Malardalen University Press Licentiate Theses
No0.52

Modeling the Temporal
Behavior of Complex
Embedded Systems

A Reverse Engineering Approach

Johan Andersson

June 2005

V A
\ ¥V 4
MALARDALEN UNIVERSITY

Department of Computer Science and Engineering
Malardalen University

Copyright(© Johan Andersson, 2005

ISSN 1651-9256

ISBN 91-88834-71-9

Printed by Arkitektkopia, Vasteras, Sweden
Distribution: Malardalen University Press

Abstract

Software systems embedded in complex products such astelssom sys-
tems and industrial robots are typically very large, canitag millions of lines
of code, and have been developed by hundreds of engineermavy years.
We refer to such software systems as complex embedded sy/stem

When maintaining such systems it is difficult to predict hdvarges may
impact the system behavior, due to the complexity. This eeiglly true for
the temporal properties of the system, e.g. response tsires the temporal
behavior is dependent on many factors that are not visibte@nmplemen-
tation, such as execution time. The state-of-the-praiditieerefore often the
trial-and-error approach, i.e. implement and test. Howeseors related to
the temporal behavior are often hard to find while testingsygtem and may
cause major economic losses if they occur post-releases shey typically
result in system failures.

This thesis presents a method for predicting these typesrofsein an
early stage of development. The specific method proposealledcbehavior
impact analysis, which aims to predict if a specific changiéosystem may
result in errors related to the temporal behavior. The ntetgpecially targets
complex embedded systems and by using this analysis mettibd software
development process, the number of errors introduced whantaining the
system can be reduced. This results in an increased preityctimaintenance
as well as an improvement in system reliability.

This thesis focuses on the construction and validation @témporal be-
havior model necessary for performing a behavior impaclyai® The con-
clusion of the thesis is that a combination of dynamic anslgad reverse en-
gineering is suitable for modeling the temporal behaviararhplex embedded
systems. Regarding validation of temporal behavior modeésthesis propose
a process containing five increasingly demanding tests oigin@lidity. Tools
are presented that support the model construction andati@idprocesses.

Till Birgitta

Preface

This work has been supported by ABB Robotics and ASTEC, tieNOVA
competence center on software technology, as well as ARTESAVE-IT.

I would like to thank my supervisors, Professor Christer gti@m, Dr.
Anders Wall and Professor Bjorn Lisper, for their enthesiaand excellent
support during these years! Thank you! Also Professor Harskbn and Joel
Huselius has taken the time to read and comment this thbaisi tyou!

Peter Eriksson has provided a lot of valuable input and comtsnen this
research from ABB Robotics point of view. Our interestingadissions have
given me a much better understanding of the industrial iobatomain and
ABB'’s robot control system. Your enthusiasm and positivigitshave been
very supportive! Thank you!

I would like to thank Professor Wang Yi, Professor Bengt 3ons Pavel
Krcal, Leonid Mokrushin and Xiaochun Shi, Uppsala Univistsior many
interesting discussions! | would also like to thank all myleagues at the
department, especially Joel Huselius, Jonas Neandem Jedriksson, Dag
Nystrom, Thomas Nolte, Daniel Sundmark, Anders Petterskmakim Froberg
and Jukka Maki-Turja, for the many laughs and interestilsgussions!

| want to direct many thanks to my friends Christian Hultm@&hyistian
Andersson, Klas Andersson and Rickard Soderback, fotahad 40 years of
friendship. Finally | want to express my gratitude to my fiarirgitta, my
parents Lennart and Susanne, and my sisters Josefin areh)éssyour love,
support and interest in my work.

Thank you all!

Johan Andersson
Vasteras, June, 2005

Publications

The author of this thesis has authored or co-authored thenfiolg publica-
tions:

Articles in collection

A Dependable Open Platform for Industrial Robotics - A Cagal$ Goran
Mustapic, Johan Andersson, Christer Norstrom, Anderd,Wathitecting
Dependable Systems II, Lecture Notes in Computer ScienbkC8) 3069,
Editors: Rogrio de Lemos, Cristina Gacek, Alexander Romsaky) ISBN:
3-540-23168-4, 2004.

Conferences and workshops

Model Synthesis for Real-Time Systedoel G Huselius, Johan Andersson, In
Proceedings of the 9:th European Conference on Softwaratbfeince and
Reengineering (CSMR '05), p 52-60, Manchester, UK, Mar€i§3

Decreasing Maintenance Costs by Introducing Formal Arialg$ Real-Time
Behaviorin Industrial Settingdohan Andersson, Anders Wall, Christer Norstrom,
In Proceedings of the 1st International Symposium on LeyiaggApplications

of Formal Methods (ISoLA '04), Paphos, Cyprus, October,£200

Validating Temporal Behavior Models of Complex Real-Timst&ns Johan
Andersson, Anders Wall, Christer Norstrom, In Proceesinighe 4th Confer-
ence on Software Engineering Research and Practice in SWE8&RPS'04),
Linkoéping, Sweden, September, 2004

vii

viii

Real World Influences on Software Architecture - Intervievith Industrial
Experts Goran Mustapic, Anders Wall, Christer Norstrom, lvicankvic,
Kristian Sandstrom, Joakim Froberg, Johan AnderssoRyticeedings of the
4th IEEE Working Conference on Software Architectures (\WAC04), Oslo,
Norway, June, 2004

Correctness Criteria for Models Validation A PhilosopHhiParspectiveljeoma
Sandra Irobi, Johan Andersson, Anders Wall, In Proceedifgbe Inter-

national Multiconferences in Computer Science and ConmpEigineering
(MSV '04), Las Vegas, June, 2004

Increasing Maintainability in Complex Industrial Realrié Systems by Em-
ploying a Non-Intrusive MethqdChrister Norstrom, Anders Wall, Johan An-
dersson, Kristian Sandstrom, In Proceedings of the Wanksin Migration
and Evolvability of Long-life Software Systems (MELLS 'Q3rfurt, Ger-
many, September, 2003

Probabilistic Simulation-based Analysis of Complex REales System#n-
ders Wall, Johan Andersson, Christer Norstrom, In Proogsaf the 6th IEEE
International Symposium on Object-oriented Real-timéritisted Computing,
IEEE Computer Society, Hakodate, Hokkaido, Japan, May3200

A Dependable Real-Time Platform for Industrial Robati@®ran Mustapic,
Johan Andersson, Christer Norstrom, In Proceedings af@B& 2003 Work-
shop on Software Architectures for Dependable Systemsg§MVBDS), Port-
land, OR USA, May, 2003

Introducing Temporal Analyzability Late in the Lifecycf@@mmplex Real-Time
SystemsAnders Wall, Johan Andersson, Jonas Neander, Christestidan,
Martin Lembke, In Proceedings of the 9th International @oaficeR on eal-
Time and Embedded Computing Systems and Applications (RTQ3, Tainan,
Taiwan, February, 2003

Technical reports

Influences between Software Architecture and its Envirovirime Industrial
Systems a Case Sty@oran Mustapic, Anders Wall, Christer Norstrom, lvica

Crnkovic, Kristian Sandstrom, Joakim Froberg, Johaneéksdgon, MRTC re-
port ISSN 1404-3041 ISRN MDH-MRTC-164/2004-1-SE, Makdmh Real-
Time Research Centre, Malardalen University, Febru@§42

A Framework for Analysis of Timing and Resource Utilizaflangeting Indus-
trial Real-Time Systemgdohan Andersson, Anders Wall, Christer Norstrom,
Technical Report, MRTC, August, 2004

Contents

1 Introduction 1
1.1 OurApproach, 6
1.2 ResearchQuestions 8
1.3 ResearchApproach 8
1.4 Contribution. o 9
15 ThesisOutline., 10

2 Temporal Behavior Modeling and Analysis 13
2.1 ReverseEngineering 15

2.1.1 Tools for Structural Analysis 15
2.1.2 Tools for Behavior Analysis 17
2.2 Model Validation 21
2.3 Real-TimeSystems 24
2.3.1 Analytical Response-Time Analysis 26
2.3.2 Simulation based Analysis 26
2.3.3 ExecutionTime Analysis 28
24 Modelchecking 29
241 BasicConcepts 29
2.4.2 ThemodelcheckerSPIN 30
2.4.3 Model checking Real-time Systems 33
25 Discussion. 36
251 Modeling 36
252 Analysis 37

3 Dynamic Analysis 39

3.1 UsesofDynamicAnalysis 40
3.1.1 SystemUnderstanding 41

Xi

Xii Contents
3.1.2 Modeling SystemBehavior. 41
3.1.3 RegressionAnalysis 41
3.2 Recording—What, HowandCosts 42
3.21 TheProbeEffect 45
3.2.2 Relevant code instrumentation 46
3.2.3 Resource Consumption 49
3.2.4 Implementation and Evaluation of a Behavior Recordget
3.3 Analysis and Comparison of Execution Traces 5 5
3.3.1 The Probabilistic Property Language 57
3.3.2 The Property EvaluationTool 62
3.3.3 TheTracealyzer. 64
3.4 DISCUSSION e e 67
4 Modeling Temporal Behavior 69
4.1 BehaviorImpactAnalysis. 72
4.2 Modeling SystemBehavior 75
4.2.1 TheModelingProcess 76
4.2.2 The Model Specification 77
4.2.3 TheFunctionalModel 78
4.2.4 The ModelParameters 81
4.2.5 Identification of Dependencies 88
4.3 Modelingthe Environment 89
4.3.1 lIdentification and Classification of stimuli 09
4.3.2 Modeling Approaches for EnvironmentModels 92
4.4 DIiSCUSSION v i e e 94
5 Model Validity 95
5.1 ValidityThreats 97
5.2 A Model Validation Process 99
5.2.1 The Trace ComparisonTest 101
5.2.2 The Property ComparisonTest 103
5.2.3 The Analysis Variability Test. 105
5.3 Observable Property Equivalence 106
5.3.1 Comparing Behavior 107
5.3.2 Observable Property Equivalence — A Formal Definiti68
5.3.3 Selecting Comparison Properties 109
5.4 ModelRobustness oL 112
5.4.1 Sensitivity Analysis 113

5.5 DIiSCUSSION v o v e e e e 117

Contents Xiii

6 Conclusions 119
6.1 FutureWork 121

6.1.1 Automatedmodeling 122
6.1.2 Alternative Analysis Methods 123
6.1.3 Regression AnalysisCase Study 123

A ART-ML 2.0 125

B PPL Implementation 135

C An example model specification 139

Bibliography 141

Chapter 1

Introduction

As computers have become more powerful and less expensyehtdve be-
come a common and natural part of our everyday life. Howawest com-
puters manufactured today are not desktop computers, theaaed in prod-
ucts such as mobile phones, microwave ovens, refrigerdtiys, cars, trains,
airplanes and many different types of audio and video eqeigm Product
developing companies have replaced electrical and mecdlasblutions in
their products with embedded computers. Computer-badaetist are less
expensive, require less space and power and also allowsdoe advanced
functionality. Embedded computers come in all sizes, framnywsmall and
simple 8-bit single-chip computers, with a few kilobytesnaémory, to giga-
hertz 32-bit computers with vast resources. This thesisdes on embedded
computer systems of the latter category, large softwaresysembedded in
complex products such as industrial robot control systammotive systems
and telecommunication systems. Systems of this type oftetam millions
of lines of code and have been developed by hundreds of esrgioger many
years. Such systems are too large and complex for any siegsop to un-
derstand in detail. In this thesis, we refer to such softwgstems asomplex
embedded systems.

Common characteristics of complex embedded systems airestifety
critical and/or business-critical nature. Typically, ®yss of this class are in
control of machinery and therefore have requirements oemlggbility, such
as safety, reliability and availability. Moreover, the ity of systems of this
class araeal-time systems.e. systems that must respond to input from its
environment in a timely manner. For non-real-time compugerch as home

2 Chapter 1. Introduction

PC'’s, CAD-workstations or game consoles, the focus is oaveeage perfor-
mance, while for real-time systems another property is nmohe important,
the worst case response time, i.e. the maximum latencylge$sbm an input
to the system’s corresponding reaction. Since a violatf@temporal require-
ment may cause a system failure, it is critical for the systelmbility that the

worst case response time for each system function is known.

A

functionallity

/

Figure 1.1: The life cycle of a complex embedded system

>

time

Another characteristic property of complex embedded systis the long
system life-cycle, measured in years, sometimes decadese e imple-
mentation of a complex embedded system represents a magstinent for
the company, many man years of development time, redegjguich a system
from scratch is not an option unless it is absolutely necgs€2onsequently,
systems of this type are maintained for many years. The evaanice consists
of maintenance operationse. the implementation of changes to the software
in order to correct errors, or to add new features in ordeespond to new
customer demands.

The life cycle can be divided into four different phases gsicted in Fig-
ure 1.1: (1) inception, (Il) initial development, (111) matenance and evolution,
and (V) end of life time. The curve in Figure 1.1 plots the ¢tionality in the
system over time. Hence, for a successful system it is ddsita stay in phase
Il as long as possible with a curve that has an inclinatiostasp as possible,
because this implies a high degree of productivity in thévgfe maintenance,

i.e. new features is implemeneted at a relativly low coséimis of man hours.

However, due to the functionality increase during phasgthié system
evolves from its original design. The system becomes modenaore com-
plex and thus harder to maintain, causing decreased piioityies depicted in
Figure 1.1. The increased complexity is partially due toittoeeeased size of
the system, caused by new functionality, and partially duthé fact that the
software architecture tends to degrade as changes are madhe years in a
less than optimal manner due to e.g. time pressure or ingtensiinadequate
design documentation. Furthermore, due to the long lifdecygf the system,
the personnel turnover is a major issue. Many engineersiagrkith mainte-
nance of complex embedded systems have limited experiéitoe gystem and
may therefore not understand the implementation as wellas experienced
developers do. Further, as they were not involved in théirdevelopment of
the code they are maintaining they may not be aware of theuleationale
used in the initial development of the system.

In order to stay productive even though the system has a midlinareas-
ing complexity, i.e. to stay in phase Il as long as possilvEemust improve the
way we develop and maintain software for complex embeddstésys. Today,
most companies that develop complex embedded systemsaaijhjhon code
inspection and testing, which are necessary but, appgrent sufficient. A
significant effort is put into the testing of each new releafsthe system in or-
der to capture as many errors as possible, but it is commobtiga are missed
which may result in products being shipped with faulty saiftec According
to a recent study [N1S02] by the National Institute of Stamddaand Technol-
ogy (NIST) at the U.S. Department of Commerce, software loogsthe U.S.
economy an estimated $59.5 billion annually. The study kmtedl that more
than a third of these costs could be eliminated by an impréestihg infras-
tructure that enables earlier and more effective identiicaand removal of
software defects, i.e. finding an increased percentagerofsecloser to the
development stages in which they are introduced. AccorttirjiyIS02] over
half of all errors are not found until "downstream” in the é&pment process
or during post-sale software use.

When maintaining real-time systems it is important to wettifat the system
still complies with its temporal requirements, i.e. theuigments on worst
case response time, after a change has been made to the.syeteresponse
time for a particular event is dependent on the time it takeexecute the
software, which depends on the design of the software .itSéérefore, if the
software is changed, it might cause the response time tedxbe specified
limit, the deadline. In a worst case scenario, a maintenapegation will cause

4 Chapter 1. Introduction

a violation of the temporal requirements, but only in vemgrsituations. Such
errors are easily missed during the testing of a systemf they occur after the
system has been delivered to customers, it may result intarsyfailure with
severe consequences for the user of the system. For insédiadeng industrial
robot could halt an entire production line in a factory fouhsgy causing a large
monetary loss. Errors related to the timing of softwareeyst can in most
cases not be detected in unit testing as they only occur iimtbgrated system,
when concurrent activities are interacting or interferiAtso, if errors related
to timing and concurrency effects are discovered in fulteystesting, they
are typically hard to reproduce. The problems associatéd regproducing
such errors have been discussed in e.g. [Sch91] and [MH89].

If the impact on the system’s temporal behavior caused byiatereance
operation is predicted early, in the design-phase of thaghghe risk of intro-
ducing errors related these aspects of the system behasipbeminimized.
This way the productivity in system maintenance is improaed it is possible
to stay longer in phase Il of the life cycle depicted in Figur.1. Unfortu-
nately, to predict the impact of a maintenance operatioritendifficult due
to the complexity and the evolving nature of these types sfesys. A system
expert can often make a qualified guess, but a more detaikdgsigis often
problematic and time consuming due to the size and complexithe sys-
tem. Furthermore, as all human beings make mistakes, itngetaus to rely
on someones subjective judgement. If it discovered thatromeed main-
tenance operation, e.g. the implementation of a new feaha® introduced
problems related to the temporal behavior, then largetsffaave already been
made on implementing a feature that may be too resource déngafor the
current system and in need of modifications in order to fumcgiroperly. The
reliance of subjective judgementis far from an ideal solutbut unfortunately
the prevalent method in industry today.

The alternative to a system expert’s subjective judgment ciiange is to
introduceanalyzabilitywith respect to the important properties of the system
behavior, i.e. suitable analysis methods that enable ergsrio objectively an-
alyze the impact of a change. There are basically two waystafducing ana-
lyzability for complex embedded systems, eithrusivelyor non-intrusively
An intrusive approach changes the system in order to be nrecdigable and
analyzable. The major problem with an intrusive approadhéslarge effort
and risks involved. An intrusive approach implies rewgttode or completely
redesigning the systems software architecture, an atteenanhich is costly
and will most likely introduce new bugs in the system.

A non-intrusive approach focuses on enabling analysiseéttisting sys-

tem. A common approach, such as the approach proposed ith#sis, de-
scribes the relevant aspects of the system in a model, whichhen be ana-
lyzed using a well-defined method, either by hand or usinggopport. The
model is typically constructed through a process knowneasrse engineering
i.e. extraction of the software architecture through asialgf the implementa-
tion. Interesting results within the area of reverse engjiimg are presented in
Section 2.1.

A non-intrusive introduction of analyzability by modelirmg the existing
system is an attractive alternative to a major redesignes$yistem. Given that
a sufficiently detailed model exists there exists a variéfgnal methods and
tools for analyzing properties of the model, i.e. model &ees [Hol97, SPI,
Hol03, BLLT95, DY00, BDL04, UPP, BDM 98, DY95, KRO]. However, ac-
cording to our experience such formal analysis methods@revidely used in
industry, apart from in domains with extreme dependahiétyuirements, such
as aerospace systems, military systems or nuclear powssplahere system
failure may have truly disastrous consequences and dewelojpcosts are of
less importance. Such systems have been designed to beaialynd for-
mal analysis methods have been used in the whole life cydeeafystem. For
companies that develop complex embedded systems in lagsrextiomains,
formal analysis is often hard to apply for a number of reasons

e Suitable models that allow analysis seldom exists in imguetiay since
the need for analyzability has emerged after initial systersign, as a
result of the increased system complexity. To introducdyaaaility in
a non- intrusive manner thus requires the construction obdahfrom
the system implementation, a significant reverse engingeffort.

e The systems may have a very complex behavior, too complaxalyze
using rigorous analysis methods such as model checkingutitimak-
ing many abstractions to reduce the complexity. To make doessary
abstraction is a non-trivial task that requires a deep gtdeding of the
theory behind the analysis method.

¢ Not all available analysis methods may be applicable fortagesystem
since many analysis methods make assumptions on the sefasetni-
tecture. Most complex embedded systems have not been ddsigth
analyzability in mind and their software architecture miagrefore vio-
late assumptions of the available analysis methods.

e In order to support evolving systems, the model needs to be W
to- date with the system implementation, in the same wayxstesed

6 Chapter 1. Introduction

documentation. If the model becomes obsolete, a subdteffoe may
be required to update the model to reflect the current impheatien.
This effort may cause the system developers to stop usingrthlysis
method, if model maintenance is neglected for some time.

Despite the problems associated with non-intrusive intetion of analyz-
ability, the potential benefits motivate the applicatiortiaé approach. If er-
rors related to the temporal behavior of the system could&gigted at design
time, rather than discovered in system testing or by endsugeould cut costs
and development time for the company. However, the nomnsite approach
requires a model of the system and specifications of the piiepé¢o be ana-
lyzed. Therefore, in order to enable analysis of complexeddied systems’s
temporal behavior, there are several questions that ndezlaoswered.

e What modeling languages and analysis methods are suitable?
e How do we specify the properties of interest for analysis?

e How can a model be constructed based on an implementatiam &t-a
isting system?

e How can we assure that a model is valid with respect to thegutigs of
interest?

The first two questions, about modeling language, analysithod and
property specification, have been addressed in earlier Mzgal03, AWNO4a,
WANO3b, WANT03a, ANO2]. This thesis is primarily targeting the two lat-

ter questions, how to construct and validate a model of a taogmbedded
system.

1.1 Our Approach

In earlier work [Wal03, AWNO4a, WANO3b, WANO3a, ANO2] an approach
has been proposed for introducing analyzability with respe the temporal
behavior of complex embedded systems. Analyzability iothiced by con-
structing a model describing the timing and behavior of fretesm. The model
is constructed through reverse engineering of the existimdementation and
measurements of the timing and behavior of the running Bysiehis model
can be used fobehavior impact analysjs.e. to predict the impact caused

1.1 Our Approach 7

by a maintenance operation on the temporal behavior of thtesy A proto-
type of the change is implemented on the model and the regudghavior can
thereafter be analyzed and compared with an analysis ofrih@al model.

We refer to the general method as thRT Framework The current im-
plementation of this framework is based on the ART-ML madglianguage
[Wal03, AWNO4a, WAN"03a] and the framework is also named after the mod-
eling language. An ART-ML model describes a system as a sask§ (semi-)
parallel processes that share a single CPU. Each task in althasl a set of
attributes, such as scheduling priority, and a behaviocrif@on. ART-ML is
intended for modeling the temporal behavior of tasks, i@w kasks execute
over time, how frequently and how long. However, as it is pmiedo specify
behavior for each task in the model, it is also possible thuthe functional be-
havior and dependencies between tasks. This allows fordetajled models,
which accurately capture the behavior of complex systems.

An ART-ML model is analyzed by executing the model in a sinhia
which results in arexecution tracea log describing which tasks have been
executed, when and for how long. The execution trace is aadlwith respect
to a set of properties, that are specified in ProbabilistmpPrty Language
[Wal03, AWNO4a, WANO3b], using a PPL analysis tool. The prdjes of
interrest for analysis are typically response times andittieation of logical
resources, i.e. properties dependent on the temporal toehav

8 Chapter 1. Introduction

1.2 Research Questions

This thesis has a single main research question, Q, whicloleh down in
two subquestions, Q1 and Q2. By answering the two subguesstiee have
answered the main question Q. The context for these questidhe proposed
approach for behavior impact analysis with respect to thpteal behavior of
complex embedded systems.

Q: How can models be developed that accurately describe thpaeinbe-
havior of complex embedded systems?

Q1. What methods are suitable for extracting the informationessary for
a temporal behavior model from a complex embedded systelarnmaptation
containing millions of lines of code?

Q2: What methods are suitable for validating models descriltiveggtempo-
ral behavior of complex embedded systems?

No hypotheses are formulated here due to the nature of th&tigong; in-
stead chapters 3, 4 and 5 propose solutions answering Q1 2and&&rh of
the three chapters is concluded with a discussion thatesetae contribution
of the chapter to the research questions. Finally, Chapten6ludes the the-
sis by revisiting the research questions and briefly sunmimayithe proposed
solutions.

1.3 Research Approach

The research behind this thesis has been conducted in ccdkidn with ABB
Robotics, a large manufacturer of industrial robots anetabntrol systems.
The author has worked at ABB Robotics with software develepinfor an in-
dustrial robot control system, which is a typical examplaabmplex embed-
ded system. Therefore, the author has a good understanfdihg problems
associated with complex embedded system development.

The problem described in the introduction was initiallyridéed by ABB
Robotics. An on-site study was conducted on the subjecténfahm of a
master’s thesis [ANO2]. This initial work outlined the appch presented in
[Wal03] and further discussed in this thesis.

1.4 Contribution 9

In order to get feedback on the problem formulation and thpr@ach pro-
posed in this thesis, seminars have been arranged on arbgsla, with sys-
tem experts from ABB Robotics as well as researchers fromrathiversities.
Further, several publications on this subject have beesepted on relevant
international scientific conferenses. The strong indalstonnection enables
the research to be focused on problems relevant for industorder to verify
the scientific relevance and uniqueness, the literatureveral related research
areas has been studied. The results can be found in Chapter 2.

The work presented in this thesis is primarily focused onrttimt control
system developed by ABB Robotics. This system is, howeepresentative
for many complex embedded systems, which can be concludeddrstudy
that has been made on several companies in Sweden devetgpimmex em-
bedded systems [MWND4]. Therefore, an approach suitable for the ABB
Robotics will most likely be suitable for many other comp&xbedded sys-
tems. In future work, the solutions proposed in this thests be evaluated in
an industrial case study, at first at ABB Robotics and, dejmgnah the result,
on other companies developing complex embedded systemallaghis case
study is described in Section 6.1.

1.4 Contribution

The approach for behavior impact analysis described intki@sis originates
from Anders Wall's Ph.D. thesis [Wal03]. The contributicftlois thesis com-
pared to [Wal03] is as follows:

Modeling for behavior impact analysis The thesis presents an approach
for how to construct a model for behavior impact analysisglleon an existing
system, by extracting information from both source code faoish execution
traces recorded from the system at runtime.

Model validation In order for a model to be useful, it must be assured that
the model is valid, i.e. an accurate description of the idéshsystem at the
appropriate level of abstraction. The thesis presents proaph for validating

a model intended for behavior impact analysis, based onaf sgtsting model
validation techniques.

Regression analysis An alternative application of the approach presented in
this thesis allows a company to study their system’s tengwghavior and

10 Chapter 1. Introduction

compare with previous versions of the system in order totifleanintended
effects caused by recent maintenance operations. Thisagphas been de-
veloped in collaboration with ABB Robotics, which recerttigs begun intro-
duing the proposed analysis method in their software deweémt process.

Tools A set of tools and languages have been developed to enabtlertiee
above stated contributions of this thesis:

e The modeling language ART-ML and a discrete-event simufatcART-
ML models.

e The Tracealyzer, a tool for visualization of execution &sc The tool
is highly useful in the modeling of complex embedded systeassit
visualizes system’s behavior.

e The Property Evaluation Tool, a tool for PPL analysis and garison
of execution traces. The tool is applicable in behavior iot@aalysis,
regression analysis, as well as in model validation.

e A behavior recorder for the RTOS VxWorks has been developddra
tegrated in a commercial complex embedded system. Thesthesients
the design and the performance of the implemented recorder.

1.5 Thesis Outline

This thesis is organized in six chapters. Chapter 2 presestate-of-the-art
report on related research in the areas of reverse engigearodel validation,
real-time systems and finally model checking. Chapter 3gmtssthe use of
dynamic analysis for modeling and analysis of complex erdbddsystems:
what information is of interest and the costs of recording ittformation. The
chapter also presents a set of tools that has been developaddlysis and
visualization of recordings and an additional use of theettgyed tools, re-
gression analysis. Chapter 4 presents an approach for mgdieé temporal
behavior of complex embedded systems. The approach comsist model
framework dividing a model into four components and a predesconstruc-
tion of the model components using dynamic analysis andsewengineering
of the system’s implementation.

Chapter 5 discusses the concepts of model validity, modelstness and
the threats against model validity. Further, the chaptesgmts a five-step pro-
cess for validation of temporal behavior models. The staphe validation

1.5 Thesis Outline 11

process may utilize the tools presented in Chapter 3. Fin@hapter 6 con-
cludes the thesis and outlines future work.

Chapter 2

Temporal Behavior Modeling
and Analysis

This chapter is a literature study investigating existingrke related to the
research questions of this thesis, i.e. how to model the aemhpehavior of
existing complex embedded systems. This study is broadhess aire several
areas of interest. Four research areas have been identfibé anost closely
related and are described in this chapter:

e Reverse Engineering
e Model Validation

e Real-Time Systems
e Model Checking

The first two sections describe areas related to the comistnuaf mod-
els for behavior impact analysis. The two latter areas dege to analysis
methods suitable for behavior impact analysis of real-thystems. Reverse
engineering is the process of extracting logic, designsahdr information
from an implementation. This area is highly relevant, ascivstruction of a
model from an existing system is a reverse engineeringigcti$ection 2.1
presents the area by explaining basic terminology anddstielg results. The
section also includes results from the software verificetiommunity, where
model extraction tools are used to extract verification nofilem source code.
This is in essence a reverse engineering process.

13

14 Chapter 2. Temporal Behavior Modeling and Analysis

Model validation is the process of assuring that a modelrileese the in-
tended system correctly and with enough accuracy for théysisan mind.
This area has primarily been addressed by the simulatiomzority. Section
2.2 describes results related to model validation, botlestiege methods and
methods based on statistics.

Real-time systems are systems with requirements on tiesdinThis is a
huge research area; different aspects of real-time sydtenes been studied
extensivly since the early 1970’s. The type of systems claned in this study,
complex embedded systems, are typically real-time sysseniscluding real-
time systems research in this study comes naturally. Se2tddescribes the
basic concepts and terminology, scheduling algorithmsaaadlytical methods
for response-time analysis, simulators for analysis of tieze systems and
finally worst case execution time (WCET) analysis.

Model checking is a method for verification of models desogte.g. soft-
ware systems. The method may be used to verify differentgtigs of a soft-
ware system, e.g. absence of deadlocks and safety prapéutesome model
checking tools also allow checking of timeliness propsrtiéModel check-
ing may thus be an alternative to the simulation-based agprof this thesis.
Section 2.4 therefore presents the general principlekdimg modeling lan-
guages and temporal logics, and three common tools for nobeeking.

Finally, the chapter is concluded with Section 2.5, disitgssn how the
approach proposed in this thesis relates to the existingsyaesented in this
chapter.

2.1 Reverse Engineering 15

2.1 Reverse Engineering

The process of extracting information from an implementafii.e. source
code) is commonly referred to esverse engineeringA related term iseengi-
neering which according to the “horseshoe model of reengineefiGtf0] is
the process of first reverse engineering an implementatitmna higher level
of abstractionyestructuringthe result of the reverse engineering, and finally
forward engineeringn order to introduce new functionallity. An extensive
annotated bibliography is presented by van den Brant [vd8K\describing
around 100 works in the area of Reengineering and Reversaedaring.

Available tool support for reverse engineering is closehated to this the-
sis, as the usage of such tools is likely to facilitate theausthnding and mod-
eling of complex systems. There are many tools availabledha analyze
and present different views of a system’s static structsueh as UML class
diagrams.

2.1.1 Tools for Structural Analysis

Bellay and Gall [BG97] performed a study in 1997, where thegspnted
and compared four Reverse Engineering toBsfine/Clmagix 4D, Rigi and
Sniff+. The comparison was made by applying each of the tools to amym
cial embedded system implemented in C. They compared 4®pfepof these
tools in the four categoriesinalysis representationediting/browsingndgen-
eral capabilities Examples of properties in the analysis-category are what
source languages that are supported and the fault-tokerditiee parser. In the
representation-category, properties such as supporltésirig and grouping of
information can be found. The editing/browsing categonytams information
about how the tool presents the program text, e.g. syntaXigiging, search
support and hypertext capabilities. Finally, in genergladalities we find in-
formation about e.g. supported platforms, multiuser supgnad extensibility.

According to [BG97], Refine/C is an extensible, interactiv@kbench for
reverse engineering of C programs. However, no furtherimétion about Re-
fine/C could be found, apart from references in rather oldaesh papers. Re-
fine/C is a product of the company Reasoning Systems, Inéchwio longer
supports this tool.

Imagix 4D is a tool for understanding C and C++ programs. Ibiay
available as a commercial product. It can present UML cléagrdms, file
diagrams and can also perform control flow analysis. It camtifly unused
variables, present metrics of the individual routines ia ¢iode, such as line

16 Chapter 2. Temporal Behavior Modeling and Analysis

count, McCabe complexity, fan in etc.

The third tool studied in [BG97] is Rigi, a public domain tat#veloped
over the last decade by the Rigi Research Project at the ditivef Victo-
ria, Canada. The Rigi tool can present the dependenciesbatfunctions,
variables and data types and has a lot of features for fijexird grouping of
functions into subsystems. Rigi is also highly customieabih order to use
Rigi, the code that is to be analyzed first has to be parseaigtaph. This is
done using a separate program.

The last tool presented in this study is Sniff+. It is not argfuReverse
Engineering tool in the traditional sense. Sniff+ is a conuiz advanced de-
velopment environment from WindRiver, for developmentarfje embedded
solutions. Sniff+ also supports reverse engineering iiets/

A more recent study is the one by Kollmann et al, from 2002.ifT$tedy
[KSST02], compares four tools for UML based static reverse ergging: To-
gether Rational Rose, Fujabandldea The first two are commercial products
and the latter ones are research prototypes. The tools arpazed by using
them for analyzing a Java implementation consisting of 8460 classes. Nine
properties of the generated information are compared: tineber of classes
reported, the number of associations reported, types otmdins used, han-
dling of interfaces, handling of Java collection classespgnition of multi-
plicities, use of role names, handling of inner classes ataks compartment
details”, i.e. the level of details used in resolving metksahatures.

Other Reverse Engineering tools of a more lightweight readmeRevealer
[PFGJ02] andsemantic GrefBTMGO02]. Revealer is a tool for architectural
recovery, based on syntactical analysis. It allows seagcfar complex pat-
terns in source code, corresponding to “hotspots” of a fipemichitectural
view. For instance, the tool can be instructed to extrachttspots, i.e. the rel-
evant program statements, of socket communication. Rewdaks not parse
the source code like most of the heavyweight tools do, e.@i, Ristead it
searches for patterns. It is therefore very error toleraltaying analysis of
code containing errors or references to missing files. Tirisr ¢olerance is
very useful for e.g. a researcher analyzing a part of a cowialeystem off
site, when the full source code is not available.

Semantic Grep, described in [BTMGO02], allows queries orsthece code,
for instance Show all functions in parser.cor a more advancedshow all
function calls from parser.c to scannér.Ehe tool is based on the established
tools grok and grep. It transforms its queries into commdodghese tools.
This tool is however an academic prototype and does not sed® available
for downloading or purchase.

2.1 Reverse Engineering 17

2.1.2 Tools for Behavior Analysis

Structural analysis tools are of great help for the undeditey of complex
systems, but do not constitue an adequate solution for atadeting a system’s
behavior. However, there are many works focusing on anadyttie behavior
of software, using model extraction tools. These works &gblf relevant to
this thesis. It is possible that an existing model extractmol may be used
directly or adapted to fullfill the reverse engineering reefl the approach
proposed in this thesis.

There are basically two main types of tools that analyze #teabior of
software systems; those who analyze the source code (atmlysis), and
those who analyze traces from the running system (dynanaiysis).

Static Analysis There are many works related to reverse engineering in the
area of model checking. Many model checkers for softwarecatyze imple-
mentations in general purpose languages such as C or Java.dthese tools
translate the program into a modeling language, such asdétapand perform
abstractions by removing details irrelevant for the prépsithat are to be an-
alyzed. This is the approach of the tools SLAM [BR0O1], BLASHIMSO03],
FeaVer/Modex [HS99] and Bandera [CDHO].

SLAM is a toolkit developed by Microsoft Research, for chiagksafety
properties of system software. In [BR0O1] a case study isgmtesl where the
toolkit has been used to verify Windows NT device driverse BLAM toolkit
contains three tools. First, the toBRBPis used to generate an abstraction
of the C program, called hoolean program.Such programs are basically
C programs, but contain only Boolean variables and may asdai non-
deterministic selection. The abstraction is made witheesto the properties
of interest for analysis, specified as state machines irptbefication language
SLIC. The Boolean program is analyzed using BEBOPmodel checker in
order to find a path through the program that violates anye$fecified safety
properties. If such a path is found, the tddEWTONIis used to verify that the
path is possible in the real program.

BLAST, the Berkeley Lazy Abstraction Software verificatitool [HIMSO03],
is another solution for checking safety properties of C paiogs. To specify a
safety property to check, a specdator locationis added to the program. If the
code corresponding to the error location is executed, iteggmts a violation
of the property. The tool transforms a C program into an abstodel, based
on the property to check. The model of the program is intéymapresented
usingcontrol flow automataCFA.

18 Chapter 2. Temporal Behavior Modeling and Analysis

Model checking is then used in order to search all possildations of the
model to determine if the error location is reachable or Hahe error location
is not reachable in the model, BLAST reports that the progeasafe and also
provides a proof of this. If there is a path to the error lawatin the model,
it is verified that the path is possible in the real program bing symbolic
execution. If the path is possible, it is reported to the usgrerwise the model
is refined by changing the abstraction process.

BLAST has been used in case studies, refered in [HIMS03gribsafety
properties of e.g. Windows and Linux device drivers. In sarases, bugs
have been found and in other cases BLAST proved that therdrogrectly
implemented a specification.

An interesting result is the tool FeaVer/Modex/AX [HS99,16{d], from
Bell Labs. There is a name confusion regarding this tool.VEe& the user
interface for this toolkit while Modex is an acronym of Modettractor, a tool
for extracting verification models from ANSI C. Modex wasyigeisly known
as AX (Automata Extractor). The output format of Modex is iReda, the
input language of the software model checker SPIN. Modekgasses the C
code and generate a parse tree. Thereafter it processessilldztions and
conditions of the program with respect to a set of rules,Itiespin a Promela
model.

This approach effectively moves the manual effort from ttding the
model to defining the table of rules. The rules specify whateshents that
should be translated into Promela (and how) and what to @ndhere is a
large set of default rules that can be used, but the user mayheir own
rules to improve the quality of the resulting model. Modexisilable for
download, and it seems very possible to customize Modextfergurposes
than the generation of Promela models, due to the custoirirale table and
open source code.

Bandera [CDH00] is an integrated collection of program analysis and
transformation tools for automatic extraction of finitetst models from Java
code. The models can be used for verifying correctness piepeising ex-
isting model checking tools. No model checker is includediéad Bandera
is designed to interoperate with existing, widely used nhotleckers such as
SPIN and SMV. The authors of [CD¥00] argue that the single most impor-
tant method for extracting analyzable models of softwaebisraction. Their
goal is to provide automated support for the abstractiord by experienced
model designers. Bandera uses techniques from the areasgrbm slicing
[Tip95, Wei81] and abstract interpretation in order to étiate irrelevant pro-
gram components and to support data abstraction. They #rgugpecialized

2.1 Reverse Engineering 19

models should be used for checking specific propertiesrtitha developing a
general model describing many aspects of a program. Thatth@aynodel can
be optimized for analysis of that single property and therghaller and less
complex. This is relevant as a major problem with model chmegtechniques
is the state space explosion problem. Developing propesdgic models is
rarely done when modeling systems by hand, due to the e#qctired, but if

models are automatically generated, it is an option.

A different approach is the one used in VeriSoft [CGP02]p dsm Bell
Labs. It is a model checker for software systems from. It isantraditional
model checking tool, in the sense that no model is requireeriSéft uses
the source code itself as the “model” to check. Verifying behavior of a
concurrent system using VeriSoft is similar to traditioteaiting, the difference
is that it executes under the control of VeriSoft, which sysatically explores
the behaviors of the system. This requires that the systahigito be verified
can be compiled and executed on a platform supported by &fri®hich
today are limited to SunOS and Linux. Most embedded systesasother
platforms such as VxWorks [WRW] or OSE [OSE]. The system tednified
could probably be ported to one of the supported platforngs,Llénux, but that
is often associated with a major effort.

Dynamic Analysis The use of dynamic analysis techniques for the modeling
of complex embedded systems is very interesting, as théirgsmodels may
contain realistic timing information. This is for instante case in research by
Jensen [Jen98, Jen01], described later in this sectios.Kitnil of information
is not possible to obtain using static analysis only. Unifioatly, there is not
much existing work dealing with reverse engineering of-teak systems.

One interesting study is the one presented by Marburger agstf&¢h-
tel in [MWO3]. They report on a set of reverse engineeringgodeveloped
in cooperation with Ericsson Eurolab Deutschland, ineigdsupport for both
structural analysis and behavioral analysis. The behalv@ralysis includes
state machine extraction from PLEX source code (a propyietsynchronous
real-time language). Traces recorded from a system emmudatobe used to
animate the state machines in order to illustrate the sybtmavior. This is
basically low-speed simulation, using pre-recorded dastilnulate the model.
The extraction of state machines from source code is higdyed to construc-
tion of models for behavior impact analysis, unfortunatélg study focuses
on telecom system and the Ericsson-specific PLEX language.

An interesting study related to [MWO03] is that by Systa anakkimies
[SK98] where state diagrams are synthesized from tracee sblrce code

20 Chapter 2. Temporal Behavior Modeling and Analysis

of the system in focus is instrumented in order to generatacet The trace
is then fed into the SCED tool, which generates a (minimaljestliagram
corresponding to the observed behavior. The work does hewext address
real-time systems, no timing information is recorded.

A system called DiscoTech is presented in [Y@8&]. Based on runtime
observations, an architectural view of the system is cantdd. If the general
design pattern used in the system is known, mappings can 8e that trans-
forms low level system events into high level architectunaérations. With
this information an architectural description of the sgstan be constructed.
The system presented is designed for Java based systemgypelseof oper-
ations that are monitored are typically object creationthoé invocation and
instance variable assignments. Note that the resultingeimbekcribes only
the architectural structure of the system and does notdiechny behavioral
descriptions.

Relevant research addressing real-time systems is theagpof Jensen
[Jen98, Jen01], for automatic generation (synthesis) lodbieral models from
recordings of a real-time systems behavior. The resultiodetis expressed as
timed automata for the UppAal model checking tool [Bt25, DY0O0, BDL04,
UPP].

The aim of the tool is testing properties such as response difan im-
plemented system, against implementation requiremeimg umsodel check-
ing. For the verification, it is assumed that the requiremané available in
the form of timed automata which are then parallel compositld the syn-
thesized model by the UppAal-tool to allow model checkingnskn’s thesis
includes a schedulability test that (instead of WCET) useseasure called
Reliable Worst Case execution time (RWC). RWC is a statibtiteasure that
is introduced in the thesis. As a proof of concept, Jensdndes a one shot
experiment of the model synthesis.

The work by Jensen assumes that the system conforms to daqerai-
tecture as follows: a system has a set of absti@sisthat each are imple-
mented as a sequence aifbtaskglistributed over several servers. The allo-
cation of subtasks to servers is derived from requiremertdis as periodicity,
deadline, etc. Thus, eafiib of a task is a sequence of interactions veitibjobs
on several servers.

Jensen imposes restrictions on how selections are used imdkdel — no
selections are allowed within the subtasks, they can ontyioat the start of
the job or after a message from another subtask has beenggcdnother
restriction is an assumption of normal distributed subtsécution times —
in real implementations, services (subtasks) often haweptex distributions

2.2 Model Validation 21

consisting of several “peaks”, corresponding to selestibatween different
behaviors.

2.2 Model Validation

When constructing a model of the behavior of a software aysteodel val-
idation is necessary in order to assure that the model aetyidescribes the
system at an appropriate level of abstraction. By validgtiite model, the an-
alyst and system experts gain enough confidence in the modediér to trust
its predictions.

However, the validation of a model is far from trivial, singemodel is an
abstraction of the real system. The validity of models haenbstudied in the
simulation community. In [LMO01], model validation is defthas 'the process
of determining whether a simulation model is an accurateasgntation of the
system, for the particular objectives of the studiheir paper targets valida-
tion of models in general, e.g. describing a physical prec@se of the authors
of [LMO01] has authored a book on simulation studies, “Sintinla, Modeling
and Analysis” [LK93], where one chapter covers model vdlaa The book
presents two statistical methods for comparing a modelthiltorresponding
real system:

e Inspection approach: to compute one or more statistics ttenreal
world observation and the corresponding statistics fraamtlodel output
data, and then compare the two sets of statistics withoutisieeof a
formal statistical procedure.

e Confidence-interval approach: a more reliable but also memneanding
method. Several independent observations are made ofdhsy/stem as
well as of the corresponding model. From each observateaterage
value is calculated for the property that is to be comparéids fiesult in
two sets of average values where each value represents arvatien,
one set of values from the model and one set of values fromethle r
system. These two sets of average values are compared anfideoce
interval can be constructed using statistical methodss Thinfidence
interval reveals if the difference is statistically sigo#it, and also gives
an indication of how close the model is to the system, in thaidigular
aspect.

In [Bal90] guidelines are provided for conducting succeksfmulation

22 Chapter 2. Temporal Behavior Modeling and Analysis

studies. The paper presents a life cycle for a simulatiodystcontaining 10
processes (phases):

e problem formulation,

e investigation of solution techniques,
e system investigation,

e model formulation,

e model representation,

e programming,

e design of experiments,

e experimentation,

e redefinition, and finally,

e presentation of simulation results.

Associated with these processes are 13 credibility asssdsstages, in-
cluding model validation. According to [Bal90] there aresizally two main
techniques for model validatiorsubjective validation techniquesid statisti-
cal validation techniquesThe paper presents a summary of common subjec-
tive validation techniques, of which the most interesting a

e Face Validation: This is a useful preliminary approach.t&ysexperts
are allowed to study the model and subjectively compare ibeetrwith
their knowledge of the system.

e Graphical Comparison: A subjective, but according to [B&i@nd the
authors experiences also a practical method, especialyluss a pre-
liminary approach. By presenting data based on the modedatadrom
the real system, graphically, patterns can easily be ffiedtand com-
pared.

e Predictive Validation: The model is driven with past (reafstem input
data and its predictions are compared with the correspgnudist system
output data. Obviously, this requires that there are measeints made
of the real systems input and corresponding output.

2.2 Model Validation 23

e Sensitivity Analysis: To systematically change values afdel input
variables and observing the effect on model behavior. Ueeteal ef-
fects may reveal flaws in the model. This is discussed in Gndpt

e Turing tests: System experts are shown two anonymous @jtpoe
from the model and one from the real system, generated fremtiichl
inputs. The experts are asked to identify which is whichhdftsucceed,
they are asked how they did it, and their feedback is used podve the
model.

The paper [Bal90] also lists 22 statistical techniques Wwihiave been pro-
posed for use in model validation, but the techniques aréestribed further.
Model validity from a general simulation point of view is alsliscussed in
[Sar99]. Different processes for validation of models agsatibed in the pa-
per; one process ladependent Verification and Validatidv&V. It states that
a third party reviewer should be used to increase the cordelgnthe model.
A scoring model is also described, where various aspect&eighted and a
total score can be calculated as a measure of validity fontbéel. This is,
as pointed out in the paper, dangerous since it appears rbf@etive than it
really is and may result in over-confidence in the model WglidThe author
describes a simplified version of the modeling process destin [Bal90],
consisting of thé’roblem Entity(the system), £&onceptual Mode(the under-
standing of the system), andCamputerized Moddthe implementation of the
Conceptual Model). Furthermore, Conceptual Model validitdefined as the
relationship between the Problem Entity and the Conceploalel, i.e. if the
person constructing the model had a correct understandithg cystem. Op-
erational Validity is the relationship between the Compa&zl Model and the
Problem Entity, i.e. if the Computerized model was corseictiplemented.

In [LMO1] many aspects of the validity of models in genera discussed
and a seven-step approach for conducting a successfulationustudy is de-
scribed. This approach requires a high level of abstraciahcan be applied
on any domain. The steps are:

e problem formulation,

collecting data and construction of the conceptual model,

validation of the conceptual model,

programming the model,

validation of programmed model,

24 Chapter 2. Temporal Behavior Modeling and Analysis

e experiments and analysis, and

e presentation of results.

The paper stresses the importance of a definite problem fatim, com-
parisons between the model and the system, and the use tiviigrenalysis.

2.3 Real-Time Systems

A real-time systeris a system where correct behavior is not only dependent on
what results that are delivered, but also when they areateli; i.e. a computer
system that has demands on timeliness. Real-time systenétan connected

to machinery, i.e. sensors and actuators, controlling @iphlyprocess. The
demands on the timeliness, the temporal constraints, dn sggtems are de-
fined by the process that is controlled. The main problemaitiene system
research is to guarantee the timeliness.

Real-time systems are often composethsks processes, usually commu-
nicating with each other. Thesponse timef a task in a real-time system is
the latency from stimuli (input) to reaction (output). A k&sresponse time
is effected by both thexecution timeof the task, i.e. the CPU time required
to process the code of the task, as well as interference ftbar tasks in the
system with higher priority and blocking semaphores. Ifskts allowed to
execute without disturbances, the response time of thendlde equal to its
execution time.

A real-time system has deadlines, specifying the maximwspaese time
allowed. If a real-time system is unable to finish a task kefty deadline,
it is adeadline missThe deadline miss might be caused by a glabarload
situation i.e. that the currently active tasks in the system togettgurire more
CPU-time than available in order to finish before their cepending deadlines
i.e. the CPU utilization is above 100 %. The handling of ovad situations
is a major area within real-time research. A deadline misg Inoavever occur
in other situations, e.qg. if a deadlock situation occurstiask with a deadline,
the task can not be completed, even though the CPU may be idle.

Real-time systems are often divided into two categoriesdbas the sever-
ity of the consequences of a deadline-miss.sdt real-time systerallows
some occasional deadline-misses. An example is a telecstansy The sys-
tems temporal requirements do not need to be guaranteetitahes. It is
not a disaster if a phone call is disconnected in rare cirtantgs, as long as
it does not happen recurrently. Another example of a softtiee system is

2.3 Real-Time Systems 25

DVD player software on a PC, which must decompress a certaimber of
frames every second. The temporal requirements are indbsmore focused
on quality of service rather than 100% reliability. A softedVD-player can
tolerate small transient delays in the video processing;dbes not result in a
failure, only a minor disturbance in a reduced quality of tbsult, which the
user (viewer) might not even notice.

In ahard real-time systera single missed deadline is considered a failure.
If the system isafety-criticalit might result in injuries or catastrophic damage.
An example is modern all computer controlled “fly-by-wireéffdanes, such as
the Swedish fighter-jet JAS 39 “Gripen” or the Boeing 777. threw example
in a different domain is railway signaling system. For suafety-critical real-
time systems, there is a need to guarantee that the systémewdr violate its
temporal requirements.

A large area within real-time researchsisheduling theoryi.e. algorithms
for selecting the next task to execute in a multitaskingesyst The schedul-
ing algorithms can be divided into offline and online schedul When us-
ing online scheduling, the scheduling decisions are takeimgd runtime. An
offline-scheduled system makes no decisions regarding<émugon order of
the tasks during runtime, as a pre-calculated scheduleed. uslowever, in
such systems it is not possible to create new tasks in rurginee adding of
new tasks to the system requires reconstructing the soheduhore flexible
scheduling policy is online scheduling. In this case, neeskle exists, but the
operating system makes all the scheduling decisions dwimgme.

A very common algorithm for online scheduling is FPS (Fixaibfty
Scheduling). Each task has a priority, which is used by theratmg system
to select the next task to execute if there is more than otkeréagly. Many
commercial real-time operating systems, such as VxWortm ftVindRiver
[WRW], usespreemptivdixed priority scheduling, i.e. the executing task may
be preempted by other tasks with higher priority, at any time

The EDF algorithm, Earliest Deadline First, is another camnonline
scheduling algorithm. EDF always selects the task withtldase left until
deadline, i.e. the task with earliest deadline. EDF guaesithat all deadlines
are met if the CPU-utilization (U) is less than 100 %. In anrtesd situa-
tion (U > 100%) it is not possible to finish all tasks before their cepanding
deadlines. EDF is not a good algorithm in overload-situeti&ince it does not
do anything to lower the CPU-utilization, i.e. reject task$ends to let every
task miss their deadline. EDF can however be combined witbratcheduling
algorithms, such as overload handling or aperiodic serggrighms such as
Total Bandwidth Server [SB94] or Constant Bandwidth Sep&e98].

26 Chapter 2. Temporal Behavior Modeling and Analysis

2.3.1 Analytical Response-Time Analysis

There are a variety of analytical methods for schedulghditalysis, i.e. to
determine if a real-time system is schedulable with respethe deadlines
of its tasks. In this section, we present the seminal resuittsn scheduling
theory and the analytical response-time analysis methamsnly known as
RTA. One of the most well known results in the real-time comityis the one
by Liu and Layland from 1973 [LL73], where they introducedefikpriority
scheduling which is widely used today in many real-time afing systems.
They showed that a system with strictly periodic and indejean tasks that
is scheduled using fixed priority scheduling is alwaghedulablei.e. will
meet its deadlines, if the total CPU utilization (U) is belawertain value, the
Liu-Layland boundand the tasks have been assigned priorities according to
therate monotonigolicy. Rate monotonic is a policy for assigning priorities
to the tasks based on their rate, i.e. period time, whereatslewith highest
rate receives the highest priority; the task with secontiéggrate received the
second highest priority, and so on.

The value of the Liu-Layland bound is dependent on the nurobtasks
in the system, but for a large number of tasks, the value isceqapately 69 %.
For systems containing only tasks with harmonic periodshitund is 100 %.

Another important result is thexact Analysi$MJ86] presented by Joseph
and Pandya in 1986. It is a method for calculating the worse gasponse-
times of periodic independent tasks with deadlines lessjpaldo the periods,
scheduled using fixed priority scheduling. It is an iteratimethod that from
a set of tasks calculates the worst case response time fortasic i.e. the
response time of the tasks in the situation when all taskseady to execute
at the same time, the crititical instant, and executes vhiir tworst-case ex-
ecution time. The method has later been extended to hargllsemaphores
[But97], deadlines longer than the periods [Leh90], véoia in the task peri-
odicity (release jitter) [Tin92, ABRT93] and distributegstems [TC94]. This
family of methods for response time analysis is commonlykmas RTA.

2.3.2 Simulation based Analysis

Another method for analysis of response times of softwastesys, but also
of other properties, is the use of a simulation frameworkingsimulation,
rich modeling languages can be used to construct very tieati@dels. Often
ordinary programming languages, such as C, are used in ocaiidoi with a
special simulation library. This is the case for both the BSTSL96] and Vir-

2.3 Real-Time Systems 27

tualTime [RSW] simulation frameworks, described beloweTlth modeling
languages allow modeling of the semantic dependencieskettasks in the
system, e.g. communication, synchronization and shasde gariables. This
makes the model more accurate and also easier to analyze tsindependen-
cies reduces the number of possible execution scenariosul&ion models
may also be non-deterministic, for instance using probigalistributions. A
simulation model of a real-time system may use probabiliggridutions to
describe e.g. execution times of tasks with high realism.

A large problem with simulation is the lower confidence in thesult, in
comparison to other analysis methods. An analysis of a muakedd on (ran-
dom) simulation is not exhaustive; instead a simulator oanlgt executes the
model and only explores a minor and random subset of thelgessiecution
scenarios. Even though it is possible to perform a large atnafisimulations
of a certain scenario in a short time, the number of possi#eion scenar-
ios, i.e. the state space, is often too large for an exhauatialysis, especially
if the model uses probability distributions or other sograEnon-determinism.
On the other hand, simulation allows for an analysis, evengh not exhaus-
tive, in situations where other analysis methods fail.

STRESS Atool-suite called STRESS is presented in [ABRW94]. The §88
environment is a collection of tools for “analyzing and slating behavior
of hard real-time safety-critical applications”. STRES&tains a special-
purpose modeling language where the behavior of the taskseimodeled
system can be described. It is also possible to define digasifor resource
sharing and task scheduling. STRESS is intended as a totddting various
scheduling and resource management algorithms. It carbelssed to study
the general behavior of applications, since it is a langttzsed simulator.

DRTSS The DRTSS simulation framework, presented in [SL96], afiots
users to easily construct discrete-event simulators oftexnmulti-paradigm,
distributed real-time systems. Preliminary, high-lewedtem designs can be
entered into DRTSS to gain initial insight into the timingadbility of the
system. Later, detailed hierarchical designs can be etuend more de-
tailed analysis can be undertaken. DRTSS is a member of tiRT Eam-
ily of timing-oriented prototyping and verification tool$t complements the
PERTS schedulability analyzer tool by dealing with compksd-time systems
for which analytical schedulability analysis is difficultisnpossible.

28 Chapter 2. Temporal Behavior Modeling and Analysis

VirtualTime A very recent commercial simulation framework is Virtual-
Time [RSW]. It is suitable for analysis of the temporal bebawf complex
systems, typically soft real-time systems. The simulaframework allows
detailed models including process interactions, schedulnessage passing,
queue behavior and dynamic priority changes. Accordinféocompany be-
hind VirtualTime, Rapita Systems ltd, there are few limdas to the models
that can be produced using VirtualTime. However, this sotuis primarily
targeting telecom systems and as far as we know only avaifabthe systems
based on the OSE operating system [OSE], from ENEA [ENE]. itR&ys-
tems is a spin-off company from the Real-Time Systems Reké&aroup at the
University of York, UK.

2.3.3 Execution Time Analysis

When modeling a real-time system for analysis of timing teelgproperties,
the model needs to contain timing information, e.g. executimes. A com-
mon method in industry, and the approach of this thesis, @btain timing
information by performing measurements of the real systerit ia executed
under realistic conditions. The major problem with this mygeh is that we
are unable to determine if the worst case execution time (W®&s been ob-
served. If the model is populated with execution time daienfmeasurements,
we risk a too optimistic model, as the real system sometinightrhave longer
execution times than our model specifies.

Measuring is however not the only approach to obtain exeouiimes.
WCET analysis is a well studied area in program analysis aatitrme sys-
tems research. Static WCET analysis tools compute a safdight, upper
bound for the execution time of a program on a specific hardw@n hard-
ware platforms with rather simple CPUs, such as 8 bit micnt@dlers, the
WCET can be accurately calculated, but on more complex henelarchitec-
tures, with cache memory, pipelines, branch predictiotetand out-of-order
execution, estimating a tight but safe WCET is very difficdlte to the com-
plex behavior of the hardware. The WCET analysis tool canpnedict ev-
ery possible behavior of the hardware and is therefore ébtcemake some
worst case assumptions in order to report a safe WCET egtirbate to these
assumptions the estimated WCET becomes pessimistic. Alatic WCET
analysis is dependent on a timing model of the hardware,wisia threat to
model validity as the real hardware might, in some situajdrave a different
temporal behavior than the timing model specifies.

An interesting approach is that of Bernat et al [BCP03, BGPQtheir

2.4 Model checking 29

solution, probabilistic WCET, combines the strengths afistWCET analysis
and measuring of the real system. The pWCET approach bigsicahsures
the execution times of the individual basic blocks in thegpam and use the
worst cases observed locally in a static analysis, basex tiygoobject code.

This approach is not dependent on a model of the hardware,the case
with static WCET analysis; instead the approach relies erettecution time
measurements. The dependence on a hardware timing modeiagoa crit-
icism against the static approach, as it is an abstractidheofeal hardware
behavior and might not describe all effects of the real harédwOn the other
hand, this is a probabilistic approach, based on measutenam may there-
fore be optimistic in some cases by reporting too low worsiecaxecution
time.

2.4 Model checking

Model checking is a method for verifying that a (model of agteyn meets its
requirements, and has been proposed as a method for softeriieation, in-
cluding verification of timeliness properties for real-&rsystems. The method
is commonly used to verify hardware designs, communicgtfotocols etc. In
recent years model checkers for software have been dewktopmkproposed
as complementary method to testing, code inspections dis SEction will
describe the basic concepts of model checking and tempmgads, a com-
monly used model checker as well as two model checkers edlydairgeting
real-time systems.

2.4.1 Basic Concepts

By describing the behavior of a system in a model, where alktocts have
formally defined semantics, it is possible to automaticedlyify properties of
the system using a model checking tool. The model is destiiba modeling
language, the input language of the tool, often a varianh@tfistate automata.
A system is often modeled using a network of automata, wieratitomatons
are connected by synchronization channels. When the mbéeking tool is
to analyze the model, it performsparallel-compositionresulting in a single,
much larger automaton, describing the behavior of the cetaglystem.

The properties that are to be checked are usually specifiadeémporal
logic, such as CTL [CE82] or LTL [Pnu77]. Temporal logicsoalls specifica-
tion of safety properties, i.e. "something (bad) will nekappen”, and liveness

30 Chapter 2. Temporal Behavior Modeling and Analysis

properties, i.e. "something (good) must eventually happan example of a
safety property in CTL is as follows:

AG not (A and B)

The formula states that A and B may never be true at the saneg tising
the temporal operator AG (“always”). CTL contains seveemhporal opera-
tors, apart from AG, and is presented further in Sectior32.4.

The benefits and problems of model checking have been detesten-
sively in several works, e.g. [Kat98]. Model checking is agel approach,
as it can be applied to many domains such as hardware vedficabftware
engineering, communication protocols and embedded sgst&tadel check-
ing has been shown to be usable in industrial settings foirfinsubtle errors
that are hard to find using other methods and according t®p{atase studies
have shown that the use of model checking does not delay gigrdprocess
more than using simulation and testing. Also, model chegkérbased on a
sound mathematical foundation, including e.g. modeliegnantics, concur-
rency theory, logic and automata theory.

There are also problems associated with model checking.oDife most
well-known problems is commonly known as the state-spapéosion prob-
lem. When modeling a non-trivial system, the number of stat¢he complete
behavior of the system, the state space, easily becomesavgey This as the
state space grows exponentially with the number of panaitetesses. This is
a serious problem, as model checking tools needs to seadtate space ex-
haustively in order to verify or falsify the property to clikedf the state space
becomes too large, it is not possible to perform this seatab,to memory
or run time constraints. Model checking is appropriate fontool-intensive
applications, such as communication protocols, but it $s leuited for data-
intensive applications, as the treatment of data usuadlgiddo infinite state
spaces. Another problem when using model checking, or amyeiruased
method, is model validity. As the tool do not verify the systéut a model of
the system, itis very important that this model is an aceudascription of the
system, otherwise the analysis results are not trustworthy

2.4.2 The model checker SPIN

SPIN is a well established tool for model checking and siteof software
[Hol97]. SPIN supports simulation (random, guided andritéve) and model
checking of formulas in the temporal logic LTL [Pnu77]. Acding to [SPI]

2.4 Model checking 31

SPIN is designed to scale well and can perform exhaustivBozgion of very

large state-space models. The modeling language of SPIallexidPromela,
“PROcess MEta Language”. Promela is a guarded commanddgeguith a
syntax similar to the programming language C. SPIN is opriree and avail-
able for most platforms, including Linux, Windows and Maor Rurther infor-

mation about SPIN, there is a book [Hol03] by Holzmann canitey tutorials
on using SPIN and Promela, as well as reference material.

Promela A Promela model consists roughly of a set of sequential pses
local and global variables and communication channels.hEaocess is a
sequence of statements, where each statement may be epalleshbled.
A disabled statement blocks the execution of the proceskthatstatement
becomes enabled.

Promela support non-deterministic selection. The ifestagnt allows sev-
eral alternative behaviors to be specified. Each behavigr Imaassociated
with aguard a condition, just like in e.g. C, but if several guards arel#ed,
i.e. true, only one is selected, in a non-deterministic wAg. an example,
consider the following:

if 2 (a $>%$ 10) -$>$ smtA;
i (true) -$>$ smtB;
i (true) -$>$ smtC;

fi;

The two last statements are always enabled (true) and magfdne be
executed, but the first has a guard allowing execution onlgrnwta” is more
then 10. Promela also supports loops, using the do-stateitmensyntax is
similar to if.

i = 1;

do :: i <= 10 -> looping;
21> 10 -> break;

od;

Promela processes may communicate using communicatiomelza A
channel is a fixed size FIFO buffer. The size of the buffer ma@hin such a
case it is a synchronization operation, requiring that #r@lsand receive oper-
ation occurs simultaneously. If the buffer size is 1 or mtire,communication
becomes asynchronous, as a send operation may occur eugh the receiver
is not ready to receive. To declare and use channels is vexigist-forward.

32 Chapter 2. Temporal Behavior Modeling and Analysis

A send-operation is expressed using a “!” together with tienoel name and
data. A receive-operation is similar, using “?": The foliog example demon-
strates how to declare a channel and use it for communication

chan chn = [4] of byte; /* four slots */
chn ! 42 /* send data “42” to chn */

chn ? foo /* receive from chn */

A process may be instantiated and invoked dynamically aodgases may
be executed in parallel. For instance, consider the foligueixample, a simple
but complete Promela model:

proctype prc(byte ident)

{
printf("%d\n" ident);
}
init{
atomic{
run prc(l);
run prec(2);
}
}

The init-section specifies the entry point, similar to “niaiim most pro-
gramming languages. The atomic-statement allows the twogsses start at
the same time. The observant reader might notice that tmfistatements
have the same syntax as in C.

LTL To specify the properties of the model to check, linear teraplogic
(LTL) is used. LTL is classic propositional logic, extendeith temporal oper-
ators. Using LTL for program verification was first proposedrnu77]. The
LTL operators that are supported by SPIN are:

[- always

<> - eventually

I - logical negation
U - strong until

2.4 Model checking 33

&& - logical and
|| - logical or
-> - implication
<-> - equivalence

As an example, the following LTL formula specifies that thgit@l propo-
sition p should remain true at least until g becomes true:

P U a)

2.4.3 Model checking Real-time Systems

Model checkers such as SPIN do not have a notion of time, amthesiefore
not analyze requirements on timeliness, e.g. “if X, then Ystraccur within

10 ms”. There are however tools for model checking of reaktisystems.
The most well-known are UppAal, first proposed in [BL25] and further de-
scribed in e.g. [DY00, BDL04, UPP] and KRONOS [BDMS8, DY 95, KRO],

both described later in this section. These tools analyzaetsalescribed in
timed automataising variants of the temporal logic CTL.

Timed Automata Timed automata were first proposed by Alur and Dill in
[AD94]. They basically extended regular finite automatdwétal-valued clocks.
A timed automaton may contain an arbitrary number of clogksch run at
the same rate. There are extensions of timed automata wWloekes can have
different rates [DY95]. The clocks may be reset to zero, fradelently of each
other, and used in conditions on state transitions and steeiants. A sim-
ple yet illustrative example is presented in Figure 2.1,chivas generated in
UppAal.

A

Figure 2.1: A small example of (UppAal) timed automata

34 Chapter 2. Temporal Behavior Modeling and Analysis

The modeled system in Figure 2.1 changes state from A to Beifiefe,”
occurs twice within 2 time units. There is a clock’,"which is reset after an

initial occurrence of eventd”. If the clock reaches 2 time units before any

additional event ¢” arrives, the invariant on the middle state forces a state
transition back to the initial state A.

CTL Both the UppAal and KRONOS model checkers uses variants &f CT
Computation Tree Logic [CE82]. CTL is a branching-time temg logic,
meaning that in each moment there may be several possihle&lin contrast
to LTL. Therefore, CTL allows for expressing possibilityoperties such asr
the future, X may be triewhich is not possible in LTL. On the other hand,
CTL can not express fairness properties, such as “if A iscaleel to run, it
will eventually run”. Neither of these logics fully include¢he other, but there
are extensions of CTL, such as CTL* [EH84], which subsumé& thdt and
CTL.

A CTL formula consists of a state formula and a path formulhe $tate
formulae describe properties of individual states, whepedh formulae quan-
tify over paths, i.e. potential executions of the model. path formulae may
be nested, allowing more complex expressions. Apart fradimary proposi-
tional logic, CTL contains four temporal operators:

X - for some time next
- for some path
- for all paths
- until

cr>mm

Based on the four temporal operators and the propositiogéd,lit is pos-
sible to derive an additional five very usable, temporal afmes:

EF - possible

AF - inevitable

EG - potentially always
AG - always

AX - next

UppAal Thetool UppAal [BLL"95, DY00, BDL04, UPP]is based on Timed
Automata and a subset of CTL. UppAal is an integrated toolrenment for
the modeling, simulation and verification of real-time gyss. This tool has
been developed jointly by Basic Research in Computer SeietcAalborg

2.4 Model checking 35

University, Denmark, and the Department of Computer SystatmUppsala
University in Sweden.

UppAal is described as “appropriate for systems that can deeted as a
collection of non-deterministic processes with finite ecohstructure and real-
valued clocks, communicating through channels or shargdhias.” In prac-
tice, typical application areas include real-time conéns and communication
protocols where timing aspects are critical. The tool was firoposed in the
mid 90’s and after almost ten years of development it has eawhed version
3.4. The tool is available for many platforms including Wimes and Linux,
and can be downloaded without charge from the UppAal weBSke].

UppAal extends Timed Automata with support for e.g. autamaem-
plates, bounded integer variables, arrays, and differariants of restricted
synchronization channels and locations. The query languagd is a simpli-
fied version of CTL, where nested path formulae are not aklbwighe subset
of CTL allows reachability properties, safety propertiesl diveness proper-
ties. Timeliness properties are expressed as conditiorm$ooks and state in
the state formula part of the CTL formulae.

KRONOS Another well-known model checker for real-time system i®Kr
nos [BDM*98, DY95, KRO] which has been developed at Verimag in France.
Like UppAal it is based on Timed Automata but uses a more piulvguery
language, Timed Computation Tree Logic (TCTL). Timed Cotafian Tree
Logic was proposed in [ACD93], where they extended CTL wittagtitative
time for the purpose of specifying timeliness properties, liveness proper-
ties with a deadline. Kronos also allows for checking safetperties as well
as both forward and backward reachability. Further, Krocens also check
models and properties expressed in other, less common liemsa The tool
is available for several platforms, including Windows aridux, and can be
downloaded without charge at the Kronos website [KRO].

36 Chapter 2. Temporal Behavior Modeling and Analysis

2.5 Discussion

This section discusses the works presented in this chajitterespect to the
approach of this thesis, outlined in Section 1.1. This dis@n is divided into
Section 2.5.1, that discuss the works related to modelidgraodel validation,
and Section 2.5.2 that discuss the different methods &laifar analysis of
temporal behavior models.

2.5.1 Modeling

Existing work related to modeling the behavior of softwarstems can be di-
vided into two categories, approaches using dynamic aisdlydv03, SK98,
YGSt04, Jen98] and static analysis approaches [BR01, HIMSO08{ @D,
HS99]. The works based on static analysis are in general matere than the
dynamic approaches that have been found, but they do netsepira sufficient
solution for real-time systems as they do not model the teaifp@havior, e.g.
execution times. Information about execution times is ssagy in order to
model and analyze the timing of a system. Static analysisiqoes can con-
tribute when constructing models for behavior impact asialybut they can
probably not replace dynamic analysis.

Much research has been done in the estimation of a programss ease
execution time (WCET), but the author has not found any wad®bining
static analysis model extraction with WCET analysis. Fentlthe approach
of this thesis, simulation-based analysis, also requéeakstic execution-time
distributions representing typical execution of the systeHowever, WCET
estimations may be used in a temporal behavior model to cammait the ex-
ecution time distributions that are obtained from measergm

Dynamic analysis can provide the realistic execution tinsgrithutions re-
quired, but unfortunately not without problems. Dynamialgsis implies to
observe and record the behavior of a software system, whighines adding
monitoring functionality to the system, which may reduce fiystem perfor-
mance. Also, a dynamic analysis only models the behavidrths been ob-
served. Therefore, the confidence of the resulting modabisiyrdependent
on the test-cases executed when monitoring the system. biséems with
dynamic analysis are discussed in depth in Chapter 3.

To assure that a model correctly describes the intendedrayshe model
needs to be validated. Works exist regarding validation ofles, but mainly
in the simulation community, while the model checking conmityiseems to
take model validity for granted. In many cases, model chexchkee used to

2.5 Discussion 37

verify a specification of a system that has not yet been imefged. In such
a case, this assumption might be valid; the question is indase if the im-

plementation conforms to the specifications. However,éfitiodel describes
an existing system and is the result of a major reverse-eegimg effort, the

model validity can not be assumed.

The results found in the simulation community include twamwasses of
model validation techniques, subjective techniques {ingpection) and those
based on statistics. Both can be used to validate modelsiagproach. Chap-
ter 5 describes a process for model validation includintisttzal techniques
adapted for the temporal behavior models of our apporach.

2.5.2 Analysis

There exist many analytical methods in research literdtureesponse times
analysis, i.e. RTA [ABD 95, LL73, MJ86]. However, these analytical models
used by RTA are not expressive enough in order to capture ehavior of
large and complex systems. RTA does not consider the behaivibe tasks,
only their individual worst-case execution time. The réstfisuch an analysis
may therefore be very pessimistic, as tasks may have lamgtivas in the
execution time and the theoretical worst case situatien tihat all tasks wish
to execute at the same time, and all with the individual woeste execution
time, may not even be possible in the real system due to depeias between
the temporal behaviors of the tasks. The worst case exectites of two
tasks may be mutually exclusive, e.g. if they are associateifferent states
of the same shared state variable.

Moreover, RTA targets timeliness properties only, i.e. thie or not any
deadlines are violated. In many real systems the tempagalnements are not
specified in terms of deadlines, but may be specified as svisron the func-
tional behavior. In some situations, it may be possibe tivdéask deadlines
from such requirements, but in other cases that is hard. &aypxample is
a FIFO data buffer, shared between two tasks, one “consuamel’dne “pro-
ducer”. The invariant is that the buffer must never be emgigmthe consumer
attempts to read. This requirementis formulated in ternte®functional be-
havior but highly dependent on the temporal behavior ofwetasks involved.
Such requirements can not easily be verified by using the¢iegimethods for
response-time analysis. Even though fixed priority schiadus a common
scheduling algorithm in complex embedded systems, RTA neaprbblem-
atic to apply since many systems are not designed to alloWzatzlity. They
might contain aperiodic tasks scheduled with a fixed pripait tasks that alter

38 Chapter 2. Temporal Behavior Modeling and Analysis

their priority.

On the other extreme are model-checking methods with rictiatimg lan-
guages such as timed automata [AD94, BDL04]. Timed automlbders for
the modeling of temporal behavior as well as functional bidra By using
synchronization channels we can model dependencies betasls in a sys-
tem. However, model-checking does not scale properly gelasystems due
to the state-space explosion which makes such an approaghchapply on
complex embedded systems. Simulation is better from that pbview. Us-
ing simulation, rich modeling languages can be used to oactstery realistic
models, using e.g. realistic distributions of executiong$. A disadvantage
of the simulation approach is that we can not be confident @firftnthe worst
possible temporal behavior through simulation, since tagesspace is only
partially explored.

In the work preceeding this thesis we have chosen to focughmuiation,
as we basically have one major trade-off to consider: beblg to predict
something at the cost of precision. Even though a simulagioiot an exhaus-
tive analysis and thus might fail to analyze the worst caseson, it may still
point out potential problems and assist the developers kinmgahe right deci-
sions, while analytical methods are often not applicableractice, either due
to a too simple model or to the state space explosion problem.

Even if an exhaustive, “safe”, analysis would be applicable analysis re-
sults are not necessarily "safe”, as the trustworthinetisadinalysis results de-
pends on the model used for the analysis. Thus, regardlessmbfsis method,
there are always uncertainties due to the problems asedaidth modeling
and validation of models, especially when considering riindef large com-
plex software systems. This thesis is therefore focusedaneting and model
validation rather than analysis methods.

Chapter 3

Dynamic Analysis

This chapter presents how dynamic analysis can be used towm@analyz-
ability of complex embedded systems. The term dynamic aisabaptures a
broad spectrum of program analyses that deal with data peatloy programs
during runtime. This chapter presents how dynamic analyaisbe used in
order to analyze and visualize the temporal behavior of ¢exnpmbedded
systems.

Our approach to modeling the temporal behavior of a systetepgndent
on the use of dynamic analysis, as the construction of theetmeduires quan-
titative information on the temporal behavior of the systeoch as task inter-
arrival times, task execution times and task response tifibis information
may be obtained through dynamic analysis, i.e. by recortliegelevant in-
formation from the system at runtime, and analyzing the ned data offline.
The result of the recording is axecution tracevhich is a list of time-stamped
events that describe the system behavior during a periathef Typical events
that are registered are task-switches, inter-process cmmcation (IPC), and
changes of important state variables.

Execution traces are also useful for purposes other tharlingd By visu-
alizing the content of an execution trace, the system behaeicomes directly
observable and tangible, which facilitates debugging asdadl system under-
standing. Recorded execution traces may also be used tcazetting temporal
behavior of the latest release of the system with previolesases, which al-
lows system developers to study how recent maintenance @&y dffected
the system with respect to its temporal behavior, e.g. msptimes and the
use of limited logical resources. This use of dynamic ansligsreferred to as

39

40 Chapter 3. Dynamic Analysis

regression analysjsanalogous to regression testing. Regression analysis can
identify recent negative effects on specific propertieheftemporal behavior,
which may be due to e.g. sub-optimal implementation of neatuiees. More-
over, regression analysis can also be used to identify $rasdvell as potential
problems, such as when the response time of a task is apjfmgacteadline,

or when the utilization of a logical resource is approachimgmaximum al-
lowed utilization. By identifying such problems at an eastage, developers
may take preventive actions in order to minimize the riskesfaus problems

in future versions of the system.

The remainder of this chapter is divided into four sectiohfodlows: Sec-
tion 3.1 presents three ways in which dynamic analysis cansee in this
context, system understanding, modeling and regressialysis. Section 3.2
discusses the recording complex embedded system'’s of tahipghavior, the
problems associated with recording, what properties thaf interest as well
as the effects on system performance associated with liagastithese prop-
erties. Moreover, the section presents the design andrpeafece of an im-
plemented behavior recorder that has been integrated imales embedded
system. Section 3.3 discusses analysis and comparisonafel execution
traces and presents the implementation of the probabifistiperty language
proposed in earlier work [WANO3b]. Moreover, a set of tooéveloped for
analysis and visualization of recorded execution tracgsdsented. Finally,
Section 3.4 concludes this chapter with a discussion on heset contribu-
tions relate to the thesis research questions stated iro8dcp.

3.1 Uses of Dynamic Analysis

Dynamic analysis is an established general technique whip be used to
study many different aspects of a system by performing déogs during run-
time, e.g. dynamic memory allocation, function calls, inipts, cache behav-
ior, etc. In this thesis, dynamic analysis is used to stuéyémporal behavior
of tasks, e.g. task execution times, task response timesaskdnter-arrival
times, and properties dependent on the temporal behawuir,as the usage of
limited logical resources. The rest of this section presémee different uses
of dynamic analysis in the context of complex embedded systéeemporal
behavior.

3.1 Uses of Dynamic Analysis 41

3.1.1 System Understanding

One factor contributing to the complexity of software deyghent and main-
tenance for complex embedded system, is that the tempohalvime of the
system is not tangible. The temporal behavior, i.e. the alobdering and
timing of events in the system, can not be understood by anigying the
implementation, as the temporal behavior is dependent®exhcution time
of the code in the system’s tasks and of the stimuli from tretesy’s environ-
ment. The execution times depends on the hardware used, andary from
time to time due to the many factors involved, e.g. data dépecies (param-
eter, state) and complex, seemingly non-deterministiciaare such as cache
memories. By presenting a recording of the system grapghi¢hé temporal
behavior is visualized over a time-line, which allows fottbe understanding
for software developers of the complex behavior of theiteys This view of
the system behavior is highly useful while debugging, dasigynew features
or changing the software architecture in other ways. Itss &lighly useful for
educational purposes when new developers are introdudhkd &ystem.

3.1.2 Modeling System Behavior

The approach for behavior impact analysis discussed indettl depends
on a model containing quantitative information regardimg $ystem’s tempo-
ral behavior, i.e. execution times and inter-arrival tineégasks, and prob-
abilities of events that are modeled in a probabilistic neanifo obtain this
information from sources other than dynamic analysis iadilt. Even though
execution time analysis of the tasks is possible, the reduols are in general
not mature. Furthermore, such tools typically focus on iifiging the worst
case execution time, while the model necessary for beteiiopact analysis
requires the description of the typical distributions af.eexecution times for
a task. The behavior impact analysis is described in depHeation 4.1.

3.1.3 Regression Analysis

Dynamic analysis can be integrated in the software devedmprprocess in
order to monitor the effects of the software evolution on amtant properties
of the system’s temporal behavior, such as response times. r€gular basis,
an analysis is performed on the latest version of the systehiree results are
compared with previous results, i.e. analysis results fpoavious versions of
the system. This allows system developers to study how tetemges have

42 Chapter 3. Dynamic Analysis

effected the system with respect to a set of important ptgssof the system’s
temporal behavior, such as response times and resouroe. Wsagefer to this
use of dynamic analysis as regression analysis.

Regression analysis can point out sub-optimal implemiemtathat are re-
flected in the system properties under observation. If sogbacts can be
captured automatically, future problems related to thepta behavior can
be avoided. Moreover, regression analysis can identifgrgally dangerous
trends in system properties, e.g. if the utilization of a lyemtroduced logi-
cal resource gradually increases as more and more comsaofdiie system
begin using it. Such trends may cause problems in futurasek but if dis-
covered, the appropriate actions may be taken early, befooes occur, e.g.
by increasing the amount of resources available (if poskitn by decreasing
the use of the resource.

In order to introduce regression analysis for a complex etded system,
there is an initial effort of specifying the properties ofdrest and implement-
ing the necessary code instrumentation. Moreover, thesysetup and test
cases executed when measuring the system should be specdiddcument,
in order to allow system measurements to be reliably repredu After this
initial work, performing a regression analysis is strafghward and can be
performed as one out of many test-cases by a system tesherutvitequiring
deeper system understanding or programming knowledgesiMieaents are
made according to the documented test cases. This reselkgdution traces,
which are analyzed and compared with earlier releases asimghly auto-
mated analysis tool. Based on the comparison rules, thedemtles if there
are alarming differences and informs the user of the outcome

We are working in cooperation with system architects anceligers at
ABB Robotics with the introduction of regression analysiffieir development
process. The recorder has been integrated into their ramtat system and
is activated by default which allows engineers at the compamperform the
recordings necessary for regression analysis with a miréffart. Currently,
a small group of experienced engineers are gradually intiog regression
analysis in one of the subsystems.

3.2 Recording — What, How and Costs

When using dynamic analysis for recording the temporal biehaf tasks in a
complex embedded system, it is important to note that eathittaa complex
embedded system typically consists of a collectiose¥ices These services

3.2 Recording — What, How and Costs 43

may exhibit very different temporal behaviors. Below is aiaraple of a C
implementation of a task with several services. The maitimewof the task
contains an infinite loop that receives messages from adskstand depending
on the content of the message, different services are treuesd. Tasks may
also have a behavior which is executed when the task has ba&ingvfor
messages for a certain amount of time. The timeout behaaiobe considered
a time-triggered service.

void taskX()
{

int status;
int timeout;
MSG msg;
init();
while(forever)
status = ipc_receive(&msg, timeout);

if (status == TIMEOUT)

timeout_behavior();

}

else
switch(msg.command)

case COMMANDI: servicel(...);
break;

case COMMAND?2: service2(...);
break;

case COMMANDS3: service3(...);
break;

}
if (msg.answer_requested == TRUE)

ipc_send(msg.sender, answer);

}

When recording the temporal behavior of a system where ties teon-
sist of multiple services, it is not sufficient to only recosdhich tasks that
are executed. In order to allow analysis of the temporal Wiehaf individ-
ual services, it is necessary to record the service thatdswtgd in each task
execution.

It is also important to note that temporal requirements ofipglex embed-
ded systems are not always expressed as limits on task saspiome, they

44 Chapter 3. Dynamic Analysis

may also be expressed as limits end-to-end response time#n end-to-

end response time is a more general term which representsitédetween
two defined events in the systemstart-eventand astop-eventTypically, an

end-to-end response time represents the sequential exeobia set of related
tasks.

Another interesting property is the utilization of limitémbical resources,
e.g. a fixed size FIFO queue. The utilization of such logieaburces varies
over time as a result of the execution of certain tasks arntigfore dependent
on the tasks temporal behavior, e.g. inter-arrival timescommon property
of interest is if the utilization of a specific logical resoaris above or below a
certain limit, i.e. starvation. Based on these propertfemplex embedded
systems, the properties of interest can be grouped inte ttakegories:

e Execution and Response tim&#is category includes properties related
to the execution time and response time of tasks and speeifiicss,
as well as properties related to end-to-end response time.category
also includes properties describing how execution ancbresptimes are
effected by important state variables.

e Resource usagdlroperties in this category describe the system’s usage
of specific limited resources, logical or physical (e.g. Cite), and
how the utilization varies over time. Typical properties anaximum,
minimum, and average utilization, but the category alstuihes proper-
ties describing the relationship between resource usatjharexecution
of tasks or specific services, e.g. the resource allocafigpecific ser-
vices. Resource usage also includes the CPU utilizationdi¥idual
tasks as well as the complete system. This information enafsed as a
rough measure of the temporal behavior of a system.

e Inter-arrival times and PatternsThis category includes inter- arrival
time distributions of specific events, such as activatiogpecific tasks
or services, or other important events such as state chafpescate-
gory also includes properties related to patterns in theatiin of tasks,
services, or occurrences of other events.

When recording for the purpose of modeling a system’s teaifx@havior,
properties from all three categories are relevant, butiféerént purposes. Ex-
ecution times and inter-arrival times are necessary asneas of the model,
while response times, resource usage and patterns aretpredy an analysis
of the model.

3.2 Recording — What, How and Costs 45

However, data regarding the properties predicted by theetnuekd to be
recorded from the real system as well, in order to allow \al@h of the con-
structed model. By comparing the predictions from the medéi the ob-
servations of the real system, it is possible to determitieeifmodel is valid.
Model validation is discussed in depth in Chapter 5.

This may cause confusion, why bother to construct a modelpanitbrm
an analysis when the properties can be measured directly e existing
system? The answer is in the purpose of the model, i.e. alpfar proto-
typing of new features, as discussed in Chapter 1. When tlsenghodel for
prototyping, there is no implementation that allows measents to be made.
However, by updating the model with an abstract prototypga@planned new
feature, it is possible to make predictions on the effectthensystem'’s tem-
poral behavior caused by an implementation of this featdreis is further
discussed in Chapter 4.

3.2.1 The Probe Effect

A problem with dynamic analysis of multi-tasking systemghiat the code
instrumentation necessary for recording, grebes may alter the temporal
behavior of the system, if the order of important events iangfed. This is
commonly known as thprobe effec{Sch91, MH89]. The probing proposed
in this chapter would increase both the task-switch ovettesawell as the
execution time of the tasks. Another impact is that by insirggthe time it
takes to perform a task-switch, the interrupt latency iseéased as well, as
interrupts are disabled during this time.

If an analysis is performed based on the runtime behaviorsystem that
has been instrumented with software probes, the analylieniy be valid as
long as the probes remain in the system. If the probes arevexirzefore re-
leasing the system, the released system will be differemt the system that
was analyzed. The differences are in most cases small aed o&gligible,
but there is always a risk of a probe effect. Even the smatleahge in tim-
ing, caused by e.g. by software probes, can potentially gadine order of
important events, which may lead to erroneous system betsavi

A common way of avoiding the probe effect is to let the prolmsain in
the released version of the system. This way, the releastensywill be iden-
tical to the system that has been studied in the analysistypies of systems
considered in this thesis usually have sufficient resoufC&J-time, mem-
ory) to allow for a reasonable amount of probing, which matkés solution
attractive.

46 Chapter 3. Dynamic Analysis

3.2.2 Relevant code instrumentation

In order to record information regarding the propertiesdbed in Section 3.2,
software probes of different types are necessary. In tlisosethese probes
will be described, including their purpose and their impatiCPU and mem-
ory.

Monitoring task execution By adding a single probe to the system that is
executed by the task-switch, a major part of the requireorimétion can be
derived, e.g. what tasks have been executed and when, athpt®ns points,
the execution times and response times of the tasks. Theusathe of adding
this single probe is significant, but the cost of adding thabpr i.e. CPU-time
and memory usage, might also be significant depending orvtrage rate of
the task-switch event. This probe is referred to addls&-switch probe

In the system that has been studied in this work, the robdralosystem
from ABB Robotics, task-switches occur rather frequentlith an average
rate of about 3 KHz. This is a rather high rate in comparisasthe@r events of
interest in the system. The task-switch probe is therefopemsive, but also
very valuable.

Monitoring activation of services For tasks that are of interest for more
detailed analysis, it is desired to know not only record #sktexecution, i.e.
what tasks that are executed and when, but also what sendcespecific
behavior, that is executed at each task instance. To reb@éhformation it

is necessary to add a probe to the dispatcher of the taskwhere the task
receives incoming messages and selects what service totexa&is probe is
referred to as thdispatcher probe Each time the task is activated, typically
by an incoming message, the dispatcher probe stores a catddéhtifies the
service. Since not all tasks need to have this detailedum&tntation, adding
dispatcher probes to tasks is rather inexpensive compar#ettask-switch
probe. Even if all tasks in the system are equipped with aadiiier probe, the
cost of this instrumentation is less than the task-switcber Task activations
occur less frequently than task-switches, as task switmb@s not only on task
activations, but also when a task terminates and a pre-engtk is resumed.

Monitoring end-to-end response times In order to study an end-to-end re-
sponse time, i.e. the time between two arbitrary eventsdajly a request
and a corresponding response/reaction), it is necessangead two probes, a
start-probeand astop-probe The difference in time between the execution of

3.2 Recording — What, How and Costs 47

a start-probe and the next stop-probe (with the same IDesponds to the
end-to-end response time.

Monitoring inter-process communication End-to-end response time mon-
itoring can be used to study latencies in the inter-procesmeunication, i.e.
the time from “send” to “receive” of a particular message.isTihformation
is interesting for the identification of performance botdeks and for model
validation purposes. If there are interface routines wieitbapsulate the send-
ing of messages to a specific task, this instrumentationasityde performed
by inserting interface probes, acting as start-probesrf@ral-to-end response
time measurement. If a dispatcher probe exists in the rimgefask, it can be
used as the corresponding stop-probe.

When a task receives an IPC message, the sender of the message
identified as the task that executes at the execution of thé-gmbe. It is
however possible to register the sender of each messageuwitsing send-
probes, if the dispatcher-probe is extended to also regidteh task that sent
the received IPC message. Naturally, this requires thaftiemessages con-
tain this information. The purpose of recording the sendéiBC messages is
to document the dependencies between different tasks 8y#tem, i.e. which
tasks use the different services of each task. The depeieddretween tasks
is valuable information for system understanding, maiatee and modeling.

An IPC message sent to a task under observation results iromotveo
probes being executed, depending on if the IPC latency isuned (two probes)
or not (one probe). The impact of these probes is dependdhedntensity of
the IPC, which varies drastically between different tasgamne tasks may have
a low average rate of incoming messages, but if the messages ia short
intensive bursts instead of evenly distributed over tirhe, dispatcher probe is
executed frequently during the duration of the burst. Eeugh the probing
may have little impact on total CPU utilization, the quick&is may cause the
probing to have a significant impact locally. Thus, in ordeestimate if the
impact of the dispatcher probe, not only average messagadrey is inter-
esting but it is also interesting to study the minimum irdetival time between
messages and how often several “short” inter-arrival tioegsir in sequence.

Monitoring all IPC traffic in the system is rather expensitéhe IPC la-
tency is to be measured, as an additional probe is necessarlyfeom the
dispatcher probe, for each IPC message sent. It is howeveretessary to
record all IPC traffic in the system. It is often the case thdy @ single, or a
few, tasks are in focus and the IPC monitoring can be limitethose, which
significantly reduces the cost of this probe.

48 Chapter 3. Dynamic Analysis

Monitoring usage of logical resources In order to record the usage of a
specific logical resource, such as a data buffer, it is reguio add probes
to the interface routines of the resource. Interface restiare e.g. theut
andgetroutines of a data buffer. Probes in interface routinesefierired to as
interface probesBy encapsulating probes in the interface routines, theipgob
is invisible in the application code.

Monitoring semaphores Semaphores are logical resources and may be in-
strumented using interface probes. However, if the sentagtdn not have in-
terface routines specific for each semaphore, this wouldire@qstrumenting
the Operating System (OS) routines, which are typicallydufee semaphore
operations by all tasks in the system. This would resultlisehaphore oper-
ations being recorded, thus consuming a lot of resourcel (@ and mem-
ory) as semaphore operations are common in multitaskingmsgs In most
cases only a single or a few semaphores are of interest. Tiapbmre inter-
face routines may, however, be probed if a filter is implerednthat only exe-
cutes the probe if the semaphore operation is of interestnivolves a specific
task or semaphore. Such a filter is implemented in the OS colesponding
to the semaphore interface routines or preferably in an G@l&tien layer, when
existing. The filter would in principle check the current savhore operation
(task ID and semaphore ID) against a list of semaphore dpasaf interest.
It is important to implement such a filter in an efficient andetiministic way,
in order to minimize the execution time overhead and jitter.

Monitoring state variables It may also be interesting to monitor specific
state variables, as these may effect the temporal behalibesystem and
thus be of interest for modeling. If the state variables axeessed through
interface routines such probing can be performed easihgusterface probes.
Probes monitoring state variables will not be executedepuiently as e.g. the
task-switch probe and would therefore be relatively inewgpee.

If the state variable is an ordinary global variable, aceds$irectly from
many locations in the code, it is not convenient to add probesich location
that change the variable. Instead, the state variable caarbpled usingtate
sampling probesThe state variables of interest are sampled in the immediat
beginning of the execution of a task/service that is depetalethe state vari-
able. If there are a large number of state variables that weleel sampled, this
may require a lot of resources, as the sampling may be ratgudnt.

3.2 Recording — What, How and Costs 49

3.2.3 Resource Consumption

When planning the introduction of code instrumentation scomplex embed-
ded system, it is important to estimate the resource consom@CPU time

and memory) required by the different types of probes. Thidependent on
the properties of the system, for instance the averagestaikh rate. Some
types of probes may be too expensive for a particular systérite others may
be inexpensive but they still contribute a significant vdlrean analysis. The
CPU utilization caused by a specific probe, p, is given by

Up = fp+*CproBE

where fp is the expected rate (in Hz) of the probe p angdig s the probe
execution time, in seconds. The amount of recording bantiwehuired, i.e.
the amount of data produced by the probe every second, is bive

Bp = fp* NproBE

where NoropEg is the probe size, the amount of memory required to store
the data from a single probe execution. Thus, there are trasameters that
need to be determined in order to estimate the impact on CHkhtibn and
memory usagefp, Cprosr andNproge. To provide reference values for
comparison of the different probe types, oz is assumed to be ps. This
is realistic for modern systems and supported by the probeugion time mea-
surements presented later, in Section 3.2.4. A refereriae ¥ar Npropg iS
found in our implementation of the software behavior reeordlso presented
later, in Section 3.2.4. Each probe execution requires dsgt memory. The
expected rate is dependent on the type of probe and the gehearacteristics
of the system. To provide values for comparison, typicasaif the different
types of probes have been estimated based on our experiethctuaies of a
representative system in earlier work [WARSa, ANO2]. Table 3.1 presents
typical rates of the different probe types and the resul@idy) utilization and
memory usage.

50 Chapter 3. Dynamic Analysis

Probe type fp(inHz) | Up Bp (in B/s)
Task-switch 3000 0,015 12000
Service activation 1500 0,0075 | 6000
Usage of logical resources 50 0,00025| 200
End-to-end response times 100 0,0005 | 400

State variables 50 0,00025| 200
Semaphore usage 400 0,002 1600

IPC Send 360 0,0018 | 1440

Total 5460 0,0273 | 21840

Table 3.1: Typical rates of different types of probes andiltagy resource
usage

The rates used as reference in Table 3.1 are motivated as/foll

e Task-switch rate - One event per task-switch, average dagiich rate
was observed on reference system

e Service activation - One event per task activation, avet@gjeactivation
rate was observed on reference system (for all tasks)

e Usage of logical resources - 10 logical resources instriaeterach with
an average change rate of 5 Hz

e End-to-end response times - 10 response time monitorel,vei#tt an
average rate of 5 Hz, two probes are executed each time (2045¥

e State variables - 10 state variables monitored, each widlvarage change
rate of 5 Hz

e Semaphore usage - 10 semaphores monitored, each semapheesl i
by two different tasks. Each task uses the semaphore (latkedease)
with an average rate of 10 Hz. (10*2*2*10 Hz)

e IPC Send - 10 tasks monitored, one event per task activailmserved
an average task activation rate of 36 Hz on reference system

Some of the probing described in this section should be peentapresent
in the system at all times, e.g. the task-switch probe andidmatcher probe,
as they generate a large amount of important informatioh witow impact

3.2 Recording — What, How and Costs 51

on the source code as well as an impact on CPU and memory thbtsoiute
terms is rather small. Probes on logical resources and ehaigbles could
also be of a permanent nature, since they are executed lspbinsenaintain
significant value.

Probes that generate information that in the typical casé lisss interest
could be disabled by default and activated when the systeim ie studied
in detaill, e.g. for modeling or fault localization purpos&sxamples of such
probes are semaphore probes, state sampling probes andé&HIC probes.
As discussed earlier, to activate probes on demand impliesk @f causing a
probe effect, but this risk can be minimized if the “inactipeobes are allowed
to execute and thus consume CPU time as usual, but not allton&dre the
data. This is accomplished by writing the data from all inecprobes to a
single memory location. This way, the probes that are dtlititerest are
inactive in the sense that they do not use any memory, whiotvafor longer
execution traces to be recorded.

3.2.4 Implementation and Evaluation of a Behavior Recorder

In order to be able to record the behavior of a running systeensystem must
have the appropriate recording functionality. We have bgperl a software
behavior recorder suitable for complex embedded systeltisangingle CPU
and the real-time operating system VxWorks, from WindRIMRW]. The
recorder is manually integrated in the system to be analymeddding the
recorder module to the system’s base platform. The recausks a feature in
VxWorks to associate a specific routine with the task-swftdntext-switch),
which executes the associated routine each time the opgmatstem performs
a task-switch. In our case, the task-switch routine costaiprobe that reg-
isters each task-switch event in the system. Each execofithe task-switch
probe stores a timestamp together with an ID of the next taskige and the
scheduling status code of the previously executing task.stheduling status
code contains the reason behind the task-switch, e.g. ptesmby a task with
higher priority (“READY"), blocking by a semaphore or a magse receive
(“PEND”) or a waiting for a specified time (“DELAY"). From theollected
task-switch information, it is possible to generate an akea trace, which
accurately describes how the tasks have executed over tingealso possi-
ble to extract execution times, response times, preengpaoa inter-arrival
times. Moreover, the recorder also suppgeseric probes.e. explicit probes
inserted in the application code. Such probes may be usedniptype of
probing proposed in Section 3.2.2, e.g. as dispatcher petée/stop probes,

52 Chapter 3. Dynamic Analysis

interface probe, state sampling probes etc.

The data from the task-switch probe and generic probes aredsin a
ring-buffer, i.e. the oldest data is overwritten when th&duis full. Since
the amount of memory available for recording is limited, #ieernative to a
ring-buffer is to stop recording when the buffer is full, whiis not desirable.
Writing directly to a permanent storage device, such as d-tdve, is not an
option due to the associated increase in probe executi@n tim

A ring-buffer always contains the most recent data. Thieisassary as it
might be required to have the recorder active for long perimfore interesting
behavior occurs. When the behavior of interest has beemadikehe recorder
can be stopped and the content of the buffer is written to a Titee file can
then be transferred to a PC for analysis.

In the implementation of the software behavior recordeg, gtze of the
ring-buffer is by default set to 100.000 events. As each exexjuires 4 bytes
of memory for storage, this corresponds to a memory allonati 400 KB.
The motivation for this large buffer size is the nature of fystem that has
been studied, a robot control system [Wal03, Wi 08a, MWNF04]. Indus-
trial robots are typically used to perform repetitive tgskbhere the robot arm
follows a cyclic path. As the temporal behavior of the cohsgstem depends
on the position of the robot arm, it is desired to record astleme cycle. As-
suming a probe execution rate of 3000 Hz, i.e. only task sigg@re recorded,
the chosen buffer size allows recordings exceeding 30 skscavhich is suffi-
cient for recording whole cycles in most test cases. Assgraiprobe execu-
tion rate of 5500 Hz as presented in Section 3.2.3, this beife allows only
for 18 seconds. However, it is not a problem to use bufferssiaeger than
100.000 events; we have successfully performed recordisigg buffer sizes
up to 300.000 events (using 1200 KB of memory). This buffee sillows for
recordings exceeding 90 seconds at a probe execution r&e@006f Hz (task
switches only). At the probe execution rate of 5500 Hz pregds Section
3.2.3, this buffer size allows for recording 54 seconds @oetion. The only
limitation on the buffer size is the amount of memory avdiéab

The file that is the result of the recording uses a publiclyilakte file-
format, called TRC, (named using the consonants from the Woace”). The
TRC format was developed together with the recorder andrig sieple. A
TRC file contains an execution trace, i.e. a list of time-gtathevents gen-
erated by the code instrumentation. The time-stamps arkfrem a clock
with microsecond resolution. A detailed description of TREformat can be
found in the tool documentation.

The effect on the system’s temporal behavior caused by afspsaftware

3.2 Recording — What, How and Costs 53

probe is dependent on two factors, the rate of which the [grabe executed
in the system and the time it takes to execute a probe. Theigarcate of a

probe depends on the context in which it is used, as discussaettion 3.2.2

and Section 3.2.3. We have made measurements on a reptiggesyatem in

order to estimate the execution time of a probe. The systersisted of a 200
MHz Intel Pentium system running the real-time operatingfem VxWorks,

from WindRiver [WRW)]. The measurement of the probe executime was

accomplished by configurating the system to execute onlyestask contain-
ing two immediately adjacent probes, in a loop. The differeim time-stamps
between two adjacent probes provides an estimate on the pratcution time,
as depicted by Figure 3.1.

clk read clk read

Task H

< > Time
CPROBE

< »

Measured
13-15 ps

Figure 3.1: The measurement of probe execution time(&s)

The results from the performed probe execution time measemes are
presented in Figure 3.1. The measured probe execution éireasfortunately
truncated since the resolution of the clock usedslis a considerable fraction
of the measured times. The measurements indicate that a fakés on aver-
age 14us. All but one of the observed probes took betweem4 30 15us to
execute, but there is a single peak onia3We were unable to find any obvious
cause of this peak, but a plausible explanation is effeota fiardware, such as
cache memory misses. We also measured the execution tifme tafstk-switch,
in order to estimate the relative increase in task-switafrlogad caused by a
task-switch probe. To measure this execution time the systas configured
to execute two tasks, one with high priority and one with lovegty. The high
priority task executed an infinite loop consisting of two mgi®ns; a generic
probe followed by a delay-operation caused a task-swit¢thedower priority

54 Chapter 3. Dynamic Analysis

task. The lower priority task contained a second generibgtbat executed
immediately when the task was activated, i.e. after the-sagitch, as depicted
by Figure 3.2.

Delay

Task H

< > Time
Measured
17 ps

Figure 3.2: The measurement of task-switch execution time

The observed difference in time between the two genericggotas ap-
proximately 17us, but this also includes execution time from parts of the two
probes used for the measurement, corresponding to the texec¢ume of a
single probe. Thus, if compensating for the /1l probe execution time, the
separation in time of the two probes, i.e. the task-switobcation time, is
only around 3us in this system.

The impact of a task-switch probe is thus significant withpess to the task
switch overhead, an increase with over 500 %. As discussedqusly, the
interrupt latency is effected by this impact as well. Thecex®n of interrupt
service routines may be delayed by approximately.4 i the interrupt occurs
at the immediate start of a task-switch, in comparison i 8vithout the task-
switch probe.

It is however important to note that the hardware used fosehmeasure-
ments was quite old, a 200 MHz Intel Pentium system. This CRE neleased
in the mid 1990’s, i.e. over 10 years ago, and has performaquivalent to
a modern mid-range PDA. If measurements were to be made agimgdern
system, the probe execution times would be significantheloas complex em-
bedded systems today often contain CPUs that are many tamts than the
one used in these measurements. It is also important to mattétthe system
that has been studied many tasks have execution times redasumillisec-
onds and large execution time variations. For systems eflinid, adding a

3.3 Analysis and Comparison of Execution Traces 55

Probe 25 Taskswitch and probe

N
a

20

N
o

TR -
P aswe ¢ GBI B BWew WeB® 00 W ®
T G G I I S ey G ey
e “omese C® WO NE G O oW B o0

15

li

10

=
15}

Execution time (ps)

o
3

o
o

o
=
o
S
N
=3
S

300 0 100 200 300
Observation number Observation Number

Figure 3.3: Results from measurement of probe and taslclisveikecution
time.

few microseconds to the execution time of the tasks will, mstrcases, have
a negligible impact. Changes of similar magnitude are mestgpuently during
the system maintenance (bug fixes etc.), in most cases wititoaducing any
problems related to the temporal behavior.

3.3 Analysis and Comparison of Execution Traces

In this section we will discuss the analysis and comparigdata from recorded
execution traces and present tools supporting analysispanson and visual-
ization. Further, we will present an implementation of Brebabilistic Prop-
erty LanguagePPL, initially proposed in [WANO3Db].

Together with the information available, the analysis rodttiecides which
properties that can be analyzed and also effects the conBdessessment of
the result. Dynamic analysis techniques are based on adiagasf the system
behavior during a limited period of time. This gives a raaipicture of the
system behavior, but the analysis result is not necessafiyi.e. it is not cer-
tain that the “worst case” has been captured in the recordithe recording
is merely a sample from a large set of possible scenarios amdsponding
system behaviors.

A problem with dynamic analysis is how to determine the canfizk of the
results. For instance, we want to compare the average restiare of a partic-
ular task in two different versions of the system. If there large variations in
response times between executions of the task, how do we ikaovobserved
difference is actually an effect of the difference betwd®sn ystems and not

56 Chapter 3. Dynamic Analysis

due to random fluctuation? This has been addressed in litetag.g. in the
book by Law & Kelton [LK93]. They present two approaches fomparing
real-world observations with simulation results, thepection approacland
theconfidence interval approacfrhese methods can also be used to compare
two real-world observations of potentially different ssrsis or two different
simulations of models. These methods are necessary fovioelrapact anal-
ysis (discussed further in Chapter 4), regression analgstsented in Section
3.1.3) and model validation (discussed in Chapter 5).

The inspection approach is probably the most common metbediamong
simulation practitioners. Basically, this method compugtatistical measures,
e.g. average values, from the two observations and comiressvalues. This
is depicted in Figure 3.4.

System 1 System 2
Observation Observation
Statistic . Statistic
» Comparison ¢
measure measure

Figure 3.4: Inspection approach

According to [LK93] a problem with this method is that thetstcs that
are compared only represent a single sample of an undegbgipglation. As
the statistical values are computed based on stochasi&bies, e.g. response
times, also the statistical measures will be stochastiabhas. Thus, the calcu-
lated statistics may have varying values from time to timpplfed to our ap-
proach this would mean that, e.g. the average executionditcellated from a
single execution trace could vary from time to time. Thisnshably true, even
though the variation may be very small if sufficiently longeention traces are
recorded and the system has the same configuration in bogivaltions.

The confidence interval approach, depicted in Figure 3 &uires large
amounts of data to be collected for analysis. Instead of esimg two values
calculated from two sets of data, many sets of data are tetidor each of
the two systems to be compared. From each set of data frorwthsystems,
the statistic measure to compare is computed, e.g. thegeveedue, resulting
in two sets of data points where each data point represemtsathavior of the

3.3 Analysis and Comparison of Execution Traces 57

system during a particular observation. A confidence imtleis/ constructed
that describe the deviation between the two sets of data,“a.§9 % confi-
dence interval of the deviation is 2.421.15". The 99 % confidence expresses
the ratio of independently constructed confidence intertfet will cover the
expected value, i.e. the mean difference between the tveoseis.

If the confidence interval does not cover zero (0), the diffiee between
the systems compared is statistically significant, as tipeebed deviation is
more significant than the variation. This indicates “redffatences between
the two systems. In the other case, when the confidence ahteovers zero
(0), the observed differences may be due to random fluctumtio

! !
I Observation N l I Observation 1 l
| |

I

Statistic Statistic Statistic Statistic
measure measure measure measure
Data set 1 (size N) Data set 2 (size N)

Deviation

(Confidence Interval)

Figure 3.5: Confidence interval approach

The confidence interval approach is preferable, as it alfowseveral ob-
servations of the systems used which results in a higheraemde in the com-
parison. However, to make a large set of observations oflasystem is typi-
cally a substantial effort.

3.3.1 The Probabilistic Property Language

The purpose of the Probabilistic Property Language, PR, adlow formula-
tion of queries on properties related to the temporal behna/system, such as
response times and usage of logical resources. PPL canliealiproperties
discussed in Section 3.2.2 and more. PPL allows formulaifoprobabilis-
tic properties, e.g. soft deadlines such as “at least 99 %si#f X should be
completed within 1000 time units”.

58 Chapter 3. Dynamic Analysis

The temporal logics discussed in Section 2.4 can not exjpregsbilities
or quantitative time, but there are other temporal logicgtban, e.g. TPCTL
[HJ94]. Compared to such temporal logics, PPL is used foilairpurposes,
i.e. specifying properties to check, but PPL is more of aluzda query lan-
guage than a mathematical logic, where the “database”shgpieried by PPL
is an execution trace. It might be possible to use a tempogét rather than
PPL. However, PPL is specially designed for expressingadsiistic proper-
ties of the temporal behavior of tasks, which makes PPL gqaeniore intuitive
for software developers without previous experience ahfarmethods.

In this section an implemented version of PPL is presentetyues set of
examples. This version differs a bit from the original defam of PPL found in
[WANO3b] and [Wal03]. A detailed specification of the implented version
of PPL and the differences compared to the original versamlze found in
Appendix B.

The PPL query A typical use of PPL is to check a deadline property of a
task. Example 1 presents a PPL query that checks if all inetarof task A
meets a deadline of 1000 time units with a probability of 1.a8ktinstance is

a particular execution of the task. A task instance is regresl in PPL using
it's task identity, start time, finishing time and executtone.

Example 1:
P(A(i), A(i).response < 1000) = 1

The first parameter to the P operator is a quantifier spegfyiat the condition
in the second argument should be checked for all instanaibe taskA. This
is different from the original version of PPL [Wal03, WAN(Bkvhere the P-
function did not accept any quantifier argument. It was disced during the
implementation of the PPL analysis tool that the origindirdgon of PPL had
ambiguous semantics when multiple tasks are referred ireeyg@ihe quanti-
fier parameter is necessary in those cases to solve the atybige second
parameter is the condition to check. In the example the tiomdBpecifies that
the response time of the task A should be below 1000. The Ratipeeturns
the ratio of the instances in the execution trace for whiehabndition holds.
If the P operator has a return value of 1, it means that theitondholds for
all observed instances of the task, i.e. a probability of 1.

PPL allows checking probabilistic properties such as adedidline. For in-
stance, a soft deadline requirement could be that at le&st&Qhe task in-
stances should meet the deadline. An example of a soft desdlpresented
in Example 2.

3.3 Analysis and Comparison of Execution Traces 59

Example 2:
P(A(i), A(i).response < 1000) > 0.9

PPL has a data model allowing a query to refer to task instindbe execution
trace using a combination of task name, instance index aspkpty name, on
the form ‘task(i).property. The data model provides five properties for each
task instances in the execution trace, which can be usedlimi&ies. These
are specified in Table 3.2.

Property Description

start The time when the instance started

end The time when the instance finished

exec The execution time of the instance

response The response time of the instance

probeN The value of probe N when the instance starfed

Table 3.2: The data model of PPL

The “probeN” property of a task instance corresponds to #heavof the generic
probe “probeN” at the time the task instance is started. Aegerprobe may
monitor any quantifiable property, but typically generiolpes are used to
monitor logical resources of different kinds, such as theent utilization of
a buffer. Further, PPL contains a set of operators and fom¢kiat allow con-
ditions to be formulated on the data model. These operaterdescribed in
Table 3.3.

Relational operators | =, <, <=, >=, > value op value > bool
Logical connectives | and, or, not bool op bool > bool
Arithmetic operators | +, -, *, /, abs value op value> value
Statistical functions | max, min, avg, median op(list) -> value

Index operator X(i) op(list, index) > instance
Following operator X(following(Y(i))) op(list, list, index)> instance

Table 3.3: The operators of PPL

PPL queries using the instance operator The index operator is used to dif-
ferentiate instances of the same task. One property thateahecked using

60 Chapter 3. Dynamic Analysis

the index operator is temporal separation, i.e. a propkéatdpecifies the min-
imum distance in time between two consecutive instancestala This is
demonstrated by Example 3.

Example 3:
P(A(), A(i+1).start - A(i).end >= 1000) = 1}

Another use of the instance operator is demonstrated in Rleednwhich spec-
ifies that two consecutive instances must not violate theldeaof 1000 time
units.

Example 4:

P(A(i), A(i).response > 1000 and
A(i+1).response > 1000) = 0

Expressing a requirement that e.g. 5 consecutive instanassnot miss their
deadline would result in a very large expression if the presgfrom the previ-
ous example is used. To simplify such queries it is possib#pecify intervals
rather then single integers in the index operator. Exampleesifies that there
must never be 5 consecutive task instances that violateahdlide of 1000
time units.

Example 5:
P(A(), A(i +[1..4]).response > 1000) = O

Queries using functions and unbounded variables In order to relate adja-
cent instances of different tasks, tedlowing function can be used. Example
6 shows a query checking if there are any situations wherastarice of A
and the following instance of B have execution times abov@0ltime units
and 1700 time units respectively.

Example 6:

P(A(i), A(i).exec > 1100 and
B(following(A(i))).exec > 1700) > 0

Moreover, PPL queries may contain an unbounded variableinstance, by
specifying the probability as an unbounded variable, tisaltef the query is
the minimum/maximum value for which the condition holds. éegy using an
unbounded variable to evaluate the probability of meetidigadline of 2000
time units is presented in Example 7.

3.3 Analysis and Comparison of Execution Traces 61

Example 7:
P(A(i), A(i).response < 2000) = X

It is also possible to use unbounded variables inside thenskeparameter of
the P-operator. A query evaluating the shortest deadlineaDis met with a
probability of at least 0.9 is presented in Example 8.

Example 8:
P(A(), A(i).response < D) >= 0.9

Statistical functions As presented in Table 3.3, there is also a set of statis-
tical functions that may be used to extract simple statiticeasures of the
different tasks. The statistical functions can be usedawdsalone queries as

in Example 9.

Example 9:
avg(A.response)
median(A.exec)
max(A.exec)

The statistical functions can also be used instead of congtdues inside the
second parameter of the P-operator, as in Example 10.

Example 10:
P(A(®), A(i).resp > avg(A.resp)*2) = X

The above described PPL query returns the probability (Xpsk A having
a response time above a certain limit, which is specified &® times the
average response time”.

Queries on logical resources PPL also allows queries on data from generic
probes. A generic probe may monitor any quantifiable prepsrthe system,
but are typically used to monitor logical resources, sucthasisage of a data
buffer. In the current implementation, the generic prolresidentified using

a number. If the number of messages in a certain message isuroeaitored
using generic probe number 21, it is possible to formulatBla §uery check-
ing that the message queue is never empty when taskX is ctiga presented
in Example 11.

62 Chapter 3. Dynamic Analysis

Example 11:
P(taskX(i), taskX(i).probe21 > 0) = 1

Itis also possible to specify conditions on a probe thatredependent of what
tasks that are to be executed, by replacing the name of tkevittsa wildcard
character. This is demonstrated by Example 12. For sucheguttre proba-
bilities are calculated differently, by summing the lergyttf the time intervals
where the condition holds and divide that with the lengtthefitecording. The
resulting value is thus the fraction of the total time in teearding where the
condition holds. This is an approximation of the probapiiitat the condition
holds at an arbitrary pointin time.

Example 12:

P(*, *.probe21 > 0) = 1

Tool Support The PPL language is supported by two tools available as a part
of the ART Framework: theroperty Evaluation Toaknd theTracealyzer The
Property Evaluation Tool is a dedicated front-end applicator PPL which
analyzes batches of PPL queries on two different executimes$ and presents
the results side-by-side. The tool is presented in Sect®23The Tracealyzer
tool contains among other features a PPL terminal, whesgabsgsible to for-
mulate and run single PPL queries with respect to an exectrd@e. This is

the preferred tool for experimenting with PPL. The Traceahyis presented in
Section 3.3.3.

3.3.2 The Property Evaluation Tool

The Property Evaluation Tool (PET) is a tool for analyzingl aomparing
execution traces with respect to different system propeftrmulated in PPL.
The application has uses in all three processes descritiribithesis:

e Regression analysis, presented in Section 3.1.3.
e Behavior impact analysis, presented in Chapter 4.

e Model validation, discussed in Chapter 5.

The user interface of the tool is depicted by Figure 3.6. d?ering an
analysis is generally swift but depends on the size of thewgian traces and
the amount and calculation complexity of the PPL queriese Gberies in

3.3 Analysis and Comparison of Execution Traces 63

Figure 3.6 take less than 3 seconds on a modern computdiferteum 4, 2.4
GHz). The two execution traces in the example are mediuedgizontaining
10.000 and 60.000 events respectively). However, someceR&L queries
where more than one task is involved may take considerahketth compute,
minutes rather than seconds for larger execution tra@es],00.000 events.

The tool reads one or two execution traces as well asraparison file
containing a set of PPL queries. If two execution traces l@en specified,
the results are presented side-by-side in a table, camgisfi two columns
corresponding to the execution traces and one row for eathgBery. In the
user interface depicted in Figure 3.6, the actual PPL gsi@nie however not
visible. For better tool understandability, instead ofgemting a cryptic PPL
expression, the tool presents a descriptive name of theepsoghat is queried.
The PPL queries can however be inspected and edited in tiibycaclicking
on the property.

:@': PET - Property Evaluation Tool E”§|gl

Select Files =

Property file CAART-PWarc\PET oy .cmp 3
| @ Generate Report

Execution T CAART-FW lety 11t o
ecution Trace | oyexample'case 1-1.4c = Tool Homepage

Reference |C:"-.ART—F‘.“u"'-iu:.fexample"-sase1—3.tn:: = About
Property Value Ref. Walue Rule Status
Task ctd, execution time, max 4244 4247 max 5000 Ok
Task ctr, execution time, .90 quartile [4108 4118 002 |Rule violat
Task ctr, execution time, .10 quartile |3209 3180 Ol
Task ctrl, response time, max 5304 h287 Ok
Task ctd, response time, .50 quantile |5098 5115 1 Ol
Task ctr, response time, .10 quantile [4183 4172 reldiff 0.02 Ok

Figure 3.6: The Property Evaluation Tool

The tool can automatically inspect the analysis resultsgusomparison
rules These comparison rules may be specified for each propettyeinom-

64 Chapter 3. Dynamic Analysis

parison file and are intended to define which analysis reatdtacceptable and
which are not. When PET has evaluated the PPL queries, iatsphe results
of each query and applies any specified comparison rule. dswits that vio-
late a comparison rule is then pointed out to the user. Theaadson rules are
defined in a simple language consisting of four functionsgsghreach function
has one parameter.

e absdiff(n) — Absolute difference at most n
o reldiff(n) — Relative difference at most n %
e max(n) — The value should be below n

e min(n) — The value should be above n

A comparison rule consists of one of these four functionsasgdecified
value, which may be a limit (max, min) or a tolerance (absddfdiff). The
two latter comparison rules require two execution traceshay compare two
analysis results, while the first two (min, max) comparesglsianalysis result
with a constant value.

3.3.3 The Tracealyzer

The Tracealyzer has two main features, visualization of@c@&tion trace and
a PPL terminal, i.e. afront-end for the PPL analysis took €kecution trace is
presented graphically. The task execution and the valugsrgric probes are
presented in parallel, allowing e.g. resource usage aneikbeuted services to
be presented next to the task execution. Moreover, it isilples® navigate in
the trace by using the mouse and also to zoom in and out anditchsir task
instances based on name and (optional) a minimum or maxinetugon
time, response time or fragmentation (number of preemg}ion

The user can select a task instance (execution) by clickinge graph-
ics. The selected task instance is highlighted, which Vizaiavhat fragments
correspond to the task instance and information about gkeitastance is pre-
sented, such as the execution time and response time ofstanae and the
average execution and response times for the task. If mskestatistics are
desired, it is possible to generate a report, containingiatyeof information
about all tasks.

The window contains a list labelgaobe visibility, presenting a list of the
generic probes that have been recorded in the current ésrdrdace. Select-
ing one of the generic probes in the probe list will displanalue over time,

3.3 Analysis and Comparison of Execution Traces

65

Tracealyzer

File ‘Window Help

—mm D[4 | 00128504]
[=o sl
o
15
0,016,553
_ B
ctrl
drive
ctrl
-
cirl 5
-
etrl -
3
0.027.850] * |

Task Instance Info

Task Stats:

Find
Previous

ctrl, {3/747)
19297 - 24296

Execution time: 2967
Responze time: 4335
Fragmerts: 4

3601 %

Find
Mext

Avg. execution time: 3627
Avg. response time: 4685
HAvag. fragments: 4,01606

CPU usage:

| Search |

Zoom and Pan

Zoom Centeron
In Marker
Zoom Recom
Out Zoom
Probe Visibility

File C\ART-FW toyexample®case2-1 trc loaded ok, containing 24892 events over 7524554 ms

Figure 3.7: The Tracealyzer tool

66 Chapter 3. Dynamic Analysis

next to the task execution. Since a probe can monitor logésaurces of any
type, the meaning of a certain probes is defined by the coofdkie associ-
ated probe. The probe visualized in Figure 3.7 of the Tryeealmonitors the
number of messages in a particular message queue. The 2@urexXt to the
probe name is the numerical identifier of the probe. Thisrimfation is im-
portant as the PPL language is limited to identifying prdietheir numerical
identifier. Itis also possible to save a list of the task insts to a text file. This
way, the data can be imported into other applications andaliied in other
ways than the ones provided by Tracealyzer.

Apart from visualizing the data in an execution trace, thec€alyzer also
contains a PPL terminal. Itis basically a front-end for tfRnalysis engine.
The terminal contains two fields, one input where PPL querésbe typed
and one output where the result are presented.

The graphical visualization of execution traces, provitigdthe Trace-
alyzer tool is, according to our experiences, an effectieg wf increasing
the understandability of the system. The tool has beendntred at a collab-
orating company, ABB Robotics, with good results. When tgwers at the
company first visualized execution traces from the latestioa of their sys-
tem, there were immediate reactions on details and susigitiehaviors in the
execution trace. We provided them with a new view of the sydtehavior,
which increased the system understandability and fagtitdebugging activi-
ties.

3.4 Discussion 67

3.4 Discussion

In this chapter we have presented how dynamic analysis mangédx for im-
proving the analyzability of complex embedded systems. e lpresented
what properties are of interest for analysis and why. Moegahe necessary
code instrumentation and the resulting impact on resowseels as CPU and
memory were discussed. The impacts on such resources digilriedor large
systems as the one considered in this thesis. However,ithamsk of experi-
encing problems with the probe effect if code instrumentais removed after
the analysis. In this work, we assume that we can leave pialibs system,
partially due to the fact that they have little impact, andipdly due to the fact
that they can be used for other purposes than modeling favi@himpact
analysis; they allow regression analysis and may also be fasedebugging
purposes.

In relation to the research questions stated in Sectionti2¢chapter has
partially answered Q1, the first of two sub-questions.

Q1: What methods are suitable for extracting the informatieecessary for
a temporal behavior model from a complex embedded systeharimaptation
containing millions of lines of code?

Dynamic analysis is a suitable method for extracting infation from very
large implementations and may be used for modeling of comghebedded
systems. Dynamic analysis is especially suitable for ctilg quantitative in-
formation regarding the dynamic aspects of the system hehatdiowever,
since only a limited amount of software probes may be usedderdo keep
the resource usage on a reasonable level, additional soafdgformation is
necessary, especially for the construction of detailedetwalso including se-
mantic dependencies between the temporal behaviors af.task

Dynamic analysis does not only enable the construction afetsofor be-
havior impact analysis, but also enables regression a@salyd improves sys-
tem understandability. Two tools have been presented witithe dynamic
analysis, for different but related purposes.

The main purpose of the Tracealyzer is to visualize an ei@ttrace. The
task execution and the values of generic probes are presgraphically, in
parallel. Visualizing the task execution is far from unigtigere are several
commercial tools that have similar functionality, e.g. #ystem WindView
from WindRiver [WRW].

The second tool, the Property Evaluation Tool, allows catispa of exe-

68 Chapter 3. Dynamic Analysis

cution traces with respect to a set of PPL queries. This toabkes regression
analysis, presented in Section 3.1.3, as well as behavjmadtranalysis based
on temporal behavior models (Chapter 4) and validationmpieral behavior
models (Chapter 5). PPL is unique as far as we know and theimpsttant
part of this framework, as it provides the possibility torfarlate and system-
atically evaluate system properties with respect to rengsd

Developers at ABB Robotics are successfully using the Bigzer today
as a debugging tool. Further, regression analysis and thygeRy Evaluation
Tool have been introduced to a small group of experiencegisydevelopers.
They quickly understood how they could benefit from the newsfulity of
analyzing the system and the method will gradually be intoed into their
software development process. The software behaviordectnat is required
by both the presented tools has been integrated in theitt agydrol system
and is active in both debug- and release-versions of thersyst

The Property Evaluation Tool basically uses what [LK93Ersfto as the
inspection approach, extended with comparison rules &ipa tolerance to
be specified for each property to be compared. This is noteal gblution,
since it is based on a comparison of a single execution tnaxa fhe two
system versions. There is a risk that at least one of theseitae traces is not
representative for the system version as it contains extratues.

The confidence interval approach, presented in [LK93], ghlyi relevant
for the comparison of execution traces, e.g. in a regressiafysis. A future
implementation of this method could utilize PPL in order xtract the statis-
tics of interest from each recording, e.g. average respimss of tasks etc.
However, additional functionality in the form of a programeoscript of some
sort is necessary in order to construct the confidence ilterv

Chapter 4

Modeling Temporal Behavior

This chapter presents an approach for the development oélsdéscribing
the temporal behavior of existing complex embedded systemslarge in-
dustrial software systems typically with cost-, depenligbiand real-time re-
quirements.

Temporal behavior models allow for analyses of importampprties of
the system behavior related to timing and resource usageresponse times,
CPU utilization and utilization of limited logical resows. Such properties
may be of vital importance for the correct operation of thsetegn and also
effect softer issues such as user-perceived system penfmen As discussed
in Chapter 1, introducing analyzability with respect todberoperties may
improve productivity in maintenance of such systems, spatential problems
associated with changes may be predicted early, beforeeimgitation, and
thereby avoided.

Without such models it is often hard to predict how changahesystem
may effect the temporal behavior since the temporal behasidependent
on many factors, such as varying execution times, the systritonment,
the task scheduling causing preemptions, and communi¢agiochronization
between tasks.

Today, most companies developing complex embedded systawgsno
suitable models that allow analysis of the temporal behaMidheir systems.
The exceptions include systems that have been designedmallizability in
mind, e.g. the automotive systems produced by Volvo Coasitmi Equipment
[MWN *04]. For systems that have not been initially designed witilyzabil-
ity in mind, introduce analyzability without redesignirtgetsystem requires the

69

70 Chapter 4. Modeling Temporal Behavior

development of an analyzable behavior model of the systerabstraction fo-
cusing on a particular aspect of the system behavior, incige the temporal
behavior.

A temporal behavior model, together with suitable analyséthods, pro-
vides analyzability which can be used to predict the effecthe system be-
havior caused by a proposed change to the system, e.g. aaldieg feature.
The original model of the system is extended with a prototyjpe change.
Due to the high level of abstraction in the temporal behamiodel, changes
can be prototyped with little effort.

The impact on the system behavior caused by the proposedelmpre-
dicted by comparing analyses of the original model with gsed of the modi-
fied model, the one containing the prototype change. If tmeparison reveals
unacceptable impacts of a proposed change, the change nraydasigned
and future problems associated with this impact are thesgbiged.

The ability to predict the temporal behavior of a future systcan also be
used to predict how existing parts of the system will effest/fiunctionality. If
an analysis reveals that the new functionality is signifilyaaffected by other
parts of the system, i.e. higher priority tasks, the new fionelity may have to
be re-designed in order to function as intended. An exanspiie éstimate the
response time distribution of a new task. For simple systesgonse times
can be calculated using the analytical methods discuss8ddtion 2.3.1, i.e.
[LL73, MJ86], but as discussed in Section 2.5, such methadgypically not
be used for complex embedded systems.

As an analysis of the temporal behavior of a future versica ®fstem can
be performed in an early phase, it is possible to avoid problénat otherwise
are discovered late, in integration testing or post-releaad thereby costly.
This improves productivity during system maintenance angaential prob-
lems are identified and avoided in an early phase, the qualityreliability of
the system can be improved as well. The use of this analyeissatompanies
developing complex embedded systems to better handle ahijincreasing
complexity, i.e. to stay longer in life-cycle phase 11l apaged by Figure 1.1
presented in the introduction.

In previous works [Wal03, AWNO4a, WANO3b, WAND3a, AN02] we
have used the term “impact analysis” referring to the anslgéthe impact
on a system’s temporal behavior caused by a maintenancatmperHowever,
this term is general and there is at least one other defirofitime term “impact
analysis” in Software Engineering research; analysis efdtatic dependen-
cies between components in an implementation which neelis tonsidered
when implementing a change. Works in this area are e.g. [AB®@re the

71

authors define a framework for comparison of different apphes for impact
analysis and [CFV99, QVWM94] which presents two interaggtiase studies.
In order to avoid confusion we will hereafter use the moresjpagermbehav-
ior impact analysigo denote impact analysis with respect to system behavior.
Another terminology issue is the relationship between ¢nens “change” and
“maintenance operation”. The term “maintenance operatiefers to the ac-
tivity of adding or changing functionality in the system, beH‘change” refers
to the resulting alteration of the implementation. Thusghdvior impact anal-
ysis predicts the impact of a change, which in turn is thelte$a maintenance
operation.

The construction of a temporal behavior model of a complebedded
system, detailed enough to allow behavior impact analystjires informa-
tion about the system design and behavior from several esurc

System Implementation The most accurate and reliable documentation avail-
able is the systems implementation, i.e. the source codeetr, due to the
size of complex embedded systems, the construction of astmeimaodel from

a systems implementation requires a significant effortctvinnay require tool
support. It is therefore important to focus the modelingefbn the relevant
parts of the system. However, information about the termgmehavior can

not be obtained from the implementation alone, as e.g. ¢ectime is not
visible in the implementation.

Run-time system As the systems considered in this thesis are real-time sys-
tems, the model needs to include information about timing, eexecution
times. Moreover, systems of this type interact with an envinent, physical
processes or other computers. This environmental inieraeffects the sys-
tem behavior and thus needs to be modeled as well. This iafismcan be
collected using dynamic analysis, discussed in Chaptee3,recordings on
the run-time system in a realistic environment.

System Documentation Various documentation typically exists that can fa-
cilitate the understanding of the system implementatigatesn architecture,
and the requirements of the system. Other important doctatienis realistic
test-cases, which are necessary for dynamic analysisteesiv

System and Domain Experts An important information source is the inter-
views and discussions with system experts and develophis facilitates the

72 Chapter 4. Modeling Temporal Behavior

understanding of e.g. the application domain, the requeéremof the system,
the software architecture and what properties that aretefast for analysis.

Given that a model has been developed, the main problemiassbwith per-
forming a behavior impact analysis is thdel validity i.e. if the model suf-
ficiently and accurately describes the system with respettte properties of
interest. One way of increasing the probability that the etdglvalid is to fol-
low a well-defined process when developing the model; weetbes propose a
modeling process suitable for complex embedded systerrsifethis chapter.
However, in order to assure that the model is a valid desoriif the intended
system, a model validation activity is necessary. A modgtlation typically
compares the results from analyzing the model with obsienvafrom the cor-
responding system. Model validity and techniques for ma@ditiation are
discussed in Chapter 5.

The remainder of this chapter is divided into four sectiotere Section
4.1 discusses the primary use of temporal behavior motielbghaviorimpact
analysis, in greater depth. Section 4.2 presents an agpfoamodeling of a
complex embedded systems behavior and timing, while Sedti® focuses
on modeling the environment of complex embedded systemsall¥;i Section
4.4 concludes the chapter and discusses how this contibugiates to the
research questions of this thesis, stated in Section 1.2.

4.1 Behavior Impact Analysis

A behavior impact analysis predicts how a change will imghet behavior
of the system with respect to specific properties of the aysiehavior, the
properties of interest. Using this analysis, a designermda feature can try
alternative designs on a model, evaluate their impact oaytbieem and thereby
avoid designs that negatively impact the system behawaisiog e.g. reduced
performance or potential timing errors. Such problems onanifest them-
selves in full system testing, i.e. after implementatianit testing and integra-
tion, and often occur in rare situations only making therfialift to reproduce
[Sch91] and thereby time-consuming and costly to detectancct.

Consequently, as the risk of introducing such errors is ceduthe pro-
ductivity during maintenance is increased and the devetoptime becomes
more predictable. This may also improve system reliabdgythe quality of
the system is improved through better design.

In a behavior impact analysis, two behavior models are coeth#heorig-

4.1 Behavior Impact Analysis 73

Behavior .
Model Properties

| Analysis Results
Modified i
>{ Prototyping Behavior Icompa”s"”]_ ’ P[fnﬂiﬁd
Model

Analysis Results

r Change

1

Behavior Impact Analysis

Figure 4.1: The behavior impact analysis

inal modelcorresponding to the current version of the system, gmibtype
corresponding to the future version of the system, whiclhasgnt the results
of implementing the change. The comparison is done by amajyroth mod-
els with respect to the properties of interest, resultinpio sets of analyses
results, one set for each model. These sets of analyses$sraselcompared
property by property. Any statistically significant diféarces are impacts of the
change. The steps of the behavior impact analysis are @dpicFigure 4.1.

Changes are prototyped on a behavior model by comparingxilséng
model with the design of the proposed change. Thereby, ttie pithe model
that may be effected by the change can be identified and madifieepresent
the change. As the model represents the system using difflereels of ab-
straction for the different tasks and services, dependmtheir relevance for
the model, a prototyped change may in some cases correspbni @ small
increase in the execution time of a service. In other casbgrava change
effects the tasks that are described in detail, the changebmarototyped in
a detailed manner, e.g. similar to a full implementationwith focus on the
control flow and timing.

Figure 4.2 depicts the process of using behavior impactyaisain the
maintenance of complex embedded systems. The output ohtigsss, the
predicted impact, typically needs to be inspected by a systepert in order
to decide whether or not the predicted impact is acceptaddavever, if a set
of rules are defined, that for each property specify whatlit®saue acceptable,
this activity can easily be automated.

If the predicted impact is unacceptable, the designers teeldange their
designin order to consume fewer resources, i.e. CPU timegardl resources,
or if possible, change the system in order to provide theuress required
by the new feature, by e.g. switching to a faster CPU, andateihe anal-

74 Chapter 4. Modeling Temporal Behavior

Introduction of method

Development/update
of Model
Model validation

Implementation
of change

Yes

No .
Impact Redesign
acceptable? l
A valid model exists, Behavior Design of R SEE
ready to use! Impact Analysis Proposed change P 9

Figure 4.2: Using behavior impact analysis in maintenance

ysis. When the predicted impact is acceptable, the proposadge may be
implemented, but the implementation of the change must aesweme more
resources than the analyzed prototype. This means in peatti impose a
resource budget on the implementer, specifying e.g. a maxilowed ex-
ecution time of the functionality. This implies that the d&per needs to be
aware of the resource usage when developing a feature. Whahange has
been implemented, the behavior model needs to be updatedén to reflect
the final implementation of the change, since it may be diffiecompared to
the prototype used in the early analysis. If a major diffeeeis discovered
between the prototype and the final implementation whentipgithe model,
the analysis should be repeated in order to check if the puevanalysis re-
sult remains valid. This is especially important if the mioakeed for the early
analysis turns out to be optimistic.

A behavior impact analysis is motivated for major changeth¢osystem,
such as:

changes effecting the activation of services in other tasks

changes effecting the use of shared state variables andlotheal re-
sources such as message queues and semaphores,

changes that are likely to have a significant impact on thewdian time
of a service (especially if the task has a high schedulingrity),

o the addition of new tasks to the system.

It may not be motivated to use behavior impact analysis itcthenges are
very small and unlikely to have any side effects, for inseaacsmall change

4.2 Modeling System Behavior 75

in a calculation of output data. Even though small changeg ma&e major
undesirable side effects in the worst case due to the discants nature of
software systems, the probability of this is low with regaréur experiences;
otherwise industry would use formal analysis tools muchawatensively than
today.

4.2 Modeling System Behavior

This section presents a process for developing models ¢éthporal behavior
of complex embedded systems. Further, the section propcgtascture divid-
ing the model into two components; where each componenttisdudivided

into two subcomponents. Thus, in total, the complete amadligzmodel, the
system modetonsists of four components:

¢ A behavior model describing the functionality of a complex embedded
system, including timing. The behavior model consists efftillowing
components:

— Functional model- describes the behavior of the individual tasks
and services in the system, with a focus on control flow.

— Model parameters- contains quantitative information on systems
timing and probabilities that is used by the Functional nhode

e An environment modet describing stimuli from the environment that
effects the behavior of the system. The Environment modesists of
the following components:

— Specific stimuli modeldescribing stimuli specific for a certain test
case.
— Common stimuli modeldescribing stimuli that are always present.
The rest of this section presents an approach for the daveopof the be-

havior model, while the environment model and its componare separately
discussed in Section 4.3.

76 Chapter 4. Modeling Temporal Behavior

4.2.1 The Modeling Process

The construction of a behavior model of a complex embeddsi@syconsists
of three main activities:

¢ Development of thenodel specification
e Construction of the functional model
e Constructing the model parameters

Figure 4.3 depicts these activities in construction of advedr model and
the resources on which the activities depend. When coristguitie behavior
model, the first activity is the construction of a model sfieation, a document
describing the system and the properties of interest folyaisa The purpose
of this document is to gather information from several sesria order to de-
scribe the many factors that effects the temporal behavitireosystem. This
is especially important when the modeler has limited exgrexé of the system,
but also important if the modeler is an experienced systeraldper or archi-
tect, as the document serves as a specification of the mgasdfiort and may
be communicated with other system experts.

System Experts Documentation

Runtime System
—| Model Specification |—

| Dynamic Analysis }1—

Behavior Model Environment Model

Source Code

Reverse Engineering

Functional Model | | Model Parameters

System Model (Analyzable)

Figure 4.3: The process of constructing a behavior model

The next activity is to construct the functional model, lthea the model
specifications and reverse engineering of the system ingiéation. Based on
the information in the model specification the relevant $aakd services are

4.2 Modeling System Behavior 77

modeled with respect to the externally visible events. Byithe reverse engi-
neering it is appropriate to prepare for the constructiaheimodel parameters
by performing the code instrumentation necessary for tmadhyc analysis, as
discussed in Chapter 3. This code instrumentation needsetifg identifiers
for the different model parameters resulting from the dyiteamalysis. These
identifiers are necessary in the functional model in ordenefer to specific
model parameters.

The third activity in the modeling process is to build thetinmented code
into an executable system and perform recordings usingoapipte test cases.
From the recorded execution traces the model parametefiaaltg extracted.

4.2.2 The Model Specification

When constructing a behavior model, it is important thatrtioeleler
understands the “big picture”, e.g. how the system is usethéygustomers,
the requirements on the system and the various configusatiiat may exist.
However, the modeler does not need to be a system experuiarageetings
can be arranged with system experts or other experiencettgers in order to
develop the necessary system understanding. The unddirgjaf the system
requires documentation in a model specification, develdyyettie modeler in
cooperation with the system experts.

The model specification is a document describing the systehitacture
and runtime behavior at a high level of abstraction, as veetha properties of
interest for analysis. It is important that the model speatfon is carefully re-
viewed by other system experts in order to avoid misundedstgs and allows
for system experts to contribute with additional inforroatand comments rel-
evant for the modeling.

In order to assure the validity of the model specificatioahibuld be based
on interviews/discussions with several system expertsdawdlopers. More-
over, the modeler needs to study the code, runtime behatimugh dynamic
analysis tools) and available documentation in order ttebeiderstand the
details of system and verify the model specification.

To provide the reader with an example of a small model spatidfic as
well as a brief description of the system that has been dudiearlier work

[Wal03, WANT03a, ANO2], we present a model specification describing the

system in Appendix C. Names are omitted due to businesscge@asons.
According to Figure 4.3, the model specification is basecnbt on code

studies, documentation and discussions with system eeitalso on studies

of the runtime system, i.e. the information in recorded exien traces. When

78 Chapter 4. Modeling Temporal Behavior

trying to understand the behavior of a complex embeddedisystisualization
of execution traces is a powerful method complementaryudyshg code and
documentation. This is especially true when studying thepteral behavior of
the system, as it is seldom documented and not visible imtipeimentation.

3

g
&

8

PR P

=

8

B
@

Task execution time and response time (ims)
8
&
54

o res T =

o
o 200 400 600 800 1000 1200 1400 1600 1800 2000 o 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (ms) Time (ms)

Figure 4.4: Visualization of observed execution and respaimes of two
tasks

An execution trace can be graphically visualized in différevays in or-
der to increase the understandability of the systems behaln Figure 4.4,
two graphs are depicted, showing the temporal behavior oftasks in a real
system. These tasks are complex and time-critical, comrating with many
parts of the system.

The two graphs correspond to two particular tasks duringémae period
oftime. Each execution of a task results in two dots, whegerthralue describe
the execution time (E) or response time (R) and the X-valueespond to the
start time of the task instance. In both these graphs, we los@ree a discrep-
ancy around time 300. This is most likely due to a dependertyden these
tasks, e.g. they might both react to changes in the samelgitatia variable.
Such dependencies between task’s temporal behavior maffibeltto detect
based on the other sources of information, since they agtyrdocumented.

4.2.3 The Functional Model

Constructing the functional model of a system is the taskoafudhenting the
behavior of the system in a notation suitable for analysisnappropriate level
of abstraction. The resulting model describes the behafitre tasks in the
system, the attributes of the tasks such as schedulingtgrior many cases,
a task consists of a set of services, separate behaviorshale executed on
request from other tasks in the system. Each service in attagkbe regarded

4.2 Modeling System Behavior 79

as a set of sequenceseiternally visible events.e. events that effects other
tasks or the environment. An externally visible event mayelge the send-
ing an IPC message to another task, the writing to a sharésl\sgable or
the locking of a semaphore. By modeling the implementatiorthos level
of abstraction, the interactions between tasks are modehdd still keeping
the model sufficiently abstract. This level of abstracti@cdmmonly used in
formal verification tools for software e.g. VeriSoft [CGR@2d SPIN/Modex
[Hol97, SPI, Hol03]. In comparison with the real implemeita, models on
this level of abstraction do not describe the data flow, isdcidations and as-
signments of data variables, but the focus is on the eveatsnhy effect the
task scheduling.

In order to find such events in the source code, reverse esrgiigetools
may be utilized, such as Rigi [BG97], Imagix 4D [BG97], FujalikSS"02]
and Rational Rose [KS'92]. These tools parse the code and visualize the
relationship between classes and files, for instance as diagrams or call
graphs. A problem with such tools is that they are geneml, mot adapted
for the specific system in focus, and the resulting views laeeefore subop-
timal. Most embedded systems are implemented in imperkiguages, not
object oriented languages, and therefore naming conventice commonly
used to group related functionality. Also, if tasks consfanultiple services,
the reverse engineering tool needs to be aware of this irr toddentify the
individual services. This is very important, as the revensgineering is to be
performed service-by-service, and it is therefore deswesblate the behavior
of individual services in the task. Thus, knowledge of nagrinnventions and
other system-specific properties of the implementatiorfaaifitate the reverse
engineering significantly. There are existing reversemawmying tools that are
highly adaptable, e.g. Rigi. Such a tool could possibly bepsed in order to
better present implementations containing naming coiwesind services.

When constructing the functional model, it is importanta@cds the mod-
eling effort on the areas of the system that are relevanteoptioperties of
interest. Moreover, as a task may consist of a large set vices:, the relevant
services need to be identified as well. Only tasks and sestit are consid-
ered relevant need to be described in detail, while lessartdasks/services
can be described on a higher level of abstraction. In a teahpehavior model,
tasks can be modeled in a high level of abstraction by deagrthe temporal
behavior only, i.e. inter-arrival time, scheduling prigrand execution time.
In the same way, individual services may be modeled solelthbir execu-
tion times. The tasks and services in focus of the modelifarteshould be
specified in the model specification.

80 Chapter 4. Modeling Temporal Behavior

A problem when modeling is that most services have more tinenpos-
sible path of execution, as there are selections (incluldiogs). To model all
possible paths through a service in detail may not alwaysdssiple, as the
selections may depend on variables not included in the ndhgeto the nec-
essary level of abstraction. When such selections aredised the modeler
may either extend the model to include the necessary vagabl model the
selection in a probabilistic manner, by identifying the lpabilities of differ-
ent behavior using dynamic analysis and specifying thesbatnilities in the
model. Probabilistic models are often accurate in the aeetase, which is
suitable for e.g. performance estimation, but as the upiderimechanisms
of selection is not modeled there is a risk of missing sermatgpendencies
between the selection and other behavior in the system. &epblndencies
may make the model overly optimistic or pessimistic, defrgndpon the situ-
ation. Consider a case where a service contains two seisciidich are both
modeled in a probabilistic manner. The code executed bytbelections cor-
responds to a major part of the total execution time of theiser The code
and the corresponding probabilistic behavior model arsgareed in Figure 4.5.
The behavior model is divided into a functional model and slghrameters
as discussed in Section 4.2.

Implementation Behavior model
if (foo > 100) Functional model Model parameters
chance (P1) P1: 0.1
CalculateA(foo); { A: 1000-2000
} execute(A); P2: 0.05
if (bar > 200) } B: 1100-2300

chance (P2)
CalculateB(bar);
} execute(B);

}

Figure 4.5: Probabilistic modeling of selections

The functional model is expressed using the modeling laggu#eRrT-ML
proposed in earlier work [Wal03, AWNO4a, WAND3a]. This thesis presets
a new version of ART-ML, version 2.0, which can use tempogithdstored
separately, in the model parameters. This was not possiliteei previously
proposed version, version 1.0. By separating the infonati the model pa-
rameters from the functional model, a more modular modébiained, where

4.2 Modeling System Behavior 81

different model parameters can be used for the same furattioadel to rep-
resent different hardware platforms.

In ART-ML, the chancestatement expresses probabilistic selection, while
the executestatement expresses the consumption of CPU time. Consiuen
in Example 1, the calculations in the system implementgi@aiculateA and
CalculateB) are only modeled from a temporal perspectivecofding to the
behavior model, the probability of both execute-statembring executed is
0.5 %, as the probabilities P1 and P2 are assumed to be indiepeiHowever,
in the real system, this may not be the case. If the varialolesahd bar are
correlated, the probability of executing both calculasiomay be very different.

It may be the case that CalculateA and CalculateB are myteatllusive due
to a dependency between the variables foo and bar. Pradtabitiodeling

are thus not suitable methods for sequences of selectiahaté likely to be
dependent, but may in other cases be a powerful way of magafirobserved
behavior for which the underlying mechanisms are unknoviarobabilistic

models are however non-deterministic and thus harder tyzmaompared to
a deterministic model, as the number of possible scenadiosrbe very large.
The modeling should therefore strive to minimize the nundigrrobabilistic

selection in the functional model.

4.2.4 The Model Parameters

When modeling real-time systems, the timing of the systeada¢o be mod-

eled, e.g. the execution times of different services ingasid the inter-arrival
times of different events or task activations. When modgtiystems in a prob-
abilistic manner, the probabilities of different eventeddo be modeled as
well. Furthermore, to improve the accuracy of the behaviodetit is neces-

sary to also model state variables that are likely to havegelempact on the

execution times of the system.

This information should be separated from the functionatetpas the
temporal behavior is dependent on the systems hardwafernptafthe CPU),
which often changes. Companies manufacturing complex dddzesystems
often switch to faster, more recent CPU’s, as the previoustyl CPU becomes
less available and more expensive, while new versions oéter performance
for similar or lower price. In a well-designed system, a CRiitch should
not require code changes, apart from in device drivers aner ¢1\W-specific
code, and is therefore easily performed. However, as thaudioa times of the
system are decreased by the faster CPU, the temporal beisaeimnged.

By having the timing information stored separately, as nhpdeameters,

82 Chapter 4. Modeling Temporal Behavior

the updating of the timing information can be done withowubiming the func-
tional model. Model parameters can be automatically geeeérfaom execu-
tion traces with ease.

Moreover, if the system has several different hardwarearsdftware con-
figurations, there may be one set of model parameters forleachvare con-
figuration, while a single functional model can be used fbcahfigurations,
thereby avoiding problems with inconsistencies betweedetsoof different
configurations.

The functional model contains references to the model petens, where
each reference corresponds to a particular value or a pifitpaensity distri-
bution, representing the probabilities of different exemutimes, inter-arrival
times of tasks, or outcomes of probabilistic selections.

An execution time distribution may describe the executimres of a whole
task, of a service or of a minor part of a service, dependirptipe level of ab-
straction required. An inter-arrival time distributionsteibes the inter-arrival
times of tasks, which may be periodic (fixed inter-arrivahd)) or sporadic
(probabilistic inter-arrival time). To describe a prolaic selection requires
only one value, the probability of the condition being true.

The model parameters are acquired through dynamic anahgsiiscussed
in Chapter 3. Recordings are made of the real system in differealistic sit-
uations, using existing test cases. Given that the systeaics the necessary
code instrumentation, the data can be extracted from thatireg execution
traces.

It is important that several different test cases are usearder to identify
dependencies between the test cases used and the distributor instance,
in a specific test case the execution times of a specific semay be signifi-
cantly higher, as the service is dependent on a state vardfielcted by the test
case. Such dependencies may be included in the behavior teoidgprove
accuracy. An example is presented in Figure 4.6.

4.2 Modeling System Behavior 83

Implementation Behavior model
Service A: Functional model Model parameters
PROBE(state7); Service A: Al: 1000-2000
result = calcula-| if (state7 == X) A2: 200-300
teX(...); execute(Al);
ipc_send(result); else

execute(A2);

ipc_send(emptymsg);

Figure 4.6: Modeling a dependency between state and teiriperavior

Figure 4.6 shows the implementation of a service and theespanding
functional model and model parameters. The state varihte7is assumed
to effect the execution time of the routine calculateX. Ataafe probe has
therefore been inserted in the service to record the statetene the service
is executed and recordings are made using this probe andetrera) probes
proposed in Chapter 3, e.g. task-switch probe. If the rieguliata shows
a correlation between the state and the execution time, ehevior model
needs to be updated to take this state into account, i.e. ecifgifferent
distributions for the execution time of the service depagdin the value of
the state variable.

To update the functional model, it is necessary to modelstaite variable,
which implies the construction of a finite state machine dbsyy the different
states and possible state transitions. The finite stateimewlil be integrated
in the functional model, but may also be stored separately BSIL state
diagram, which contributes to the documentation of theesyst

The next step in the process of modeling this dependencyupdate the
functional model of the service to choose between the aaildistributions
based on the value of the state variable. This selectiomdmimplemented as
in Figure 4.6, where the functional model explicitly makese&ection between
two distributions. Another possible solution is to expriesmapping between
states and distributions as expressed in the model paresnétee state would
be used as an argument to the execute statement, whichsstbletroper dis-
tribution based on the model parameters. This would imptogeeadability
of the functional model and is therefore preferable. An eplenof a behavior
model using this approach is found in Figure 4.7.

In order to ensure the validity of the behavior model, the elpdrameters
must be constructed in a statistically sound manner thatratsly represents
the real system. Preferably the model parameters shoulddedion a large

84 Chapter 4. Modeling Temporal Behavior

Implementation Behavior model

Service A: Functional model Model parameters
PROBE((state); Service A: A(state):

result = calculateX(...); | execute(state,A); 1: 1000-2000
ipc_send(result); ipc_send(emptymsg); 2: 200-300

Figure 4.7: Expressing the mapping between state and teinpehnavior in
the model parameters

set of measurements, collected from the system in variduatsins and con-
figurations. Ad-hoc estimations based on a few recordingsitanost be used
for a rough model of a single configuration of the system.

Given that sufficient amounts of data exist, another impuiitsue is how
to transform execution traces into model parameters. Datzbeerved execu-
tion times, inter-arrival times and selection outcomes easily be extracted
from the execution trace. There are however several methiodgpresenting
this data in the model parameters. In some situations it neagdssible to
represent the data using limits only, i.e. minimum and maxmvalues, and
to allow for an analysis to randomly choose values in theifipdaange. This
corresponds to representing the data with a uniform digioh.

However, using uniform distributions is often a major siifiphtion and
may result in models that behave significantly different paned to the real
system. In order to accurately model a system containingiegiand other
limited logical resources it then becomes necessary taitbesthe probability
distribution of the recorded data, i.e. the probabilitiéglifferent execution
times, inter-arrival times or selection outcomes. One whgeascribing the
recorded data is to find a suitable theoretical distribytfarch as the Normal
distribution, the Exponential distribution or the Weibdiktribution and use
standard techniques of statistical inference to calctletg@arameters that fits
a theoretical distribution to the recorded data. This igused in [LK93].
However, the observed data often has a complex distributitiich makes
the theoretical probability distributions unsuitable. #&sexample, Figure 4.8
shows an execution time probability distribution measdrech a real system.
The observed execution times have been grouped with a grayubf 3 us
and the dots in the graph indicate the number of service ¢oasuobserved
(y-value) for each group of execution times (x-value).

The depicted probability distribution shows two major peakhich im-

4.2 Modeling System Behavior 85

Execution time distribution - "Service 7"
140

b
120
i
S g [\
§ 60 , \ ZN
g w0 [T2
2 [\ I\
0 l MM
10 20 30 40 50 60 70 80 %0

Execution times (in steps of 3 us)

Figure 4.8: An example of a complex execution time distiiut

plies that there are at least two paths through this servibés has not been
taken into account when preparing for the recording and &sualtrall paths
through the service are described using a single complebapitity distribu-

tion. To model this data using one of the standard theotediistributions

would result in a poor fit. In order to approximate a theowdtidistribu-

tion to such complex probability distributions as the onpidied by Figure
4.8, more advanced distributions must be used, such agBé&itributions

[LK93, WW96]. A Bézier distribution functions with suffiently high degree
can approximate a distribution of any shape. It is not eadintbthe param-
eters that produce best fit using a manual trial-and-errprageh, but there
is software available that does this with accuracy [WW96hother problem
that is more serious with Bézier distributions is that éhare few or no anal-
ysis tools (simulation frameworks) that support the uséhee distributions,
according to [LK93].

Another solution to the problem of describing complex piulity distri-
butions is to divide the data into a set of simpler distribng, which may be
modeled using the standard theoretical distributions githd result. This is
especially suitable if the distribution resembles the anEigure 4.8, i.e. sev-
eral “peaks” with “empty space” in between. For such disttitns, the data
may be divided based upon their values. For instance, if wsider the data
in Figure 4.8, we can define three regions, one frops@o 35us, one from
36 us to 60us and finally one region from 6iks and up. Each recorded exe-
cutions of the service are assigned to one of the three regiepending upon
its execution time. This result in three sets of data whiah lva individually
expressed using a theoretical probability distributiothwgood result. The
functional model selects between the three distributin@sprobabilistic man-

86 Chapter 4. Modeling Temporal Behavior

ner, based upon the number of service executions in eacbnefigure 4.9
shows a behavior model describing the service as depict&igioye 4.8. The
probabilities P1 and P2 express the probabilities of sielgane of the distri-
butions A, B or C. The probability of selecting distributi@ns 1-P1-P2. Note
the inner chance statement with the probability P2/(1-Ahjis construction
is necessary as the chance statement only allow binarytisgledn order to

better support modeling of complex execution time distidns ART-ML can

be extended with a probabilistic version of the C statemewitth”. Figure

4.10 shows the same model using such a statement, referasgswitch

Functional model Model parameters
Service A: A: Norm(...);
chance(pl B: Norm(...);
execute(A); C: Uniform(...);
Jelse{ P1: 20%
chance(P2/(1-P1){ P2: 10%
execute(B);
telse
execute(C);
}
}

Figure 4.9: An ART-ML model using three distributions anelpabilistic se-

lection to model a complex execution time distribution

Functional model Model parameters
Service A: A: Norm(...);
pswitch{ B: Norm(...);
p(P1) execute(A);} C: Uniform(...);
p(P2) execute(B);t P1: 20%
default{ execute(C)} P2: 10%
}

Figure 4.10: An ART-ML model using the proposed pswitchestaent

Note that the pswitch statement has quite different syntemxpared to an
ordinary “switch”. This and other extensions of ART-ML pasged in this
thesis can be found in Appendix A.

4.2 Modeling System Behavior 87

Another method to split the data is to identify the cause ef different
peaks, i.e. the state variable(s) responsible for therdiftetemporal behav-
iors, and add a software probe to record this state as desgus<Chapter 3.
The execution time can then be modeled with respect to the etaiable, as
discussed earlier in this section. This is especially bigt# it is not intuitive
how to split the data into regions, for instance if there is“empty space”
between the peaks.

However, in many cases it is not desired or not possible testigate and
record the cause of the different temporal behavior, bststill desired to ac-
curately describe the probability distribution. An examfd when modeling
the inter-arrival times of external events, which e.g. gegs a task. In such
situations, an empirical distribution can be used, i.estadf observed values,
from which values are either randomly sampled or used in éineesorder as
they where recorded. That way the probability distributiemccurately de-
scribed. When using the latter approach in the context ofilsition, this is
referred to agrace-drivensimulation [LK93]. There are however drawbacks
with this approach. One problem is that it only provides tkact values that
have been observed. There may be “gaps” in range of values\ass which
may not be representative to the “true” underlying distiitou but due to ran-
dom fluctuations in the system during the recording. Anogiveblem is that
extreme values, that seldom occur, may not be included imtbéel. Such
values are often very interesting for analysis. These problcan be reduced
by making more recordings in order to observe a greater nuofhalues.

To summarize, four general methods of modeling the recoddea have
been identified:

e Simple distributions may be modeled using a standard thieatelis-
tribution, e.g. a uniform distribution, Normal distribati, Exponential
distribution or Weibull distribution.

e Complex distributions may be divided into several simpkrithutions
based on values or extra recorded information, e.g. outaufnselec-
tions. The subsets of data are more suitable for modelingyusistan-
dard theoretical distribution.

e Complex distributions may be described by using more adéitireo-
retical distributions, such as Bézier distributions.

e The data is used directly, in the form of an empirical disttibn, i.e. a
list of observed values. The analysis method samples véloesthis
list.

88 Chapter 4. Modeling Temporal Behavior

Different methods may be used in the same set of model pagasnietr
modeling different set of data. For tasks which are desdrirea high level
of abstraction, advanced theoretical distributions mayed to accurately
model e.g. complex execution time distributions even withdescribing the
behavior of the task in the functional model, while protagmf changes may
use uniform distributions to model execution times (or adim@rst-case value)
since little is known before implementation.

4.2.5 ldentification of Dependencies

When constructing a behavior model of a complex embedde@rythere
are at least two types of dependencies that are of interespemencies be-
tween temporal behavior and state variables are highlyaatdor the model
parameters, as discussed in Section 4.2.2 and Section Agdher type of
dependency is interaction between tasks, i.e. externdiyle events such as
IPC messages. Dependencies of both types may be identifiedatha by in-
specting the source code of each service, but this appredetiious and error
prone, automation is therefore desired.

A pragmatic approach to automatically identifying statealales that are
likely to effect execution times is to search the source dodstate variables
that are used in specific contexts. If a state variable is nedkde condition
of a selection, the value of the state variable is likely tfeetfthe outcome
of the selection, i.e. which branch of the selection thatxiscated. If the
difference in execution time between the branches is sggmifj then the state
variable is of interest for modeling. Heuristic rules canused in order to
automatically identify selections (and thereby statealalgs) that are likely
to effect the execution time. For instance, an if-statencentaining a large
number of statements in one branch and no statements atfzdl @ther branch
(no else-statement) is more likely to have a significant ichpa execution time
compared to a selection where both branches consists of agsignments
only. Since it is not required to determine the exact exeoutimes of the
branches, but sufficient to determine if one of the branclaes Bignificantly
longer execution times than the other, such heuristic mkdede rather simple,
for instance comparing the presence of loops, the numbeudifie calls or the
number of statements in each branch. However, the accufabysanethod
has not yet been investigated.

Static analysis may by used to identify explicit dependesbetween tasks,
i.e. communcation, with a high degree of automation by gativeg the func-
tion call graph (the reachable functions) of the serviceswaiching it for calls

4.3 Modeling the Environment 89

to OS routines. Each matching routine call will result in arre in a list,
containing the path of control leading to the externallyhles event, in order
to store the context. This is a highly interesting approashmost reverse en-
gineering tools can generate call-graphs and the only ttiiagneeds to be
known by an analysis tool is the call-graph and the nameseoO routines
of interest. However, the call-graph should preferablytaomnot only rou-
tine calls, but also the selections, especially “switclgltaients, as they are
commonly used in dispatchers in multi-service tasks, wkhaoh “case” corre-
sponds to a service. The call graph must therefore show whatibn calls are
associated to what services in order to allow modeling afiddal services.

Using these approaches for dependency identification tldelaoncan with
little effort obtain lists of both important state variablas well as interactions
between different tasks and services, which significaatjlitate the modeling
of the system.

4.3 Modeling the Environment

The process presented in Section 4.2 targets modeling thevioe of com-

plex embedded systems. However, in order to construct a ledbengnalyzable
model, the system model, and the environmental stimuli rhaghodeled as
well, i.e. external events that effect the behavior of th&tesy). Examples of
environmental stimuli are:

e commands from a human operator,

interaction with other computer systems,

interaction with subsystem not included in model,

interrupts caused by e.g. network traffic or I/O signals, or

e variations in input values from sensors.

By modeling the environment as well as the system behavidosed sys-
tem is obtained from which an analysis can be performed usiggdiscrete
event simulation.

Information on environmental stimuli is typically collect using dynamic
analysis, i.e. by recording the events corresponding tor@mwmental stimulus
on the real system and extracting the necessary informfttiomthe recorded

90 Chapter 4. Modeling Temporal Behavior

execution traces. The information that is of interest wheording environ-
mental stimuli is the inter-arrival time probability digtation of the different
events that are recorded.

The environmental stimuli are modeled usenyironment tasksvhich in-
teract with the tasks in the behavior model. The environrteesiis are included
in an analysis of the model in the same way as “real” tasksoartejo not con-
sume any CPU time and can therefore be safely excluded frenarhlysis
output if desired. Environment tasks have higher scheduiniority than the
behavior model tasks, allowing them to preempt all behawiodel tasks at
any given point in time, as the environment tasks corresptm¢tuly concur-
rent external events. The corresponding reaction to theusitis described in
the behavior model and may thus be delayed due to the tasHdalgg in the
same way as in a real system.

If the modeled system is interacting with external compgtetems for
which the implementation is available, e.g. another systeweloped in-house,
that system does not have to be modeled as an environmest tagkcan be
modeled in detail, as described in Section 4.2, and intedriat the behavior
model. This, however, requires that the modeling languageaaalysis tools
support distributed systems, i.e. systems with more tharG#1lJ, which is not
always the case. This is especially valuable if the extesypstiem is complex
and it is desirable in order to describe sequences of irtterdeetween the two
systems in detail.

4.3.1 Identification and Classification of stimuli

The environment affects the system through well-definegtiates, which are
identified based on documentation, code studies and discgssith system

experts and documented in the model specification (disdussection 4.2.2).
By introducing code instrumentation in the environment&ifaces, dynamic
analysis can be used in the same way as when recording tkegrs/behavior,
as discussed in Chapter 3. The information of interest ignfee-arrival times

(rate) of the different environmental events, i.e. minimumaximum- and

average inter-arrival time but also the inter-arrival tipnebability distribution,

in order to allow for probabilistic modeling.

4.3 Modeling the Environment 91

Environmental stimuli can be classified into two categgasollows:

e Common stimuli stimuli occurring in any situation and configuration,
e.g. interrupts caused by network traffic. The common siiang de-
scribed, typically in a probabilistic manner, in tb@mmon stimuli model.

e Specific stimuli stimuli specific for a particular situation, i.e. a testeas
The specific stimuli is described in tlspecific stimuli modetypically
in a more detailed manner compared to the common stimuli mbee
as a timed sequence of events.

The motivation for separating the two types of stimuli infelient models
is to make the complete analyzable model modular, allowiegise of a single
common stimuli model together with several different sfiesttimuli models.
The specific stimuli models can be automatically generateoh fexecution
traces recorded from different systems configurations andtsns.

Instrumented

Runtime System Model Specification

Relevant test cases

A 4

» Dynamic Analysis

A A
Specific stimuli Common stimuli
model model
Behavior Model Environment Model

System Model (Analyzable)

Figure 4.11: Modeling environmental stimuli

As depicted in Figure 4.11, both the common stimuli model tnedspe-
cific stimuli model are based on dynamic analysis, i.e. rdiogs made on an
instrumented system. The environment interfaces, fourtiénmodel spec-
ification, are instrumented in order to register a time-gtamd an identifier

92 Chapter 4. Modeling Temporal Behavior

for each time an environmental event occurs. It is also ingmrto identify
relevant test cases for the dynamic analysis, in order towtgaealistic sce-
narios. Many different test cases can typically be foundystesm documen-
tation (test documentation) but in order to facilitate tleéestion of relevant
test cases, where the specific environment interfaces egiadntly used, it is
recommended to consult system experts.

Stimuli is classified based on the situations in which it ascB8y studying
the recordings of environmental stimuli in different siioas a certain stimuli
can be classified either as common stimuli or specific stindejpending on if
the stimuli is found in all recordings or only in subset of teeordings. If the
stimuli occurs in all recordings, it should be included i tommon stimuli
model. Otherwise, the stimuli should be included in the gjpestimuli models
corresponding to the test cases executed when recordirsgjingi.

present in all recordings is modeled as common stimuli, evtilmuli that
only occur in a subset of the test cases (recordings) shaufddadeled in the
specific stimuli models corresponding to the test-case. Sfeeific stimuli
models should include information on what test-case theatealdstimuli rep-
resent. This way, an analysis tool can attach this inforonatih the analysis
output, thereby avoiding possible mix-ups of analysis lteshased on differ-
ent test-cases.

4.3.2 Modeling Approaches for Environment Models

Given that recordings have been made providing the negeisdarmation on

inter-arrival times of different types of environmentahstli, the information

needs to be included in the environment models. One optida isse the
same solution as for modeling execution times and protigsiin the behavior
model, i.e. separate sets of model parameters for eachoanvémt model,
which contains the inter-arrival time information.

However, since the behavior of the environment tasks aiiedilp trivial,
they may be automatically generated based on the recordihigstherefore
not motivated to have two sub-models for each environmemtahdhe inter-
arrival time data may be integrated in the environment tagks ART-ML
implementation of a typical environment task is descritreBigure 4.12. The
example depicts an extension of ART-ML in the form of the keysv“En-
vTask”, which declares an environmental task.

This environment task is activated every p1l time units amdls@ message to
a task in the behavior model, TaskX, containing the value ‘After a delay
of d1 time units, another message is sent to TaskX, conthihia value “0”.

4.3 Modeling the Environment 93

Specific Stimuli Model

EnvTask SignalX
Trigger period pl

Behavior

{
send(TaskX, 1);
delay(dl);
send(TaskX, 0);

}

Figure 4.12: An environment task in ART-ML

This may e.g. correspond to when an 1/O interface of systemives a short
pulse on a “digital in”. It is assumed that TaskX is modeleddequate detail
in order to receive and react to these the messages.

In the same way as e.g. execution times are modeled in theibehzodel,
inter-arrival times and delays such as p1 and d1 may be mbdeseveral dif-
ferent ways. Section 4.2.4 that discusses the model pagasnéee. the quan-
titative information on the systems temporal behavior, tioeis basically two
methods for probabilistic modeling of the recorded infotiora Firstly, fitting
the inter-arrival time data to a theoretical distributiorsecondly, using values
from a list of observed values, i.e. an empirical distribnti Either approach
may also be used for environment models. For further inféionaon the use
of theoretical standard distributions the reader is refitto Section 4.2.4. Us-
ing list-basedenvironment models allow a more detailed analysis, instéad
using sampling in the analysis, the list of observed inteik-al times are used
in the same order as they where registered, in order to reptarded stimuli
exactly as it was observed. This is very suitable for modglire specific stim-
uli. Constructing list-based environment models is strafgrward, it is only
a matter of identifying the specific stimuli, as describediea and extract
lists of the inter-arrival times of the different types ofsjfic stimuli. It may
also be of interest to use worst case environment modelgewhe minimum
inter-arrival times are used all the times. Constructingstvcase environment
models is similar, but instead of storing all observed hateival times as lists
in the environment models, only the shortest inter-artivaés are stored, as
they typically correspond to the worst-case.

94 Chapter 4. Modeling Temporal Behavior

4.4 Discussion

This chapter has further motivated and explained the approgthis thesis by
presenting how analyzable behavior models may be utilizeddintenance of
complex embedded system. Together with Chapter 3 the ahapsavers the
sub-question Q1 stated in the introduction of the thesis:

Q1: What methods are suitable for extracting the informatiecessary for
a temporal behavior model from a complex embedded systeharimaptation
containing millions of lines of code?

A modeling process has been presented targeting complezdzal sys-
tems, specifying how to obtain and structure the necessémynation into a
set of submodels, a functional model, which is typically stoncted through
reverse engineering of the system implementation, ane titfeer components
containing different kinds of quantitative informatioigetmodel parameters,
describing the execution times, inter-arrival times arabpbilities used in the
behavior model, and two environmental models, describitegriarrival times
of common and situation-specific environmental stimuli.cdmponents apart
from the functional model may be automatically generatéugudynamic anal-
ysis. To automatically generate also the functional moslé@hiportant, chal-
lenging future work.

The modeling process emphasizes the development and usenotiel
specification serving as a specification for the modelingreéind focus. Each
task is modeled using different levels of abstraction ddpenon the tasks
importance for the properties of interest for analysis. tasks that are to be
modeled in detail, the important services and the statabas affecting these
services are identified and modeled.

Models constructed using this modeling approach should biggh quality
due to the well-defined modeling process adapted for the ttorHawever, to
ensure that a constructed model is a valid description ofyiséem, a model
validation activity is necessary, where model validatiechiniques are used
in order to increase the confidence of the constructed modéis is further
discussed in Chapter 5, which focus on model validation andatwalidation
techniques.

Chapter 5

Model Validity

Since a model is by definition an abstraction of a real systeemodel can not
precisely predict the behavior of a complex system in allatibns. This is
an inevitable consequence of the higher level of abstrnactionodels in com-
parison to the corresponding implementation. The highedllef abstraction
is, however, a desired property of a model. It improves ustdadability and
allows for easy prototyping and analysis. Even though a inedwmt a perfect
description of a system, it can be sufficiently detailed acleate in order to
allow for accurate predictions to be made with a high degfeswfidence.

How to determine if a model is sufficiently detailed and aetelri.e.valid,
is not trivial. A valid model is not “perfect” but an analysisthe model should
nevertheless give predictions that are “good enough”. Hiidity of a model
is investigated in an activity known asodel validation.

Model validation has been defined aibstantiation that a computerized
model within its domain of applicability possesses a satisiry range of accu-
racy consistent with the intended application of the mbHeCG™79]. Thus,
a model can not be shown valid in general, only for a speci&c #&cording
to the definition of model validation, a model can only bedaled given that
the following has been defined:

e The domain of applicability specifies the system that is described by
the model. For a model of the temporal behavior of a compldxeztded
system, this includes versions and setup of software, daw/bbrdware.

e The required accuracyis dependent on the properties of interest and
the situation. For instance, if the model is used for stuglyfire response

95

96 Chapter 5. Model Validity

times of software functions without hard real-time requoissts but with
requirements on user-perceived performance, i.e. typsplonse times,
it may be sufficient with, e.g. 10 % accuracy in the predidiof the
model, since the consequences of a minor error in the predsgare low
and can be easily verified after implementation. In otheasions, if the
model is used to predict properties critical for correctsgsoperation,
such as a critical response time or the utilization of a kuhitogical
resource, a much higher accuracy is required since the goasees of
an error in the prediction may result in a system failure dndady be
difficult to verify the analysis results after implementetti The worst
case scenario predicted by the model may be hard to test oredhe
system, and itis difficult to verify if the the predicted wbecase scenario
is the actual worst case scenario.

e The intended application of the modelconsidered is, as discussed in
Chapter 4, primarily behavior impact analysis with respectypical
changes of the system. Another application of the model &etue as
documentation.

This chapter proposes a five-step process for validatiormporal be-
havior models of complex embedded systems. The model validprocess
utilizes the tools presented in Chapter 3 and the behavipaatanalysis pre-
sented in Section 4.1. Section 5.1 provides a discussidregidtential threats
against the validity of a model. Section 5.2 presents thegsed validation
process, consisting of five tests of the model. Section S&udses the fourth
test in the validation process in greater depth, the obbéryaoperty equiv-
alence test. Section 5.4 discusses model robustness asehtwé¢he fifth and
final test in the validation process, the sensitivity analyshich is a test of
model robustness. Finally, Section 5.5 concludes the ehaptd relates its
contributions to the research questions of this thesiedtatSection 1.2.

5.1 Validity Threats 97

5.1 \Validity Threats

The need for model validation emerges from the risk of makiegjsions based
on a model that contains errors or lacks information aboytoirtant details
of the system’s behavior. The process of constructing a hafde software

system consists of several different activities and errotgd be introduced in
any of them. There are at least five potential error sources:

¢ the understanding of the system,

e the understanding of modeling language and tools,

the observations of the system,

the probe effect, and

o the level of abstraction.

The understanding of the system and domain In order to develop a valid
model, it is important that the person or persons that coosthe model, the
modeler understands the system’s software architecture and hawrks in
general, i.e. the roles, responsibilities, and dependeri@tween the subsys-
tems and the external systems. It is also important that tiaeefer understands
the typical use of the system, i.e. the domain in which it isdyjand the re-
sulting requirements. This is addressed by the modelinggs®proposed in
Chapter 4 through the development and review of a model fpattdon. How-
ever, missing or ambiguous information in the model speaific may result
in model errors.

The understanding of modeling language and tools The modelers must
have adequate knowledge about the different tools usedddeting and anal-
ysis as well as the semantics of the modeling language. Tidl anisunder-
standings or misinterpretations, the tools and modelinguage must be well
documented and communicated. It is important to documetht the gram-
mar of the languages as well as the exact semantic meanitg different
primitives. Moreovetr, it is also important to document moiéal issues, such
as the time unit used in the model (ms& or ns?). Such information may be
obvious for an expert, but may be confusing for developeasléss knowledge
of the details of the system’s temporal behavior.

98 Chapter 5. Model Validity

The observations of the system When constructing a model based on the
observations of a system’s behavior, it is important thatdbservations are
made in several different, but representative, situatinrgder to ensure that
as much as possible of the behavior of the system is capti@dinstance,

it is likely that a system that is exposed to large amountdiofudi from its
environment behaves differently from a system that is indits mode. Thus,

if a model is based on recordings from a single system enwigatt solely, it
may not be valid for other environments. The concepts okesygnvironment
and environment models are discussed in Section 4.3.

The probe effect If software probes are used to make recordings on which a
model is constructed, and then the software probes are rnthe behavior of
the system may be effected in such as way that the model iswgetwvalid. As
discussed in Section 3.2.1, the impact of software probesisnonly referred
to as the probe effect [Sch91]. In this thesis it is assumatittie probe effect
can be avoided by allowing the probes to remain in the syskéowever, this
may not be possible for some systems due to the cost of thekegri.e.
CPU and memory usage. Another solution to avoid the proleeeif to use
specialized hardware monitors that non-intrusively obséne system without
effecting the temporal behavior of the system [Sho02]. Thisowever not
always an option, since custom hardware is required.

The level of abstraction If information about important details of the sys-
tem’s behavior is missing, the model will be less accuratel the validity
of the model may also be more sensitive to changes as fewendepcies be-
tween tasks, state variables, and other system comporempateled. Missing
dependencies may prevent that a change in one part of a spstg@gates to
other parts of the model in the same way as it does in the retdsy As a re-
sult, the updated model may behave differently compardagaorresponding
updated system.

5.2 A Model Validation Process 99

5.2 A Model Validation Process

This section presents a five-step process for validatiorebfbior models of
complex embedded systems. The process utilizes the togdsided in Section
3.3. Each step in the process is a test that either fails thdemor allows
the model to pass to the next test in the validation procesw ifidividual
tests in this process have been previously proposed inrcdskrature, e.g.
[LMO1, Sar99], but not in this specific context.

Itis important to bear in mind that the purpose of model \atiioh is not to
show the validity of a model. This is is not possible in the samay as it is not
possible to show the absence of errors in a software impl&tien through
testing. Each test is only a single sample from a huge setsHiple behavior.
The purpose of the model validation is, in the same way as/aoéttesting, to
attempt to show that the model is incorrect. The more testepeed that fail
to show that the model is incorrect, the more confidence imtbéel.

The proposed model validation process starts with less galvgut also
less time-consuming tests, which allows for quick discg\adrany major er-
rors in the model. The more powerful tests in the later stéplseoprocess are
only used when the model has passed the previous tests vbiding the use
of overly powerful and time-consuming tests early in theédation process.

1. Trace comparisonAn execution trace from an analysis of the model is
visualized and subjectively compared with a correspondisigalization
of an execution trace recorded from the real system. Thelition
is accomplished by presenting the recorded executiondrg@phically
over time, using e.g. the Tracealyzer tool presented ini@e&.3.3.
The purpose of this test is to determine if there are majarreriin the
model or if the execution traces from the model are reasgrsblilar
to the execution traces from the real system. The trace cosapeatest
is discussed in Section 5.2.1.

2. Property comparison The second test compares execution traces in a

more detailed manner. Execution traces from a model arsadysl from

a real system recording are visualized with respect to afggbperties

of the temporal behavior, tremmparison propertiesuch as interarrival-
time and response-time distributions. Each property tegultwo visu-

alizations, one representing the model and the other reptiag the real
system. The vizualisations are subjectively compareddeicto identify

major differences in specific properties. The property carigon test is
discussed further in Section 5.2.2.

100

Chapter 5. Model Validity

3. Analysis variability Since an analysis (simulation) of a probabilistic

model corresponds to random samples from a very large setssilge
behavior, the values predicted by the model will differ be¢w analy-
ses. In this test several independent replications are wiithe model
analysis in order to study the amount of variability in thalgsis output,
i.e. the predicted values of different properties. If thalgsis variability
is too high the model is failed. The analysis variability denreduced
by making the model “less probabilistic” or use longer siatign runs.
Analysis variability is further discussed in Section 5.2.3

. Observable property equivalenceT he test of observable property equiv-

alence is a detailed numerical comparison between theqti@as from

the model and the behavior observed on the real system, asfrect
to concrete statistical measures of the comparison plieparsed pre-
viously, in the property comparison test. Minor errors ia thodel that
reflects in the comparison properties are identified by s and fail
the test if the differences exceed specified limits. ThisitEmtifies any
minor errors in the model, which may not be apparent in vigadbns.

The test of observable property equivalence is discusseletal in a

dedicated Section 5.3.

. Sensitivity analysisThe accuracy indicated by step 4 is not a sufficient

measure of model validity if the model is to be used for betvawvnpact
analysis or in other ways used to prototype changes. The imeeel
to berobustwith respect to typical changes, meaning that if the model
is exposed to a certain change, the impact of the changedhotre-
spond to the impact caused by the same change on the reahsyite
sensitivity analysis investigates whether or not the maisdbust with
respect to common types of changes to the syst#range scenarios
This is accomplished by performing a set of behavior impaetyses
of different change scenarios, where an expected resutiaa/ik from
experiments with the real system. Model robustness andethsitivity
analysis test is discussed in a dedicated Section 5.4.

Before the validation process can be initiated it is impatrta select at least
one system environment on which the tests in the model ‘a&idprocess can
be based, thealidation environment(s)An environment specifies e.g. what
test cases that are used to stimulate the system and the tofidlisturbances
in the form of interrupts, caused by network traffic or 1/O \tge as discussed

5.2 A Model Validation Process 101

in Section 4.3. A validation environment specifies the emvinent models as
well as the corresponding setup of the real system.

Preferably, more than one validation environment shoulddsal to better
compare the system and the model, since a model that is wadidg environ-
ment may not be valid in other environments. Unfortunatglyce the effort
of performing the test is linearly proportional to the numbgvalidation envi-
ronments used, only a limited amount of validation envirenis can be used
in order to keep the required effort on a realistic levelsltierefore important
to select the validation environments with care.

The validation environments should stimulate the model amyndifferent
ways in order to compare as much as possible of the model lmehvaith the
corresponding behavior of the real system. Since only adihamount of
validation environments can be used they should differ ashmas possible
from each other in order to compare the model with the reaéayi a variety
of situations. At least one validation environment showdrespond to the
presumed worst-case system stimuli that may occur in ardigtiessituation,
but it is also important to use validation environments esponding to the
normal use of the system, i.e. different common scenamatjding when the
system is idle.

The selected validation environments are used in all steffisegprocess.
Each test is performed once for each validation environpaertt if a test fails
for any of the validation environments, the model validatie terminated in
order to debug the model. When the model has been adjustdalidation
process is restarted from step 1.

5.2.1 The Trace Comparison Test

The first step in the process is trace comparison, i.e. \V@atan and com-
parison of execution traces. This may be performed by usiagitacealyzer
tool presented in Section 3.3.3. Two instances of the Tigreais started, one
displaying the execution trace from the model, and the atherdisplaying the
execution trace from an analysis of the model.

When comparing the traces, it is important to note that thees are sam-
ples of a very large set of possible behaviors. Even thoughalidation envi-
ronment has been specified, the model is still an abstracfitire real system,
modeled in a probabilistic manner. Hence, an exact matcha#ine expected.
However, it should be possible to identify patterns in thektaxecution de-
picted by the two traces. If the execution pattern of a task lfas been pre-
dicted by the model differs considerably from the obseorgtthe model will

102 Chapter 5. Model Validity

0.013.680 ctrl 0.019.050

cirl
ctrl ctrl
tsmPollTask

model_idle
tsmPollTask

model_idle
tsmPollTask

drive
ctrl model_idle
drive
ctrl

ctrl
cirl

cirl
cirl

ctrl
temPolTask model_idie

model_ide
tsmPollTask

drive
ctrl model_idle
drive
ctrl

cirl
cirl

0.034.926 0.040.978

Figure 5.1: Trace Comparison using the Tracealyzer tool

5.2 A Model Validation Process 103

fail the test.

An example is depicted in Figure 5.1, where two executiocesaare com-
pared side-by-side, one from an analysis of the model (omi¢fit) and the
other recorded on the corresponding real system. In thesys&m, the task
Drive always preempts the tagitrl, but in the model this is not the case. This
is a typical example of an execution pattern which may alsodsel as a com-
parison property in later tests in the process, such as tberedble property
equivalence test which will be discussed in Section 5.3.

As depicted by Figure 5.1, tHarive task has a matching inter-arrival time
(periodicity) and execution time, but it has the wrong affsempared tcCtrl;
it is therefore executed too early.

In general, itis likely that the first versions of a model aiéefd by this test,
but when the model becomes more refined, more demandin@testsquired.

5.2.2 The Property Comparison Test

The second step in the validation process is the propertypadson test. In
this test specific properties of the observed system behawid the corre-
sponding predictions from the model are visualized and @egbsubjectively.
This test has been discussed in e.g. [Sar99], where it wageefto as the op-
erational graphics test.

This test is stronger than trace comparison, as it apart &iaat of val-
idation environments also requires selecting a set of ptiggeto compare,
the comparison propertiesThis is very similar to the behavior impact analy-
sis presented in Chapter 4 and the regression analysisnpedsa Chapter 3.
In model validation, two execution traces are compared vaipect to a set
of properties, in the same manner as behavior impact asaysl regression
analysis. However, in these analyses the execution traeas the same ori-
gin, i.e. both are recorded from a real system (regressialysis) or both are
from model analyses (behavior impact analysis). In modkdiation, execu-
tion traces from the two different origins are compared, fsom an analysis
based on a model and one recorded from a real system.

The definition of comparison properties is a very importaart pf the val-
idation process, since the comparison properties are nsalll later steps of
the process. For each validation environment, all compansoperties are to
be visualized and compared. Suitable properties to conipainés test are re-
sponse time distributions (an example is depicted in Fi§L2¥ and utilization
of logical resources over time (see Figure 5.3). These ptiegare affected by
many different tasks and are, consequently, sensitive aoge Iset of possible

104 Chapter 5. Model Validity

differences between the model and the real system. Thepenies may be
presented in a scatter-plot, with the X-axis as a time-limthe Y-axis show-
ing the corresponding value, i.e. response-time of eachrioe of the task or
the utilization of the resource.

Since execution traces exists from the previous step, tracgarison, as-
suming that the generation of the visualizations are autedite main effort
in this test is then the visual comparisons of each propertgdch validation
environment. The amount of comparisons required may befisignt since it
is the product of the number of environments and the numbprayerties to
compare. If 5 environments are used for the model validadiwh 20 proper-
ties are to be compared, a total of 200 visualizations arergéed, resulting
in 100 comparisons. However, if each comparison takes orageel minute,
this takes less than 2 hours for a single person to perform

Task A- Response Time

10000

9000 -

8000 *
@ 7000
=
o 6000
£
[. . .
9 5000
S 4000 4 ce o * o 0 ¢ ee o o o o0
2 o o @ * * o LK 2 L4
g 3000 L o0
@ *

2000

*
1000 = -y .
o s M‘ - sos . T LR ‘ . pl
6500000 7000000 7500000 8000000 8500000 9000000
Instance Start Time (ps)

Figure 5.2: Visualization of the usage of a task response tim

Itis important to understand that the purpose of this testlisok for major
differences only. In most cases there will be small diffeeeven if the model
is of good quality. However, to determine if these differemare small enough
is done in a more systematic and objective way later in thiel@abn process.
Property comparison is a quick method of identifying the eana@rrors at an
early stage in the validation process, prior to more timescmning testing.

5.2 A Model Validation Process 105

Queue A

. MIUU

Utilization

0,4 0,45 0,5 0,55 0,6
Time (s)

Figure 5.3: Visualization of the usage of a logical resource

5.2.3 The Analysis Variability Test

The third step in the validation process, the analysis it test, is im-
portant when using probabilistic modeling since an analgsimulation) of a
probabilistic model may generate different results frometito time. The rea-
son for this is that a probabilistic simulation correspotala random sample
from a large set of possible behavior. If the amount of valitstin the analysis
results is large, this implies that the results from a sitaglalysis of the model
may not be representative for the system behavior. Thetsasiduch an anal-
ysis are not incorrect in the sense that the behavior pesiiny the model may
occur in the real system, but there are other situations intwthe system may
behave differently. Thus, such results are of low confidedAeeincrease the
confidence level of the analysis results, the analysis b#itiacan be reduced
by basing the predictions on multiple or longer executiacés.

The analysis variability test does not rely on visualizatiBy making sev-
eral independent replications of an analysis and calogatie statistic mea-
sures of the comparison properties, e.g. average respiones it is possible
to use standard statistical methods when calculating treuatof variability
for each statistic measure. A model passes the analysehiisi test if the

106 Chapter 5. Model Validity

amount of variability is low, e.g. below 1 %, for all compamisproperties in
all validation environments.

The statistical measures of the comparison properties eaiormulated
using the Probabilistic Property Language, PPL, and catedlusing the Prop-
erty Evaluation Tool, as presented in Section 3.3.2. Thiyaisavariability test
is mentioned in [Sar99] as the internal validity test.

5.3 Observable Property Equivalence

This section presents the fourth test of the model validgtimcess proposed
in Section 5.2, the observable property equivalence tdss f€st is a detailed
numerical comparison of specific properties of the tempoeakvior, with re-
spect to two execution traces. This enables a model and thesponding
implemented system to be compared in a more objective amdetktmanner,
compared to the property comparison test, which relies bjestive compari-
son of visualizations.

The test of observable property equivalence is made withesto the
comparison properties defined in step 2 of the validatiorcess, property
comparison, and in all validation environments. This tegpatentially very
demanding for the model, if many comparison properties élug\ny minor
errors in the model that reflects in the comparison propsestie pointed out by
this test, and depending on the desired tolerance, the nodgher failed or
passes the test.

The observable property equivalence test may, in the saypaswhe Anal-
ysis Variability test, utilize the Property Evaluation Tamd the previously
defined PPL specification of the comparison properties. Meweadditional
information, apart from the comparison properties and #teo$ validation
environments, are required in order to perform the obséevaioperty equiva-
lence test: the tolerance to use in the different compasisaly. the prediction
should be within 1 % of the observations. This tolerance isgsary in or-
der to compensate for the analysis variability. A model paghis test if it
is observable property equivalent to the real system, llg@redictions of the
comparison properties are within the specified tolerangdermal definition
of observable property equivalence is given in Sectior?5.3.

5.3 Observable Property Equivalence 107

5.3.1 Comparing Behavior

As presented in Section 5.2, the two first steps of the vatidgarocess rely on
a subjective comparison of visualizations of the behavidhe model and the
real system. In order to test the model validity in more dethiaccurate and
objective way, a numerical comparison is necessary.

Since a model is per definition an abstraction of the systeranalysis of
a model can not predict the behavior of the real system palgcis all situa-
tions. Hence, it makes little sense to compare the predmmédvior with the
observed behavior directly, event by event, especiallféf todel is proba-
bilistic. As an example consider Figure 5.4, which depibts predicted and
real response times of a task. Each dot represents the sespiore of an in-
stance, or execution, of the task where the Y-axis is theoresptime and the
X-axis is the time when the instance started.

Simulation Real System Recording

Task response time (ms)
Task response time (ms)
e 8 8 8 8

T T T T T T T T
1 2 3 4 1 2 3 4
Instance start time (s) Instance start time (s)

Figure 5.4: Response Time Distribution of task C - Simulatie. Real System
Recording

The temporal behavior predicted by the model resemblesahavior ob-
served on the real system. Distinct classes of response tiarebe identified
in the observed and the predicted behavior and these matghwedl. How-
ever, it is not possible to compare these two data sets tasénice by task
instance.

Obviously, an exact match of the execution traces is a tact stiiterion
of equivalence for probabilistic models. Instead, the akea traces have to
be compared on a higher level of abstraction by using the eoisgn proper-
ties defined in step 2 of the validation process, e.g. taghorese times. The
comparison properties used for visualizations in step Zally correspond
to distributions, so in order to allow for simple comparisagfitwo execution
traces, it is necessary to use statistical measures diegctiitese distributions,

108 Chapter 5. Model Validity

e.g. mean value, the median, various quantiles etc., indheesvay as in

the analysis variability test. Each statistical measureesponds to a single
numerical value which may easily be compared to the corredipg value ex-

tracted from another execution trace.

5.3.2 Observable Property Equivalence — A Formal Defini-
tion

This section gives a formal definition of observable propeguivalence. In
previous works, e.g. [AWNOA4b], this was presented as anvatgrice relation,
but since the relation of observable property equivalesc®t transitive, this
is not true. The relation expresses similarity, but not egjence.

A model and a corresponding system are observable propgutyadent if
they are equivalent with respect to a set of comparison ptiegei.e. statistical
measures of the observed temporal behavior. However, easdisd earlier,
since the model is an abstraction of the system, it is nepegsallow a certain
amount of tolerance in comparison.

In Definition 1 we formalize the observation of a systemthat is either
the real implemented system, executing on the real hargwara model of
a system executed in a simulator. The resulting recordiralist of time-
stamped events related to tasks-switches and operatiologii@al resources.
The environment specifies the configuration of the system and any external
stimuli of the system, as discussed in Section 4.3.

Definition 1. R = Rec(x, e, d)

The function Rec returns a recording, R, of the execution of the environ-

ment e, with the duration d time units. R is a list of eventgreteach event
contains a time-stamp, an event type and generic data, whergemantics are
specific for each event type. O

Definition 2 presents the function Eval, which evaluatessiesy property
p with respect to the recording R.

Definition 2. v = Eval(p, R)

The function Eval evaluates the property p with respectéadicording R. The
result, v, is a decimal value. If the property p is a boolegpression, v is either
1 (true) or O (false). O

Since a certain amount of tolerance is often necessary inadhgarison,
we introduce a function which expressing the tolerancenadtbfor a specific
comparison property,

5.3 Observable Property Equivalence 109

Definition 3. t = Tol(p)

The function Tol returns the maximum allowed differencevbeh two evalu-
ations of the same property p on two different recordingse turn value, t,
is a decimal value. If the property p is of boolean type, theefion returns a
tolerance of 0. O

Definition 4 presents the definition of observable propegtyiealence. If
evaluations of all comparison properties with respect #rttodel results in
values sufficiently close to the values from the real syseonding, the model
and the system are observable property equivalent.

Definition 4. Given that P is the set of comparison properties, M is a mofilel o
the system S, & is the environment model of M and; is the environment of
the system S, iff

Vp € P : Abs(Eval(p, Rec(M, Epr,d))—Eval(p, Rec(S, Es,d))) < Tol(p)

then S= M, i.e. S and M are observable property equivalent with respzP,
in the specific environment.
O

Obviously, this relation of similarity relies heavily onglsomparison prop-
erties and tolerances used. It is important to select aldait®t of comparison
properties in order to compare as much as possible of the/lmelod the model
with the corresponding system. A discussion regarding éfecion of com-
parison properties is therefore provided in Section 5.3.3.

5.3.3 Selecting Comparison Properties

The observable property equivalence test depends on as@tngiarison prop-
erties. If sufficient comparison properties have been usedtee comparison
has been made with little tolerance, any model that passeshtervable prop-
erty equivalence test should be highly accurate. If too feleyant) compar-
ison properties is used, the comparison is of low value. d3lhi, as many

comparison properties as possible should be used, in the say as when
defining test cases for software. However, in the same wayhas wefining

test cases for software, it is only possible to use a limitadant of test cases.
The selection of comparison properties is therefore ctfimiahis test as well

as other tests in this process.

110 Chapter 5. Model Validity

In order to allow for numerical comparison of two executioaces, the
comparison properties used are statistical measures oétbeded data, in the
same way as in the analysis variability test, i.e. the thiegh ©f the valida-
tion process. Each statistical measure corresponds t@ke sinmerical value
which may easily be compared with the corresponding valteeted from
another execution trace. Examples of suitable statistiedsures to use as
comparison properties are:

e The maximum task response time

e The average task response time

¢ Different quantiles for task response times
e The average task interarrival time

Typically, for each comparison property used in step 2 of/dirlation pro-
cess, the property comparison test, a set of statisticatumea are formulated.
These statistical measures correspond to concrete caupamioperties which
may be specified as PPL queries and evaluated using the Brépaluation
Tool.

The comparison properties typically includes explicitsfided system re-
quirements and other system properties of interest foryaisabut may also
include system properties that are of less interest whelyzing the model,
but required in order to increase the coverage of the cospariWe refer to
these extra properties agpporting propertiesThese supporting properties are
typically effected by many aspects of the system and cheniaetthe temporal
behavior. Typical supporting properties are average taigkarrival times and
response time properties that are not explicit requirement

Selecting the appropriate system properties for the coisgrais very im-
portant in order to achieve a valid comparison. As many sygieoperties as
practically possible should be included in the set of consparproperties in
order to get a high confidence level in the comparison. Howelie use of
irrelevant comparison properties may result in the rejectf a valid model.
In [Sar99] this is denoted &ype | error, or themodel builder’s risk The op-
posite situation, i.e. an erroneous model is accepted af wady occur if too
few relevant comparison properties are used or if the moaeinot been suf-
ficiently analyzed in order to detect the erroneous behauiofSar99] this is
denoted aype Il error, or themodel user’s risk.

Even if a large set of system properties are used for a cosgathere
is a risk of accepting an invalid model, e.g. if they repreden few types

5.3 Observable Property Equivalence 111

of system properties, For instance, imagine that only nespdime properties
are used as comparison properties. The rate of a task cothidticase differ
between the system and the model without being discoveltbe icomparison.
If system properties related to patterns in the schedulndeen used as well,
this would have been discovered. Thus, the selected sysi@pemies should
not only be relevant, but also represent a variety of aspsctise temporal
behavior.

We have identified three general types of comparison priggettiat are
suitable for comparison of the temporal behavior of comgmbedded sys-
tems:

e response-time properties,
e pattern properties, and

e resource utilization properties.

Response-time properties The response time of tasks can be used as a com-
parison property, since it is dependant on not only the ei@tdime of the
task, but it also depends on the temporal behavior of otls&stal he response
time may be interesting in terms of worst case, since it imigha requirement

(a deadline), but also the distribution of response timesbesaused as a sup-
porting property, as it contains a significant amount of infation about the
temporal behavior of the system.

Pattern properties It is often possible to identify patterns in the scheduling
of tasks and in the occurrence of different internal eveAtsystem property
of this type can, for instance, be that a certain fractiorhefinstances of task
A are preempted by task B. The occurrence of a certain pattéhe execution
time of a task is also a pattern property that can be used fapadson.

Resource utilization properties Properties in this category include those re-
lated to logical resources, such as the minimum or maximuhzaitton of
message queues, how long a task waits for a message, or hemvatask
writes or reads messages from the buffer. Another exampdaaf a property
is the probability of a certain message buffer being emptyuid).

112 Chapter 5. Model Validity

5.4 Model Robustness

A model isrobustwith respect to a change in the implementation of the system
if the change, when applied to the model, effects the priedistbased on the
model in the same way as it effects the observed behavioreddythtem. If a
model is robust, it implies that the relevant behaviors efgiistem are indeed
captured by the model at an appropriate level of abstractinrthis section
we propose a method for determining the robustness of a letrawdel of a
complex embedded system. This activity is referred tosenaitivity analysis

To exemplify the importance of model robustness, considarstem con-
taining a binary semaphore protecting a shared resourceneidut occurs if
a task has been waiting for the semaphore for a certain pneditime. If the
time-out occurs, the task is activated as usual, but exetontger than normal
due to the necessary error handling. In all previous vessidthe system, this
time-out has never occurred. If the time-out is left out wkienstructing the
timing model of the system the model still seems accurateedine time-out
never occurs.

However, as a result from changing the system, e.g. incrgdbe exe-
cution time of another task, the time-out will in some casesue Since the
time-out was not captured in the model the system’s behavilbnow differ
from the predicted behavior.

Our approach to sensitivity analysis is influenced dyggtem identifica-
tion. System identification is a technique used in the domain ofrobthe-
ory [Joh93]. By measuring and observing the input-outplati@nship be-
tween signals in the process a model can be determined irs frantransfer
function. Validating models based upon the system ideatifia approach is
somewhat related to testing. Typically, output signalspeslicted by using
the model which are then compared with the output signalseophysical pro-
cess. Hence, the model is regarded as correct if the analydithe physical
processes generate approximately the same output, whenittedhe same
input.

Testing the model with different input signals and compatire prediction
with the signals produced by the actual system is acceptibém that the
process is continuous in its nature. It is fair to assumewlgatan interpolate
the behavior in between the tested signals. However, canpaftware is not
continuous; they have a discontinuous nature, meaningheaiehavior may
change dramatically as a result of small changes in thersystemodel of a
software system can therefore quickly become invalid asyiséeem evolves,
if the model is not robust with respect to typical changes. aBglyzing the

5.4 Model Robustness 113

impact on the system caused by different changes, it is pledsi determine if
the model is sensitive to such changes, i.e. less robust.

5.4.1 Sensitivity Analysis

In this section, we will present how to analyze the robustieés model using
a sensitivity analysis. The basic idea is to test differdterations and verify
that they effect the behavior predicted by the model in thmesavay as they
effect the observed behavior of the system. First a sehafge scenariokas
to be selected. The change scenarios should be repregefitatihe probable
changes that the system may undergo. Typical examples afjelsecenarios
are:

e to change the execution times distribution of a task or setvi
e to introduce or remove new services in existing tasks,

e to change the usage of logical resources.

The selection of change scenario requires experiencediemgi that can
perform educated guesses about relevant and probableehdhig also valu-
able to study the documentation of previous changes to gtersy i.e. change
logs, in order to identify different types of common changes

Given that a set of N changes scenarios have been definedxhstep is
to construct a set of N systems variafif, ..., Sy } and a set of correspond-
ing models{ M, ..., My} by applying the change scenarios on the original
versions of the system and model.

Note that applying the change scenarios to the system doesqwore real
implementations of new features, i.e. functional improeets of the system.
The sole purpose of the necessary changes is to reflect tiaefimpthe tempo-
ral behavior caused by the change scenarios, for instanedding an empty
loop that increases the execution time of a specific task.sd lebanges are
therefore easy to implement. The model variants are castetiun a similar
way, by applying the N change scenarios to the original model

Each model variant is then compared to its correspondirtgsygariant by
investigating if they are observable property equivalerdefined in Definition
3, Section 5.3. If all variants are equivalent, including triginal model and
system, the model is robust with respect to the change sosn&ormally we
define the robustness test, sensitivity analysis, as fetlow

114 Chapter 5. Model Validity

Definition 5. A modelM is robust with respect to a system implementafion
and a set of change scenari6 iff:

YVee C:S5.= M,

whereS, and M, corresponds to the implementation of the change scenario
on the systens and modelM/ respectivly. O

As an example, consider a sensitivity analysis consisting single val-
idation environment and a single change scenario: an dvecakase in the
execution time of task Y by 100s. The increase in execution time is imple-
mented in the real system by e.g. an empty loop tuned to exéout00us.

A corresponding ART-ML model is changed by adding an exestdatement
to the task, specifying 100s additional execution-time consumption.

The next step is to perform recordings of the modified systersion in
the selected validation environment (test case etc) andagsis of the modi-
fied model using the appropriate environment model. Therd#ag of the real
system is compared to the analysis output with respect todhmparison prop-
erties, which, in this case, should include at a minimum theage response
times of task Y. If the model is robust with respect to this i@ scenario
there should not be any statistically significant discregsin this compari-
son, assuming that the model was sufficiently accurate pithre sensitivity
analysis. The general sensitivity analysis process istitited by Figure 5.5.
This process is performed for each validation environment.

A sensitivity analysis can be regarded as a behavior impedysis, where
the expected result is known from recordings of the protetypplementa-
tions. Since change scenarios are rather abstract désesf changes, they
are representative for a large set of concrete changes sptwfied type. For
instance, the change scenariocreases the execution time of task X with 100
us in all executions’is representative for a large set of changes to internal
computations in the task which results in a similar incréaseverage execu-
tion time.

It is therefore not necessary to perform the sensitivitylymig every time
the model has been updated and is to be validated. It is suffifia sensitivity
analysis is performed on the initial model of system, aftajonchanges of the
model, or if new change scenarios are identified. A sensitamalysis is also
necessary if details are removed from the model, i.e. thel lefvabstraction
is increased. Thus, a sensitivity analysis is valid as l@greanges are made
to the model that can be considered equivalent to one of thegehscenarios
used in the sensitivity analysis.

5.4 Model Robustness 115

Model M, —PC-D Model M,
3
(—Ig Model M,
A
Y
<+> Model My
A
Y y
Change Change | . .| Change Comparison Comparison | | Comparison
Scenario 1| | Scenario 2 Scenario N M;-S; M, -S, My - Sy
A 3 A
N
+ System S,
© :
y
+\ System S,
y
System S, —PG-> System S;

Figure 5.5: The sensitivity analysis

A sensitivity analysis typically represents a significafibee. If e is the
number of validation environments|s the number of change scenarios, and
p is the number of concrete comparison properties, the nuaieumerical
comparisons required in a sensitivity analysig is ¢ x p.

If using PPL, described in Chapter 3, for specifying the ceteccompar-
ison properties, the Property Evaluation Tool, PET, can $exluo evaluate
and compare a batch of PPL queries in a single job. Howevéheirtcurrent
implementation this is possible only with respect to twoaeimsn traces at a
time. Thereforeg x ¢ runs of PET are necessary, where each run compares two
execution traces with respectocomparison properties, one execution trace
from a model variant and one execution trace from a systeranafThus, the
comparison of execution traces is relatively simple. Theetconsuming part
is the generation of the execution traces for comparisomufigimulations of
the model is relatively swift, to make a small change of theled@nd run an
extensive simulation typically takes 1-2 minutes accaydmour experience.

However, to record the behavior of the real system varianésmore time
consuming activity. Complex embedded systems often takesiderable time
to compile and start up, so each execution trace often takesrutes to gen-
erate. Since x c sets of system variants and corresponding models have been

116 Chapter 5. Model Validity

definede x c recordings are therefore necessary. Thus, if three validatvi-
ronments and five change scenarios have been defined, mgthrdiexecution
traces takes at least 5 houBsx 5 x 20 minutes), while the simulations are
approximately 10 times quicker.

5.5 Discussion 117

5.5 Discussion

In this chapter we have proposed an approach for validatianazlels de-
scribing the temporal behavior of complex embedded systéimis approach
consists of a five-step model validation process targetingpbral behavior
models of complex embedded systems.

The proposed validation process answers the second sstiaué?) of
the research questions stated in Section 1.2.

Q2: What methods are suitable for validating models descrittivgytempo-
ral behavior of complex embedded systems?

The process consists of five steps, increasingly demanelitg of model valid-
ity. These tests are performed with respect to a set of v@id@nvironments
and a set of comparison properties. Different types of blétaomparison
properties have been described.

The proposed validation process does not only consideriithiéagty be-
tween the model and the current version of the system, bataiatains a
sensitivity analysis, a method for evaluation of the robass of a model based
upon a set of change scenarios.

The individual tests have been previously proposed in rebdéerature,
but in other contexts. Even though there are other methadkable for model
validation, these five methods are especially suitabledbdation of temporal
behavior models.

Chapter 6

Conclusions

Early work preceding this thesis [WAND3a, ANO2] presented the modeling
language ART-ML, a simulator for ART-ML models and an indigdtcase
study which showed the viability of the approach. Later WidkANO3b] pre-
sented PPL, the Probabilistic Property Language, allowiegpecification of
probabilistic properties of interest for analysis. Thiedts further contributes
by presenting a solution to a fundamental problem of thig@ggh:

Q: How can models be developed that accurately describe tmpdeal be-
havior of complex embedded systems?

The main research question, Q, was broken down into two sgiigus, Q1
and Q2. By providing answers for these subquestions, the quagstion Q is
thereby answered.

Q1. What methods are suitable for extracting the informati@tessary for
a temporal behavior model from a complex embedded systeharmaptation
containing millions of lines of code?

The thesis has proposed a framework that divides a tempehavior model
into four components:

e The functional model, a set of behavior descriptions (imapee pro-
grams) describing the behavior of the tasks and servicéinytstem.

e The model parameters, a set of parameters of the functioodéhmec-

119

120 Chapter 6. Conclusions

essary for describing a systems temporal behavior, e.guéra times.

e The specific stimuli model, describing environmental stimssociated
to certain scenarios, e.g. a particular test case.

e The common stimuli model, describing environmental stimolk spe-
cific to a particular scenario, but commonly occurring.

This thesis proposes a modeling process where the funtiimael is obtained
through reverse engineering of the systems implementatidrithe other three
components, containing quantitative information of thstegns temporal be-
havior, are obtained through dynamic analysis, i.e. aibfsrecordings of
the systems temporal behavior. This modeling process,hnduasists of both
of dynamic analysis and reverse engineering, is proposad aaswer for Q1.

Given that a temporal behavior model has been developesingdessary
to assure that the model is valid, i.e. accurately descthmesystems temporal
behavior at an appropriate level of abstraction. The mafteow to assure the
validity of temporal behavior models is the second sub-tioe€2:

Q2: What methods are suitable for validating models descghiime tempo-
ral behavior of complex embedded systems?

This thesis proposes an answer for Q2 in the form of a procesaddel val-
idation consisting of a series of increasingly demandirggstef the model:
trace comparison, property comparison, analysis vaitghilbservable prop-
erty comparison and, finally, sensitivity analysis. The=sg have been pre-
viously proposed in research literature, but not in the exintf validation of
temporal behavior models. Other tests of model validityehlagen proposed
in the literature, but the five tests proposed in Chapter & haen found espe-
cially suitable for validation of temporal behavior models

To support the solutions proposed, a set of three tools hese teveloped
and are presented in the thesis:

e The Tracealyzer, a tool for visualization of execution &sc The tool
graphically presents the task execution together with &heas of generic
probes over time. The tool supports the model constructiongss by
allowing the modeler to better understand the temporal\iehaf the
system and also supports the first step of the proposed tialiqaocess,
the trace comparison.

6.1 Future Work 121

e The Property Evaluation Tool (PET), a tool for analysis aachparison
of execution traces with respect to a set of PPL queries. REWsa
for the behavior impact analysis presented in Chapter 4 amdaiso be
used in the three latter steps of the model validation popessented
in Chapter 5, analysis variability, observable propertyiegience and
sensitivity analysis. PET is the firstimplementation of L language
proposed in [WANO3b]. The implemented version of PPL haseee
tended in comparison to the original specification, as prteskin Ap-
pendix B.

e A software behavior recorder for the commercial RTOS VxVior&l-
lowing for the recording of execution traces for the aboventiomed
tools. The overall design of the recorder is presented begetith an
evaluation of its impact on system performance.

These tools have been introduced in the software developaiehBB
Robotics, a world leading developer of industrial robotd sobot control sys-
tems. The software behavior recorder has been integratbdiirrobot control
system and is activate by default, also in the releasedoressif the system.
This allows developers at ABB Robotics to use the Tracealigredebugging
as well as general system understanding and PET for mornsgst analysis
of the systems temporal behavior. Another use of a dynanailysis tool such
as PET is what we refer to as regression analysis, i.e. to ammpcordings
from the latest version of the system with recordings of &ipres system ver-
sion. This way, it is possible to automatically identify @sited impacts on
the temporal behavior caused by recent changes. Regresstysis was pre-
sented in Chapter 3. The regression analysis is being intextigradually at
ABB Robotics, in an initial phase for a single subsystem.

6.1 Future Work

This thesis is based on experiences from complex embedditehsy devel-
opment and on earlier case studies, but the solutions pedpasthis thesis
have not yet been validated in an industrial context. Planguture studies
therefore include a modeling case study, where the practgability of the

modeling and model validation processes proposed in teEglare to be eval-
uated by applying them on a real complex embedded systemgddleof the

study would be to perform realistic behavior impact anadys&ing the devel-
oped model and confirming the accuracy of the analysis bydmphting the

122 Chapter 6. Conclusions

analyzed change scenarios and to make recordings of theegpsigstem in
order to identify the real impact. Apart from the modelingeatudy required
for validation of the solutions proposed in this thesis, ynateas for future
research exist. The most relevant are:

e Automated modeling
e Alternative analysis methods
e Regression analysis case-study

We intend to look into all three areas, which are further dbsd below.

6.1.1 Automated modeling

The effort of constructing a temporal behavior model is tle@akest link of the
behavior impact analysis approach. By automating the oactgtn of models
as much as possible, the effort required for constructirg) \alidating the
necessary model can be significantly reduced.

The model framework proposed in this thesis consists of ioumponents,
where three components, the model parameters and the tadistiodels, can
be automatically generated by using dynamic analysis. Whetional model
can be extracted from the source code using a special purpesese engi-
neering tool that we plan to implement. This tool would egtrand analyze
the function call-graph of each individual service in a taskrder to identify
activations of other tasks. This is accomplished by conmggttie names in the
function call-graph with a list of names corresponding tmoaon OS services,
such as IPC communication. For each match, the path of desstored and
used to construct a rough model, an abstraction of the realeimentation
focusing on selections and calls to OS routines. Only famctalls that en-
capsulate a call to an OS routine are included in the modeis;Tiha service
does not use any OS routines, the service will only be modeidrespect to
its execution time. Even though the tool recognizes and fsaaidections, it
will not attempt to analyze the conditions of the selectjdng instead model
the selection in a probabilistic manner. The statisticidrimation required for
probabilistic modeling of selections is obtained throughammic analysis, i.e.
recording the outcomes of the selections during executidheosystem. The
tool automatically inserts the necessary code instruntientavhile analyzing
the source code.

In order to obtain more detailed models, it is possible to nadly ana-
lyze the conditions of the modeled selections and improgertbhdel manually.

6.1 Future Work 123

However, a solution must be found to support evolving systemhere the au-
tomatic model synthesis needs to be repeated after eachebéthe system.
If the model has been improved manually after synthesisyasyathesis will
require a migration of these improvements to the new modedrder to avoid
the need for manual migration, an automatic solution is s&ag. In a further
perspective, program analysis techniques such as prodjang$Tip95] may
be used to automatically model the conditions of selectiaiich effectively
solves the problem with migration of manual improvemensshigh quality
models, with a minimum of probabilistic selections, colién be generated
automatically.

6.1.2 Alternative Analysis Methods

This thesis has assumed the use of random simulation assanatgthod.
There are however other analysis methods based on sinuldigture work
therefore includes investigating the use of a multi-stagrikation approach,
in many ways similar to genetic algorithms. Compared togisamdom sim-
ulation only, this analysis method is expected to bettentifie the possible
worst-case scenarios of a model. The first step in this rstdtije simulation
process is to run a large series of random simulations, iaerdadidentify a set
of interesting states on which to focus further simulatiombese interesting
states correspond to situations with extreme values in eifgga property of

interest, e.g. a task’s response time. By storing the sionlatate preceding
these situations, a large amount of random simulations egetformed, start-
ing from this state. This way, the analysis is focused ongtigating scenarios
likely to be “close” to a worst case scenario. This procesy bmrepeated
several times in order to further focus the analysis, whftécévely identifies

a scenario resulting in an extreme value. There is howevek &t this value
may only be a local maximum, and that there are other scenammnpletely
different, that result in even higher values, e.g. resptinses.

6.1.3 Regression Analysis Case Study

Given that regression analysis (Section 3.1.3) is intreduat ABB Robotics,
relevant research areas include the verification of the @rpeeffect, i.e. re-
duced maintenance cost for the company. This can be ina¢stign the form
of a case study. This would behalistic single case studiin03], motivated

by the belief that ABB Robotics represents a typical casegitypical example
of a company developing a complex dependable softwarerayste

124 Chapter 6. Conclusions

Question and Propositions The question in focus of this case study is how
the introduction of regression analysis will effect the lijyaof the software
within the robot control system. Thamit of analysigYin03] is the introduction

of the analysis method. We believe that, as a result of thearedysis tool,
more potential problems related to timing and resourceeaisaljbe reported
by system developers during the 12 months after the intti@uof regression
analysis, compared to the 12 months preceding the intramuet this analysis
method. Due to the increase in potential problems discayénere should be
a decrease in the number of errors reported from late sysstimg and end
users.

Collecting the Data ABB Robotics has an extensive database containing
suggestions for improvements and error reports from sydevelopers, testers
and end users. The reported errors are often well documenteglach error
reported, there is a description of the error and what astioat have been pro-
posed. The developer(s) that are assigned to the errortrepaally extends
the error report further and add a description of how the lgralwas solved.

By searching this database, it is possible to adequatdiypatst the num-
ber of errors related to timing or resource usage. A singlecsof evidence
is however not sufficient. Potential problems that are disoed are often not
reported formally, and will therefore not be in the databalseorder to ac-
commodate for this weakness, the case study will also aoimtgerviews with
developers. This may also help to explain error reportsddarthe database
as well as to give an estimate on how often the analysis toelssed, the de-
velopers’ opinion on the usability of the tools and hopsfallso examples on
when the analysis tools have reported potential problems.

Appendix A

ART-ML 2.0

ART-ML is a modeling language developed for describing #ragoral behav-
ior of complex software systems with real-time requirerserAn ART-ML
model consists of a set of tasks communicating through com@f® services
such as message boxes (IPC) and semaphores. An ART-ML tasistoof
two parts, a set of attributes, such as scheduling priaityg, a behavioral de-
scription which is an abstraction of the corresponding tagke real system,
describing both temporal and functional behavior.

This appendix describes ART-ML version 2.0. Compared toAR&-ML
version 1.0 [ANO2, Wal03, WAN03a] the differences are:

e |tis based on ANSI C and therefore allows all construction&NSI C
embedded in the model.

¢ Anew statement “pswitch” for probabilistic selection, laging “chance”

e The execute statement has been extended to accept refeterdistri-
butions of any type, declared elsewhere in the model.

Models in ART-ML 2.0 are intended for analysis in the ART-MLOZim-
ulation environment, which is under development. An arialgéa model in
ART-ML 2.0 consists of three stages: translating the model pure ANSI
C program, compiling and linking with the ART-ML 2.0 C-libmaand finally
executing the resulting executable file, which produceswdput in the form
of an execution trace. This process is fully automated. €bkalting execution
trace may be inspected using the Tracealyzer tool or andlyzieag PET, both
presented in Chapter 3 of this thesis.

125

126 Appendix A. ART-ML 2.0

Elements of ART-ML 2.0

The new version of ART-ML contains the following elements:

C-Block

A C-block is a piece of ANSI C code encapsulated in the ART-Madal. A
c-block is declared using the keyword CBLOCK and ended bykéhavord
END. C-blocks are global and declarations inside a CBLOGKvasible from
all tasks in the model.

Message box

A message box is a FIFO buffer storing messages between tAskessage
box is declared using MESSAGEBOX keyword, followed by namd max-
imum size of the FIFO buffer. An ART-ML task may put messageshie
message box using the sendMessage library routine andrfeishages using
the recvMessage library routine.

Semaphore

An ART-ML semaphore is a classic Djikstra binary semaphpreyiding mu-
tual exclusion between tasks. A semaphore is declared tierSEMAPHORE
keyword, followed by the name of the semaphore. A semapsdoeked us-
ing the semwait library routine (corresponding to Djikstra’s P) andessed
using sempost routine (corresponding to Djikstra’s V).

Task

ART-ML tasks define the behavior of the system. A task cossikthree parts,
its name, its attributes and its behavior. The attributessaheduling priority
and task activation strategy. The attributes can be one oz ofdhe following
among.

e TASK TYPE:

— PERIODIC,
— ONESHOT,
— SPORADIC

127

e PERIOD: (value) — The periodicity of the task (if periodic)

e DISTR: (identifier) — A reference to a specific inter-arriiahe distri-
bution declared in the model. The inter-arrival time dizitions are
declared in the same way as execution time distributions.

e OFFSET: (value) Optional offset of periodic or one-shoksas

e PRIORITY: (value) The priority of the task (between 0-25%)exe O is
the best priority in the system

The behavior is described using a special C-block, idedtife@ng the key-
word BEHAVIOR, that immediately following the attributeshe BEHAVIOR
C-block is ended using the keyword END, which also ends thk tkeclara-
tion. When transforming the ART-ML model into ANSI C, the BEMIOR
C-blocks are transformed into an ANSI C functions, the ced@érefore sub-
jectto the same rules as code in the body of an ANSI C functfariables and
types declared in a BEHAVIOR C-block are therefore not asibés outside
the task.

Syntax of language elements

Message box - declaration
MESSAGEBOX name size;

Example:
MESSAGEBOX MBOX9 5;

Message box - sending

int sendMessage(MBOX mbox, int msg, int timeout);

Example:

result = sendMessage(MBOX9, REQUEST7, 1000);
if (result == TIMEOUT)

{

/* time out*/

128 Appendix A. ART-ML 2.0

Message box - receiving

int recvMessage(MBOX mbox, int timeout);

Example:

result = recvMessage(MBOX9, FOREVER);
switch (result)

{
case REQUESTL: ...

break;
case REQUEST2: ...
break;

}

Semaphore - Declaring
SEMAPHORE name,;

Example:
SEMAPHORE sem7;

Semaphore - Locking
int sem _wait(SEMAPHORE sem, int timeout);

Example:

result = sem_wait(sem7, 10000);
if (result == TIMEOUT)

/* failed locking the semaphore */

129

Semaphore - Releasing
void sem _post(SEMAPHORE sem);

Example:
sem_post(sem?7);

Inline C declarations

CBLOCK
/* c-code */
END

Example:

CBLOCK
int sys_online = 0;
const int CODE_5_MSGS_AVAILABLE = 123;
const int CODE_GENERIC_DATA = 125;
END

Declaring a task

TASK name
Attribute0O: valueO

AttributeN: valueN
BEHAVIOR
/* c-code*/

END

Example:

TASK SYSTEM
TASK_TYPE: ONESHOT
PRIORITY: 0O
BEHAVIOR
sleep(40000);
sys_online = 1,
END

130 Appendix A. ART-ML 2.0

An ART-ML 2.0 model

CBLOCK
#include "modelparameters.h”
/* where execution time distributions */
/* are defined (S1, S2, C1, C2..) */

int sys_online = 0;

const int CODE_5_MSGS_AVAILABLE = 123;

const int CODE_NET_COMMAND = 124;

const int CODE_GENERIC_DATA = 125;
END

[* messagebox for sensor data */
MBOX CTRLDATAQ 5;
MBOX CTRLCMDQ 4;

[* This task produces data by reading a hardware sensor */
TASK SENSOR
TASK_TYPE: PERIODIC

PERIOD: 2000
PRIORITY: 1
BEHAVIOR

static int msg_counter = 0;

execute(S1);

if(sendMessage(CTRLDATAQ, CODE_GENERIC_DATA, 0) > -1)
{

msg_counter = msg_counter + 1;

if (msg_counter == 5)

{
execute(S2);
sendMessage(CTRLCMDQ,
CODE_5 MSGS_AVAILABLE,
FOREVER);

msg_counter = 0;

END

131

TASK CTRL
TASK_TYPE: ONE_SHOT
OFFSET: 10000
PRIORITY: 1

BEHAVIOR

execute(C1);

while(forever)

{
if(recvMessage(CTRLCMDQ, forever) > -1)
{
int i;
fori = 0; i < 5; i++)
{
recvMessage(CTRLDATAQ, forever) > -1)
execute(C2);
}
execute(C3);
telse{
Ilerror
execute(C4);
}
}

END

132 Appendix A. ART-ML 2.0

ART-ML Library routines

The following ART-ML specific routines are available in an ARIL task:

int sendMessad®BOX mbox, int msg, int timeout)

The message msg is sent to the messagebox mbox. If mbox ihtubending
waits for an empty slot for the duration specified in timeditimeout is FOR-
EVER, it waits forever, if it is specified to O, it immediatedyports if there is
no empty slot in the messagebox. If a timeout occurs, thenewde is TIME-
OUT, otherwise OK. The message is a single 32-bit integarevaNegative
values are not allowed, they are used for error codes.

int recvMessag@IBOX mboyx, int timeout)

A message is received from the messagebox mbox. If mbox isyethp task
is blocked until a message arrives or the timeout occurgndaut is specified
as FOREVER (-1), no timeout will occur. If timeout is spedtfi® O, the task
is not blocked by an empty mbox, but immediately timeoutsiifrmessage is
available.

int semwait(SEMAPHORE sem, int timeout)

This routine attempts to lock a semaphore for a specified atafuime. If
the semaphore is already locked by another task, the tadkdkda until it
is allowed to lock the semaphore or the timeout occur. If #tr@aphore was
locked, the return code is OK, otherwise, if a timeout ocgtive return code
is TIMEOUT. If timeout is specified as 0, the timeout will imdiately occur
if the semaphore was already locked. If the timeout is spetth FOREVER,
semwait will never timeout.

int sempos{SEMAPHORE sem)

A previously locked semaphore is unlocked. If other tasksveaiting to lock
the semaphore, they will be made ready to execute. Therarameturn codes:
if the semaphore is already unlocked or is locked by anotm, tthe return
code is ERROR, otherwise OK.

void delay(int time)
A call to this routine puts the task to sleep fonetime units. After time time
units the task is resumed and put in the ready-state.

133

Modeling execution time

The execute statement is used to model the execution tinwdef ce. the con-
sumption of CPU time. Depending on the selected level ofrabsbn when

constructing the model, an execute statement can reprasentle task or a
smaller section of code. The execute statement takes antexetime distri-

bution as parameter from which it samples a value, the anmafu®PU time to

consume. The consumption of time corresponds to advank@gimulation

clock, which drives the simulation forwards. During thi® turation of an
execute statement the task may be preempted by other tasttsaticase, the
execute statement remembers the amount of execution tiitn® leonsume,
and continues consuming the remaining CPU time when theiseagfain al-

lowed to execute.

The discrete execution time distributions used in the eviersion of ART-
ML will still be supported by ART-ML 2.0, e.g.:

execute((10, 1000), (90,1300)):

In the above presented example, the probability of selg@mexecution
time of 1000 time units in 10 % and the probability of 1300 iY80ART-ML
2.0 will also allow specifying identifiers instead of immatt data, e.g.

execute(C1);

where the identifier refers to a distribution of any type destl elsewhere
in the model. Distributions that are planned to be suppantedde the Normal
distribution, the Uniform distribution and the Weibull ttibution. It will also
be possible to use empiric distribution, i.e. raw data froeasurements.

134 Appendix A. ART-ML 2.0

Probabilistic selection

ART-ML 2.0 allows for probabilistic selection through theswitch” state-
ment — probabilistic switch. This statement replaces trench-statement in
the original version of ART-ML.

The syntax of pswitch is as follows:

pswitch{
p(pl): statement;
statement;
statement;
break;
p(p2): ...
break;
p(pn): ...
break;
default:
statement;
break;
}

The pswitch is similar to the well-known “switch” statemémtANSI C, apart
from that the selection is probabilistic. An arbitrary nuenlof labels are al-
lowed where each label has a specified probability in the fofra floating
point value in the rang®..1]. The sum of the probabilities has to be equal
to, or below,1.0. If the sum of then probabilities is belowl .0, an extra la-
bel may is required, “default”, which receives the remagnprobability of
L—(p1+p2+...+pn)

Even though pswitch is not the only probabilistic elementART-ML 2.0
(there is also sporadic tasks and the execute statemeistthi¢ only way of
specifying probabilistic selection between behaviors.

Appendix B

PPL Implementation

The Probabilistic Property Language, PPL, was first propas¢WANO3Db].
In comparison to the original specification, the implemeéntersion of PPL
contains many extensions and some differences. The moettam are:

e A second argument has been added to the P operator, thefaggranti

e A new operator, following, has been added, which returnah in-
stance of the specified task, that follows the activatiorhefgarticular
task instance.

e The statistical functions min, max, avg and median have laeleled,
which returns statistical measures of a task propertyregponse time.

e The function subset has been added, which allows the tasknives
matching a condition to be exported to a text file.

e Message queues are handled differently, as generic prase=ad of
gueues. A generic probe may monitor any logical resource.

These extensions are described in Chapter 3 as well as indhddcumenta-
tion, available at the project website:

http://www.idt.mdh.se/"jxn01/projects/remodel
A tool for PPL analysis of execution traces, PET (Propertgl&ation Tool),

can also be found there, together with the Tracealyzer gecetion trace vi-
sualization). Currently, the tools are available for Mot Windows only.

135

136 Appendix B. PPL Implementation

The grammar of PPL

This section presents the grammar of the implemented verdithe Proba-
bilistic Property Language, PPL, in Bachus Naur Form (BNF).

<query> = <property> ";" <query>
| <property>

<property> = <value> <relop> <value>
| <function>

| subset "(" <arg> ")" ">" FILENAME
<value> = "P" " ID (" ID ")" ") <cond> ")"
["P o e <cond>)
| PROB
| <unbounded>

<cond> = <expr> <moreexpr>
| <expr>

<moreexpr> = <logop> <expr> <moreexpr>
| <logop> <expr>

<expr> = <exp> <relop> <exp>
| <exp> <relop> <unbounded>
| NOT "(" <cond> ")"
| (" <cond> ")"

<exp> 1= <term> <moreterms>
| <term>

<moreterms> = + <term> <moreterms>

| - <term> <moreterms>

|+ <term>

| - <term>

<term> = <factor> <morefactors>
| <factor>

<morefactors> ::= * <factor> <morefactors>
| | <factor> <morefactors>
| * <factor>
| [<factor>

<factor> = (" <exp>)"
| abs "(" <exp> ")"
| <function>

| CONST

| <task>

| ™" "" probe NUM
| - <factor>

<function> = min "(" <arg> ")"
| max "(" <arg> ")"
| avg (" <arg>)’
| median "(" <arg> ")"

137

<arg>

<unbounded>

<task>

<instance>

<num>

<following> =

<data member>

<relop>

<logop>

PROB
CONST
NUM

ID
FILENAME

u= ID "(" <instance> ")

= ID "." <data member>

| ID"("ID """ <data member>

| ID "(" ID)" "." <data member> "" <expr>
| "t probe NUM

| "t probe NUM " <expr>

w= 1D

<data member>
| ID (" <following> ")" "." <data member>

| ID + <num>
| ID - <num>

== "[" NUM "." NUM "]"

| “" - NUM "." NUM ""

| “" - NUM "." - NUM 'T"
| NUM

following (" ID "(" <instance> ")" ")"

| following “(" ID "(" <instance> ")" ")" + <num>
| following “(" ID "(" <instance> ")" ")" - <num>

1= start

z:x € R AND 0<z <1
z:x E€R
x:x €L

;= LETTER(DIGIT|LETTER|'_)*
== ™ID(IDY™

Appendix C

An example model
specification

The system in focus is a control system for industrial ropdeveloped by
ABB Robotics. This system was initially designed in the begig of the
nineties and has been maintained and further developed 6werars by a staff
consisting of about 150 software developers. In esseneeapthot controller
has an object-oriented design, but implemented in C. Itistmsf approxi-
mately 2500 KLOC distributed in 400-500 classes, in turraaiged in a set of
subsystems. The controller uses the real-time operatsigisyvVxWorks, from
WindRiver [WRW]. The hardware platform is an industrial P§ing high-end
Intel processors. The controller consists of three conmputike axis computer,
a DSP which controls the motors of the robot, the 1/0O compuated the main
computer, the most complex part and the focus of the modslindy. The
software system in the main computer consists of more thaia€i®, which
are scheduled using preemptive fixed priority schedulinige Taisks commu-
nicate through message queues and shared data areas. s gaasist of
several services, sometimes over 200, which are activateddssages from
other tasks or by a timer. A task typically spends most of ime tblocked,
waiting for incoming messages. When a message arrives,iorea éxpires,
the task executes the service corresponding to the eventredc During the
execution of a service, any incoming messages are buffaeckthter processed
in a FIFO manner.

A critical part of the main computer is the motion control sygtem, which
is responsible for generating the motor references ancelsinals required

139

140 Appendix C. An example model specification

Axis

Queue 1 Queue 2 computer

Figure C.1: The Motion Control Subsystem

by the axis computer. The axis node sends requests to thecoraijputer with
a fixed, high rate, over 200 Hz. The axis computer expectslg ieghe form
of motor references within a certain time. This depends oeetliasks on the
main computer, in the motion control subsystem. We refenése tasks a4,
B andC'. The tasksB andC have high priority and run frequently with a fixed
period. The taskd executes mostly in the beginning of each robot movement
and has lower priority, but produces data required by2hask. TheB task
processes the data and forwards it in smaller parts ta’thsk, which makes
the final processing and sends motor references to the axiguder. The data
passed between C and B, and between B and C are passed thabagheues,
as depicted in Figure 4. If any of the queues become emptyewid robot is
under control, the C task cannot deliver any referencesa@iis node. This
state is considered as a system failure, and the robot hEtis.queues may
only be empty if the robot has applied its brakes and stoppetta@lling the
motors. The interface of the subsystem in the task A, whickives orders to
move the robot and other commands from a client, in a way ahéted by the
application program which varies between different usehefsystem. Since
the tasks B and C have the highest scheduling priority inystem, they may
only be disturbed by interrupts. Task C has however a midipyiand there are
tasks other than B and C which may disturb task A. The focusisfhodeling
study is the motion control subsystem, and the properti@stefest are if any
of the two queues can become empty while the robot is actigirethat case,
in which situation this may occur.

Bibliography

[AB93]

[ABD +95]

[Abe9s]

[ABRTO3]

[ABRW94]

[ACD93]

[AD94]

R. S. Arnold and S. A. Bohner. Impact Analysis - Towsua
Framework for Comparison. IRroceedings of the Conference
on Software Maintenance (ICSM '93pages 292-301. IEEE
Computer Society, 1993.

N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, , and A.
Wellings. Fixed priority pre-emptive scheduling: An histal
perspectiveReal-Time Systems Journ8(2/3):173-198, 1995.

L. Abeni. Server Mechanisms for Multimedia Applicas.
Technical Report RETIS TR98-01, Scuola Superiore S. Anna,
Pisa, Italy, 1998.

A. N. Audsley, A. Burns, M. Richardson, and K. TirldeAp-
plying New Scheduling Theory to Static Priority Pre-emeptiv
Scheduling. Software Engineering Journalpages 284-292,
1993.

N. C. Audsly, A. Burns, M. F. Richardson, and A. J. Weys.
STRESS: A Simulator for Hard Real-Time Systen&oftware-
Practice and Experienc®4(6):543-564, June 1994.

R. Alur, C. Courcoubetis, and D. L. Dill. Model-chdng in
dense real-time. Information and Computatign104(1):2—34,
1993.

R. Alur and D. L. Dill. A theory of timed automatalheoretical
Computer Sciencd 26(2):183-235, 1994.

141

142 Bibliography

[ANO2]

[AWNO4a]

[AWNO4b]

[Bal9o]

[BCPO02]

[BCPO3]

[BDLO4]

[BDM +98]

J. Andersson and J. Neander. Timing Analysis of a Rd@mmn-
troller. Master’s thesis, Malardalen University, Vasis Swe-
den, 2002.

J. Andersson, A. Wall, and C. Norstrom. Decregsitainte-
nance Costs by Introducing Formal Analysis of Real-Time Be-
havior in Industrial Settings. IRroceedings of the First Interna-
tional Symposium on Leveraging Applications of Formal Meth
ods (ISoLA '04)2004.

J. Andersson, A. Wall, and C. Norstrom. Validatifiming Mod-

els of Complex Real-Time Systems.Pnoceedings of the Fourth
Conference on Software Engineering and Research Pradtice i
Sweden (SERPS '04004.

O. Balci. Guidlines for Successful Simulation Sesl InPro-
ceedings of the 1990 Winter Simulation Conferemepartment
of Computer Science, Virginia Polytechnic Institute andtSt
University, Blacksburg, Virginia 2061-0106, U.S.A., 1990

G. Bernat, A. Colin, and S. Petters. WCET Analysigobb-
abilistic Hard Real-Time Systems. Proceedings of the 23rd
IEEE International Real-Time Systems Symposium (RTSS '02)
Austin, TX, USA2002.

G. Bernat, A. Colin, and S. Petters. pWCET: a ToolRooba-
bilistic Worst Case Execution Time Analysis of Real-TimesSy
tems. Technical Report YCS353, University of York, Depaatiin
of Computer Science, United Kingdom, 2003.

G. Behrmann, A. David, and K. G. Larsen. A tutorial ap-
paal. Inin proceedings of the 4th International School on For-
mal Methods for the Design of Computer, Communication, and
Software Systems (SFM-RT'04), LNCS 318%4.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and
S. Yovine. Kronos: A Model-Checking Tool for Real-Time Sys-
tems. In A. J. Hu and M. Y. Vardi, editor®roceedings of the
10th International Conference on Computer Aided Verifaati
Vancouver, Canadavolume 1427, pages 546-550. Springer-
Verlag, 1998.

Bibliography 143

[BGO7]

[BLL +95]

[BRO1]

[BTMG02]

[But97]

[CDH*+00]

[CE82]

[CFV99]

B. Bellay and H. Gall. A Comparison of Four Reverse Eng
neering Tools. InProceedings of the 4th Working Conference
on Reverse Engineering (WCRE '9ppge 2, Washington, DC,
USA, 1997. IEEE Computer Society.

J. Bengtsson, K. G. Larsen, F. Larsson, P. PetterssdijaliYi.
Uppaal - a tool suite for automatic verification of real-tisyes-
tems. InProceedings of the 4th DIMACS Workshop on Verifica-
tion and Control of Hybrid System$995.

T. Ball and S. K. Rajamani. Automatically validatitgmporal
safety properties of interfaces. Rioceedings of the 8th interna-
tional SPIN workshop on Model checking of software (SPIN,’01
pages 103-122, New York, NY, USA, 2001. Springer-Verlag
New York, Inc.

R. I. Bull, A. Trevors, A. Malton, and M. W. GodfreySeman-
tic grep: Regular expressions + relational abstractionPrim
ceedings of the 9th Working Conference on Reverse Engingeri
(WCRE'02) 2002.

G. C. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and ApplicationdSBN: 0-
7923-9994-3. Kluwer Academic Publisher, 1997.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: ExtractingeFini
State Models from Java Source Code. Rroceedings of the
22nd International Conference on Software EngineerindS@EC
'00), pages 439-448, 2000.

E. M. Clarke and E. A. Emerson. Design and synthesgs/of
chronization skeletons using branching-time temporaiclogn
Logic of Programs, Workshopages 52—71, London, UK, 1982.
Springer-Verlag.

A. Cimitile, A. R. Fasolino, and G. Visaggio. A Sofare Model

for Impact Analysis: A Validation Experiment. IRroceedings

of the Sixth Working Conference on Reverse Engineering @/CR
'99), 1999.

144 Bibliography

[CGPO02]

[C190]

[DY95]

[DY00]

[EH84]

[ENE]

[HJ94]

[HIMSO03]

[Hol97]

[Hol00]

S. Chandra, P. Godefroid, and C. Palm. Software hobeeking
in practice: an industrial case study. Pmoceedings of the 24th
International Conference on Software Engineering (ICSE),'0
pages 431-441, New York, NY, USA, 2002. ACM Press.

E. J. Chikofsky and J. H. Cross Il. Reverse Enginegiand
Design Recovery: A TaxonomylEEE Software 7(1):13-17,
1990.

C. Daws and S. Yovine. Two examples of verification afilm

tirate timed automata with kronos. Proceedings of the 16th
IEEE Real-Time Systems Symposium (RTS$page 66, Wash-
ington, DC, USA, 1995. IEEE Computer Society.

A. David and W. Yi. Modelling and analysis of a commer-
cial field bus protocol. IrProc. of 12th Euromicro Conference

on Real-Time Systemgages 165-172. IEEE Computer Society
Press, 2000.

E. A Emerson and J. Y. Halpern. Sometimes and Not Never
Revisited: on Branching Versus Linear Time. Technical repo
University of Texas at Austin, Austin, TX, USA, 1984.

ENEA website, http://www.enea.com.

H. Hansson and B. Jonsson. A Logic for Reasoning abiou
and Reliability. Formal Aspects of Computing(5):512-535,
1994,

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutreftwre
Verification with BLAST. InProceedings of the 10th Interna-
tional Workshop on Model Checking of Software (SPIN '03),
LNCS 26482003.

G. J. Holzmann. The Model Checker SPINEEE Trans. Softw.
Eng, 23(5):279-295, 1997.

G. J. Holzmann. Logic Verification of ANSI-C Code WiSPIN.

In Proceedings of the 7th International SPIN Workshop on SPIN
Model Checking and Software Verificatiggages 131-147, Lon-
don, UK, 2000. Springer-Verlag.

Bibliography 145

[Hol03]

[HS99]

[Jen98]

[Jen01]

[Joh93]

[Katos]

[KRO]

[KSST02]

[Leh90]

[LK93]

G.J. Holzmann. The SPIN MODEL CHECKER - Primer and
Reference Manual ISBN: 0-321-22862-6. Pearson Education,
Addison-Wesley, Inc, 2003.

G. J. Holzmann and M. H. Smith. A practical method fer-v
ifying event-driven software. IfProceedings of the 21st inter-
national conference on Software engineering (ICSE, @@pes
597-607, Los Alamitos, CA, USA, 1999. IEEE Computer Soci-
ety Press.

P. K. Jensen. Automated Modeling of Real-Time Imaeta-
tion. Technical Report BRICS RS-98-51, University of Aaipo
December 1998.

P. K. JenserReliable Real-Time Applications. And How to Use
Tests to Model and UnderstanBhD thesis, Aalborg University,
February 2001.

R. Johansson.System Modeling IdentificationISBN: 0-13-
482308-7. Prentice-Hall, 1993.

J. Katoen. Concepts, algorithms and tools for mathelcking,
lecture notes of the course mechanised validation of dib-
tems, friedrich-alexander university at erlangen-nurgh¥998.

Kronos website, http://www-verimag.imag.fr/tempse/kronos.

R. Kollman, P. Selonen, E. Stroulia, T. Syst, and A. Zudo
A Study on the Current State of the Art in Tool-Supported
UML-Based Static Reverse Engineering. Rroceedings of the
9th Working Conference on Reverse Engineering (WCRE '02)
page 22, Washington, DC, USA, 2002. IEEE Computer Society.

J. Lehoczky. Fixed priority scheduling of period&sk sets
with arbitrary deadlines. IRroceedings of the 11th IEEE Real-
Time Systems Symposium (RTSS '8&yes 201-212, December
1990.

A. M. Law and W. D. Kelton. Simulation, Modeling and Analy-
sis ISBN: 0-07-116537-1. McGraw-Hill, 1993.

146 Bibliography

[LL73]

[LMO1]

[MH89]

[MJ86]

[MWO03]

[MWN *+04]

[NIS02]

[OSE]

[PFGJ02]

[Pnu77]

C. L. Liuand J. W. Layland. Scheduling Algorithms ffulti-
programming in hard-real-time environmedburnal of the As-
sociation for Computing Machiner0(1):46-61, 1973.

A. M. Law and M. G. McComas. How to Build Valid and Credi
ble Simulation Models. liProceedings of the 2001 Winter Simu-
lation ConferenceAverill M. Law and Associates,Inc., P.O. Box
40996, Tucson, AZ 85717, U.S.A., 2001.

C. E. McDowell and D. P. Helmbold. Debugging Concuntre
ProgramsACM Comput. Sury21(4):593-622, 1989.

P. K. Pandya M. Joseph. Finding Response Times in B Rew
System.The Computer JournaR9(5):390-395, 1986.

A. Marburger and B. Westfechtel. Tools for undersiary the
behavior of telecommunication systems. Rroceedings of the
25th International Conference on Software EngineeringSEC
'03), pages 430-441, Washington, DC, USA, 2003. IEEE Com-
puter Society.

G. Mustapic, A. Wall, C. Norstrom, I. Crnkovic, K. Sardsn,

J. Froberg, and J. Andersson. Real World Influences on Soft-
ware Architecture - Interviews with Industrial Experts.|EEE,
editor, Proceedings of IEEE Working Conferance on Software
Architectures (WICSA '04), Oslo, NorwaEE, 6 2004.

The Economic Impacts of Inadequate Infrastrucfar&oftware
Testing, Planning Report 02-3, Prepared by RTI for the U&. N
tional Institute of Standards and Technology, 2002.

OSE website, http://www.ose.com.

M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. véder:

A Lexical Pattern Matcher for Architecture Recovery. Rro-
ceedings of the 9th Working Conference on Reverse Engngeeri
(WCRE '02) pages 170-178, 2002.

A. Pnueli. The temporal logic of programs. Rroceedings of
the 18th Annual IEEE Symposium on Foundations of Computer
Sciencel977.

Bibliography 147

[QVWM94] J. P. Queille, J. F. Voidrot, N. Wilde, and M. Munrdlhe Im-

[RSW]
[Sar99]

[SB94]

[SCG+79]

[Scho1]

[Sho02]

[SK98]

[SL96]

pact Analysis Task in Software Maintenance: a Model and a
Case Study. IrProceedings of International Conference Soft-
ware Maintenance (ICSM '94pages 234-242,1994.

Rapita systems website, http://www.rapitasysteors.

R. G. Sargent. Validation and Verification of Sintiga Models.
In Proceedings of the 1999 Winter Simulation Confereme
partment of Electrical Engineering and Computer Scienad;, C
lege of Engineering and Computer Science, Syracuse Uitigers
Syracuse, NY 13244, U.S.A., 1999.

M. Spuri and G. Buttazzo. Efficient Aperiodic Servieeder
Earliest Deadline Scheduling. Proceedings of the 15th IEEE
Real-Time System Symposium (RTSS[gEges 2—-21, 1994.

S. Schlesinger, R. E. Crosbie, R. E. Gagne, G. S. Inni§.C.
Lalwani, and J. Loch et al. Terminology for Model Credilyilit
Simulation 32(3):103-104, 1979.

W. Schutz. On the Testability of Distributed Re&l& Systems.

In Proceedings of the 10th Symposium on Reliable Distributed
Systems, Pisa, Italynstitut f. Techn. Informatik, Technical Uni-
versity of Vienna, A-1040, Austria, 1991.

M. El Shobaki. On-Chip Monitoring of Single- and Mptoces-
sor Hardware Real-Time Operating SystemsPtaceedings of
the 8th International Conference on Real-Time Computirgy Sy
tems and ApplicationsEEE, March 2002.

T. Systa and K. Koskimies. Extracting State Diagsafrom
Legacy Systems. IfProceedings of the ECOOP Workshops
on Object-Oriented Technology (ECOOP '9pages 272-273,
London, UK, 1998. Springer-Verlag.

M.F. Storch and J.W.-S. Liu. DRTSS: A Simulation Fem
work for Complex Real-Time Systems. Rroceedings of the
2nd IEEE Real-Time Technology and Applications Symposium
(RTAS '96) Dept. of Comput. Sci., lllinois Univ., Urbana, IL,
USA, 1996.

148 Bibliography

[SPI]

[TC94]

[Tin92]

[Tip95]

[UPP]
[VdBKV97]

[Wal03]

[WAN +03a]

[WANO3b]

[Weig1]

ON-THE-FLY, LTL MODEL CHECKING with SPIN, spin web-
site, http://spinroot.org.

K. Tindell and J. Clark. Holistic Schedulability Alyais for
Distributed Hard Real-Time SystemBlicroprocessing and Mi-
croprogramming - Euromicro Journal (Special Issue on Phrlal
Embedded Real-Time Systed€):117-134, 1994.

K. Tindell. An Extendible Approach for AnalysingXed Prior-
ity Hard Real-Time Tasks. Technical Report YCS189, Dept. of
Computer Science, University of York, United Kingdom, 1992

F. Tip. A survey of program slicing technique3ournal of pro-
gramming language$8:121-189, 1995.

Uppaal website, http://www.uppaal.com.

M. G. J. van den Brand, P. Klint, and C. Verhoef. Rese En-
gineering and System Renovation: an Annotated Bibliogyaph
SIGSOFT Software Engineering Nat2g(1):57-68, 1997.

A. Wall. Architectural Modeling and Analysis of Complex Real-
Time System#hD thesis, Malardalen University, Sweden, 2003.

A. Wall, J. Andersson, J. Neander, C. Norstrom, and ¥mL
bke. Introducing Temporal Analyzability Late in the Lifexdg

of Complex Real-Time Systems. PRroceedings of the 9th In-
ternational Conference on Real-Time and Embedded Congputin
Systems and Applications (RTCSA'@3¢partment of Computer
Science and Engineering, Malardalen University, P.O. B83,
S-721 23 Vasteras, Sweden, 2003.

A. Wall, J. Andersson, and C. Norstrom. Probadtiti
Simulation-based Analysis of Complex Real-time Systenrs. |
Proceedings of the 6th IEEE International Symposium on @bje
oriented Real-time distributed Computir@epartment of Com-
puter Science and Engineering, Malardalen Universify, Box
883, S-721 23 Vasteras, Sweden, 2003.

M. Weiser. Program slicing. lin the Proceedings of the 5th
International Conference on Software Engineeripgges 439—
449,1981.

[WRW]
[WW96]

[YGS+04]

[Yin03]

WindRiver website, http://www.windriver.com.

M. A. F. Wagner and J. R. Wilson. Recent Developments i
Input Modeling with Bezier distributions. lProceedings of
the 1996 Winter Simulation Conferengages 1448-1456, New
York, NY, USA, 1996. ACM Press.

H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazmais-D
coTect: A System for Discovering Architectures from Rumnin
Systems. IfProceedings of the 26th International Conference on
Software Engineering (ICSE '04pages 470-479, Washington,
DC, USA, 2004. IEEE Computer Society.

R. K. Yin. Case Study Research - Design and Methd&&8N:
0-7619-2552-X. Sage Publications, 2003.

