precise, sample-specific mappings (Goodfellow et al., 2016; Montufar et al., 2014). Tools
like OpenBox (Chu et al., 2018), and TropEx (Trimmel et al., 2021) identify affine regions
but don’t clarify the contributions of individual neurons and input features to predictions.

Re3 addresses this gap by calculating the exact affine map (A, D,) for each input sam-
ple. It then analyses this map to show which neurons were activated (Online Appendix B),
how many regions are there and decision-making process through regions (Sect. 4.2, how
each raw feature passed through the network (Sect. 4.3) and as well as detailed attributions
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for each feature’s logit and probability (Sect. 4.4.1). It also offers global ranking distribu-
tions (Sect. 4.4.2) and formal statistical tests (Sect. 4.4.3), all derived directly from the
network’s weights and masks, without using approximations or substitute models. Although
other piecewise-linear activations, such as leaky ReLU or max-out, could theoretically
achieve a similar result, standard ReLU is often preferred due to its straightforward zero
threshold, inherent sparsity, and widespread use in real-world scenarios. Activations with
smooth curves, such as sigmoid or tanh, do not have clear on/off boundaries, which makes
it impossible to break them down into exact affine pieces without losing some information.
Thus, ReLU-based piecewise analysis stands out as a uniquely effective method for uncov-
ering the true workings of a network.

5.2 How Do NN'’s Create Decision Regions?

Discovery of regions (Sect. 4.2) reveals how ReLU networks systematically partition the
input space, providing insights into decision structures. ReLU networks partition input
space based on neuron activation, with each neuron’s threshold separating active from
inactive states (Montufar et al., 2014; Pascanu et al., 2013). Although larger networks can
manage greater complexity, their performance is often constrained by data distribution and
optimisation challenges.

The complexity of the data has a stronger influence on region counts than architectural
parameters (Sect. 4.2.1), suggesting the need for adaptive partitioning strategies. Networks
aim to improve how well they can represent different classes or categories. When the dif-
ferences between these classes are clearer, the networks perform better. This is why adding
more layers to a network helps only when the problem is more complex and needs more
detailed divisions.

Class-coherent regions (Table 2) indicate that networks learn general decision patterns
rather than merely memorising training examples. Simpler datasets show clear global struc-
tures, while complex datasets require specific rules due to intricate boundaries. Different
regions show varying feature importance (Fig. 2), which challenges the idea that global
explanation methods work the same everywhere. When regions highlight different feature
combinations, aggregating data can obscure local decision-making. This suggests networks
operate like groups of specialised classifiers instead of following a single global strategy.
Adebayo et al. (2018) emphasise that understanding this is important to avoid misunder-
standing from global summaries.

As depth increases, boundary distances shrink (Fig. 3), creating a trade-off: detailed dis-
tinctions can restrict the validity of counterfactual reasoning. This issue is common in local
explanation methods (Lundberg & Lee, 2017; Ribeiro et al., 2016), which assume nearby
points are similar. The practical use depends on requirements. (Wachter et al., 2017) sug-
gest that useful counterfactuals involve minor changes with accurate local explanations.
Defined limits help users assess the safety of changes, while significant alterations require
global analysis methods. The depth-fragmentation relationship (Sect. 4.2.1) highlights the
challenge of balancing the big picture with effective decision-making. Successful networks
often divide tasks into smaller parts, making it difficult to see how they connect, even if each
part is clear. This contrasts with the typical trade-off between being too broad or too specific;
it’s about understanding overall structure versus fine details.
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Analysing large networks with thousands of regions can be challenging. Sampling meth-
ods targeting high-activity areas offer a practical solution. Visualising complex shapes in
high-dimensional spaces is simpler with summaries and statistics rather than direct dis-
plays. Additionally, architectural limitations restrict certain ReLU networks’ use, affect-
ing application in many modern systems, despite some still utilising them (Krizhevsky et
al., 2012; Nair & Hinton, 2010). To sum up, analysing regions is crucial for organising
networks, as these networks establish clear boundaries while accommodating diversity.
Examining factors like the number of regions, their purity, and boundary distances uncov-
ers complex decision-making patterns often missed with isolated examples. This approach
helps evaluate decision complexity, differentiate specific rules from general ones, and vali-
date explanations, shifting the focus from individual predictions to the overall structure of
decision-making.

Standard regularisation techniques have inconsistent effects on the region count in net-
works (Online Appendix E). Shallow networks have minimal impact, whereas deeper net-
works yield variable results: some configurations reduce the number of regions, whereas
others increase it. Notably, L2 weight decay can lead to more regions than unregularised
models, suggesting that these penalties do not effectively target ReLU network structures.
This limitation indicates that L1 and L2 regularisation focus on improving generalisa-
tion rather than controlling geometric partitioning. A better approach would involve a loss
term that directly penalises diverse activation patterns to manage region proliferation and
enhance scalability and interpretability in larger networks, marking an important area for
future research.

5.3 How Do Neurons Get Activated and Interact Within the Hidden Layers?

Understanding neuron activity and identifying which neurons are more influential are cru-
cial for interpreting and enhancing the network’s performance (Lederer, 2021; Wang et al.,
2021). The Re3 method aids in this analysis, but it’s essential to verify its accuracy in
reflecting the network’s learning. The classification accuracy in Online Appendix A aligns
perfectly with Re3 results, ensuring that insights on individual neurons genuinely represent
the network’s decision-making process, rather than misleading artefacts (Fig. 8).

Fig. 8 Final weights after com-

pleting all backpropagation Neuron 1 04
Neuron 2
Neuron 3 0.2
Neuron 4
Neuron 5 0.0
Neuron 6
-0.2
Neuron 7
Neuron 8 —0.4
66?3\\6992;@\ de’;:‘a\\eng’z\e‘a\ JERA
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Analysing weight updates during backpropagation and final weight values provides
limited insights into neuron contributions on a per-sample basis. To understand activation
dynamics in the Re3 method, a binary mask is used, as explained in Eq. 10 (Sect. 3.3.1), to
determine whether each hidden neuron is active for specific inputs. By aggregating these
masks from test samples, it becomes possible to count the number of active versus inactive
neurons (Online Appendix B) and rank the frequency of neurons among the top contribu-
tors, identifying the most important ones in the network.

These statistics highlight two important features of how networks function: sparsity and
specialisation. Sparsity means that many neurons stay quiet and don’t contribute to certain
inputs, while specialisation shows that a small number of neurons often have the biggest
impact on the output. For instance, in a single hidden-layer, Iris model with eight neurons,
all of them might activate, but usually only one or two stand out in terms of how often they
contribute. As more layers are added, this specialisation becomes even stronger, showing
that deeper networks tend to cut away unnecessary neurons and focus the flow of informa-
tion through a core group of influential ones. This natural sparsity helps prevent overfitting
and makes it clear which parts of the model are actually doing the work. Overall, these pat-
terns of activation and ranking provide a clear understanding of how the hidden units in a
network collaborate to transform inputs into outputs.

5.4 How Do Features Move from the Input Through the Hidden Layers to the Final
Decision of the Network?

The flow of information through the input, hidden, and output layers is vital for understand-
ing NNs (Aggarwal et al., 2018). This process shows the abstraction of features at each
layer, allowing researchers to analyse model behaviour, identify issues, and refine designs.
The Re3 method’s detailed per-sample calculations help determine each neuron’s sensitivity
to features and trace the information path through the network.

The use of a Sankey diagram (Fig. 4) clearly shows how transformations occur. In the
single-layer network, feature weights are distributed across all active neurons, with the
heaviest flows directed toward petal width and length. In the two-layer model, a few mid-
level neurons combine signals related to petal and sepal traits before passing them on. By
the third layer, a single top-layer neuron holds most of the decision weight for the virginica
score.

The combined analysis of regions and Sankey charts shows how NNs operate. Early lay-
ers focus on gathering basic measurements, while the middle layers blend these into more
complex size and shape channels. Finally, the last layers refine this information through a
single pathway for making decisions. This approach reveals not only what each neuron is
tracking but also how those signals move step by step to reach the final prediction. This dual
perspective of what and how provides a clear, step-by-step view of how the network works
inside.

5.5 Per-Feature Contribution and Ranking
One of the strengths of the proposed method is its ability to break down a single decision

into the contributions of each feature (Online Appendix G). The Re3 approach calculates the
exact probability contribution of each feature by simplifying the network into its per-sample
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affine form, (A,, D,), and then applying the softmax Jacobian to the logit contributions
(Algorithm 3).

The method combines contributions from different features across the entire test set to
create a comprehensive importance ranking (Sect. 4.4.2). This ranking shows which fea-
tures consistently appear in top slots across samples, establishing a clear hierarchy. Petal
width and petal length rank highly, indicating their significant role, while sepal length and
width are less important (Fig. 6). These analyses provide a clear look at each individual
prediction, as well as a broader understanding of which features are most important to the
model. By showing both perspectives straight from the model’s rules, Re3 creates a detailed
map of how features influence predictions. This can help with debugging, selecting the right
features, and simplifying the model.

5.6 Complementary Evaluation of LIME and SHAP

The main goal of this study was not to create a better explanation method than those already
available, but to show that the insights gained from the new approach closely match results
from well-known methods. Specifically, the probability contributions from the proposed
approach follow similar patterns to those seen in LIME and SHAP (Online Appendix G, Fig.
5). The small differences in the exact numbers come from how Re3 uses direct transforma-
tions, compared to LIME’s approach of perturbing data or SHAP’s method of cooperative-
game attributions. Despite this, the overall ranking and relative importance of the factors
were consistent across all three methods.

When looking at the average contributions across the entire test set (Fig. 6), the agree-
ment is even clearer. Regardless of using single, two, or three hidden layers, Re3, LIME,
and SHAP consistently identify petal width as the most important feature, followed by petal
length, with sepal width and length next. This consistent ranking indicates that Re3’s analy-
sis aligns with the findings from perturbation and gradient-based methods, suggesting it
accurately captures key factors influencing the network’s decisions.

Quantitative metrics provide strong support for the result. NDCG, Spearman’s p, and
Pearson’s r values (Table 3) demonstrate that Re3 consistently identifies the most important
signals, similar to LIME and SHAP, regardless of the model’s complexity or depth. The
paired t-tests comparing the top and bottom feature groups (Table 4) reveal that the most
important inputs for Re3 show significantly higher average importance than the least impor-
tant ones. This aligns with findings from LIME and SHAP. In most datasets, particularly
those with many features, the distinction between these groups is highly significant and
becomes more pronounced in deeper networks. These results confirm that Re3’s attributions
effectively differentiate between important and unimportant features.

The local case studies, global rankings, correlation metrics, and statistical tests show that
Re3 offers important feature-importance results that enhance and support the findings from
LIME and SHAP. By providing precise details at the neuron level and region level, Re3
deepens the understanding of how NNs make decisions while maintaining the agreement
that practitioners depend on.

Table 6 positions Re3 within the wider context of NN interpretability methods, empha-
sising its distinct role as both an exact and computationally manageable approach for ReLU
networks. The comparison shows that Re3 has a distinct role in interpretability. Unlike
LIME and SHAP, which estimate feature importance through random sampling, Re3 pro-

@ Springer



Machine Learning (2026) 115:17 Page 31 of 35 17

Table 6 Comparison of Re3 with existing explainability methods for NNs

Method Scope Fidelity Model requirements Computational ~ Primary use case
cost
LIME (Ri- Local Approximate Model-agnostic O(k - d) Quick local ap-
beiro et al., (stochastic) proximations;
2016) interpretable linear
surrogates
SHAP (Lun- Local & Approximate Model-agnostic or  O(2¢) exact Unified frame-
dberg & Lee, Global (stochastic) or  tree-specific orO(k - d) work; global fea-
2017) Exact (trees) sampling ture importance
OpenBox Global Exact Piecewise-linear High (full Global analysis of
(Chu et al., enumeration) all regions; small
2018) networks
TropEx Global Exact ReLU networks High (polytope = Theoretical bound-
(Trimmel et enum.) ary analysis via
al., 2021) tropical geometry
Re3 Local Exact ReLU networks O(L-h-d) Exact per-sample
(sample (deterministic) attribution; region-
and region) level analysis

vides exact and consistent explanations by using the piecewise-affine structure of ReLU net-
works. This method removes variability from sampling, ensuring that the same input always
yields the same explanation, an important aspect for debugging and building trust. Re3 also
avoids the high computational costs associated with global exact methods like OpenBox
and TropEx, which require a comprehensive analysis of all linear regions or polytopes. By
focusing on the specific region activated by each sample, Re3 achieves polynomial-time
complexity per sample, making precise interpretability practical for moderately sized ReLU
networks. This combination of accuracy and efficiency makes Re3 a valuable tool for those
who need reliable and reproducible explanations without the added complexity of global
analysis.

5.7 Contributions of the Study

The primary contribution of this work is to show that exact explanations for individual
samples from ReLU networks can be achieved with a reasonable computational effort. By
taking advantage of the known piecewise-linear nature of ReLU activations, Re3 extracts
a specific linear mapping for each sample using just one forward pass and simple matrix
operations. This makes the network’s calculations easier to understand without needing to
list all the linear regions, which previous exact methods required. The practical implemen-
tation (Algorithms 1-4) demonstrates that it is possible to achieve both exact results and
manageable complexity for moderately sized ReLU networks.

The accessibility of Re3 goes beyond methodological rigour to encompass practical
application. Its lightweight design, utilising standard libraries, facilitates easy integration
into existing workflows with minimal additional coding requirements. By offering execut-
able code in conjunction with the methodology, this research reduces barriers to adoption,
enabling practitioners to validate and expand upon the approach. This emphasis on devel-
oper accessibility sets Re3 apart from methods that primarily exist in theoretical frame-
works or necessitate specialised software.
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Re3 connects local and global interpretability by providing explanations for individual
samples and assessing feature importance across the entire dataset. The precise mathemati-
cal mappings enable the accurate attribution of specific predictions, while the aggregation of
results across multiple samples reveals consistent trends in feature relevance (Fig. 6). This
dual approach meets the distinct needs of interpretability, offering insights into specific deci-
sions while also highlighting overarching patterns within a single framework, rather than
relying on separate methods for local and global analyses.

Validation using LIME and SHAP demonstrates that the specific attributions provided by
Re3 align closely with those of these well-established approximate methods while ensuring
consistent and repeatable outcomes. The agreement observed across various datasets and
models indicates that Re3 reliably identifies important features. Moreover, Re3 addresses a
significant limitation associated with sampling-based methods explanation stability. Unlike
LIME and SHAP, which may yield different explanations for the same input due to their
inherent randomness, Re3 guarantees identical results for identical inputs. This reliability is
essential for effective debugging and fostering trust in production systems.

Extending the Re3 framework to convolutional architectures underscores its relevance
beyond fully connected networks. Experiments conducted on the MNIST and Fashion-
MNIST datasets demonstrate that Re3 effectively processes features derived from CNN lay-
ers. However, the number of regions remains considerable, even when using convolutional
preprocessing. This observation points to the fact that high-dimensional inputs inherently
create complex decision boundaries. These results affirm Re3’s practical application within
ReLU networks, including CNNs, for moderately sized problems while recognising that its
scalability to very large models is limited by the proliferation of regions.

The analysis of regions enhances understanding by showing how networks organise input
data. By grouping samples with similar activation patterns, Re3 reveals important charac-
teristics such as class purity, decision boundaries, and the consistency of feature importance
across different groups. This approach addresses concerns raised by reviewers regarding
the limited focus on single-sample explanations, demonstrating that the piecewise-affine
framework enables analysis on various scales. Furthermore, characterising regions high-
lights areas of confusion where the model makes uncertain predictions, offering valuable
insights for improving the model and assessing its reliability.

Re3’s exact affine mappings enable deterministic what-if analysis within linear region
boundaries. By algebraically manipulating feature values in the extracted mapping, practi-
tioners can explore counterfactual scenarios without retraining or approximation. However,
this capability is constrained by region boundary perturbations that alter activation pat-
terns, requiring the mapping to be recomputed for the new region. The region size analy-
sis provides practitioners with validity bounds, indicating the scope within which what-if
explorations remain reliable. This represents a middle ground between unconstrained coun-
terfactual generation and no counterfactual capability, offering exact predictions for pertur-
bations within the current decision context.
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6 Conclusion

Understanding NNs requires tools that can show how inputs affect outputs without sacrific-
ing accuracy. This work introduces Re3, a method that derives precise per-sample affine
mappings from trained ReLU networks by using their piecewise-linear structure. Through
systematic evaluation on benchmark datasets, Re3 demonstrates that it is possible to achieve
exact interpretability with a manageable computational cost, effectively bridging the gap
between fast approximate methods and exhaustive exact approaches. The method offers
deterministic feature attributions, stable global importance rankings, and regional analyses
that illustrate how networks divide the input space. Validation using LIME and SHAP con-
firms alignment with established methods while enhancing reproducibility. Extending this
analysis to convolutional architectures on the MNIST and Fashion-MNIST datasets shows
its applicability beyond fully connected networks, although scalability issues arise with very
large models. The region-level analysis uncovers decision structure patterns, class purity
distributions, and consistent feature importance across sample groups, addressing interpret-
ability at multiple scales within a unified framework.

Several areas deserve more focus. Creating custom regularisation techniques to man-
age region growth could make Re3 more scalable by reducing the number of linear parti-
tions during training. Initial experiments with standard regularisation show limited results,
suggesting that specific penalties designed for the piecewise-affine structure might lead to
better results. Moreover, applying Re3 to CNN architectures and vision transformers could
help clarify its design limits and needed changes. Finding ways to estimate uncertainty
near region boundaries could improve what-if analyses by measuring the reliability of pre-
dictions for changes near activation transitions. Finally, using Re3 for specific issues in
healthcare, finance, or autonomous systems could offer useful insights and guide necessary
adjustments for safety-critical applications.
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