

Process Patterns for Software Systems In-house Integration and

Merge – Experiences from Industry

Rikard Land, Ivica Crnković, Stig Larsson
Mälardalen University, Department of Computer Science and Electronics

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 10 70 35

{rikard.land, ivica.crnkovic, stig.larsson}@mdh.se, http://www.idt.mdh.se/{~rld, ~icc}

Abstract
When an organization faces new types of

collaboration, for example after a company merger,
there is a need to integrate the existing software. Two
main process challenges are how to arrive at a
realistic vision of a future integrated system, and how
to actually carry out the integration process.

We have performed a multiple case study,
consisting of 9 cases. This paper presents the
observations made in the form of recurring patterns
that can be used as recommendations for other
organizations facing the same challenge. Also
discussed are the similarities and differences between
already known software process best practices and the
integration patterns found.

1. Introduction
From time to time within an organization, two or more
in-house developed software systems address similar
needs, and there is an overlap in functionality. This
typically happens when the organization changes
through new types of collaborations and mergers. The
software may be the core products of the companies,
or some support systems for the core business. If the
software systems are mainly used in-house, performing
further evolution and maintenance of two systems in
parallel seems unfeasible. If the software systems are
products of the company, it makes little sense to offer
customers two similar products. In either case, the
organization would ideally want to take the best out of
the existing systems and integrate them with as little
effort as possible. This could for example mean
reusing components of the systems in a new system,
integrate them more loosely, discontinuing one system
and extending the other, or even discontinuing both
and start development of a new generation. In practice
many different decisions are made, not necessarily the
optimal ones. Our goal is to identify the main
characteristics of this process: Which are the driving
forces, the most important system characteristics, and

what rationale lies behind the decision for the changes
and the changes process? To investigate this, we have
carried out a multiple case study [14] with 9 cases
from 6 organizations that have gone through such an
integration process. In the present paper, we have
chosen to report the experiences in the form of
recurring patterns.

For an organization that has identified a functional
overlap and a need for integration, two main
challenges are: 1) how to develop a vision for a future,
integrated system, and 2) how to reach there within
reasonable time, using reasonable resources. See
Figure 1.

System
1

System
2

Future
System

??

Figure 1: The two challenges – the future system
and the path there.

These two challenges can be visualized as two
processes: a vision process and an actual integration
process. Although one might initially think of them as
sequential – first define a vision, then implement it –
we prefer to visualize them as two processes carried
out iteratively or in parallel, each affecting the other.
See Figure 2. This is in line with the results from the
cases.

The questions addressed by this paper are:
Q1. Which are common experiences (good and bad)

concerning these processes?
Q2. To what extent are the lessons learned from these

experiences possible to generalize into
recommendations for other organizations?

Integration process

vision process

time

efforts

Integration process

vision process

time

efforts

Figure 2: Interaction between vision and

integration process.
Q3. How do the experiences from integration relate to

other known good practices in other development
activities?

Section 2 describes related work, section 3 describes
the methodology used in the research, and section 4
introduces the cases. Section 0 answers Q1 and Q2 by
presenting experiences from the cases in the form of
patterns, and is subdivided into the vision process
(section 5.1), the integration process (section 5.2), the
interaction between these (section 5.3), and some
observations about the distributed nature of the
organizations (section 5.4). Section 6 concludes the
paper by summarizing the most important
observations, discussing answers to 0, and outlining
future work.

2. Related Work
Although there is much published experience on
software integration, most of it concerns slightly
different types of integration. Three major fields of
software integration are component-based software
[13], open systems [10], and Enterprise Application
Integration, EAI [5,11]. In a previous survey of
existing approaches to software integration [7], we
found that there is basically no existing literature that
directly addresses the context of the present research:
integration of software completely controlled and
owned within an organization.

The context of the present research in practice
means that there are two different software
organizations that need to start cooperating, which
most often includes the known problems of distributed
software development: cultural differences (including
“company cultures”), a “we vs. them” attitude, and in
many cases also different languages and cooperation
across different time zones [2,3,6].

In the overall process we have observed a clear
distinction between a vision process and the
integration process. This observation can be compared
with distinguishing a decision process and a
development process [1,4,12]. In these related works
the discussions are focused on relations between these
processes and conveying messages between the
stakeholders in these processes. In our case these
relations will be specific as the vision and the
decisions are based on two or more existing systems
and according to that two or more groups of
stakeholders.

3. Research Methodology
The multiple case study [14] consists of nine cases
from six organizations that have gone through an
integration process. Our main data source has been
interviews, but in some cases we also had access to
certain documentation. The interviewees were asked
about the history of their systems, the architecture of
the existing and integrated system, the reasons for
integrating, and what they would do different next
time. The open-ended questions were focused around
architecture and processes, and the copied out
interview notes were sent back to the interviewees for
feedback and approval. In one case (F1) one of the
authors (R.L.) also participated as an active member.
Details regarding the research design and the material
from the interviews (the questions and all answers) are
available in a technical report [9].

4. The Cases
The cases come from different types and sizes of
organizations operating in different domains, the size
of the systems range from to a maintenance and
development staff of a few people to several hundred
people, and the types of qualities required are very
different depending on the system domain. What the
cases have in common though is that the systems have
a significant history of development and maintenance.

The cases are summarized in Table 1. They are
labeled A, B, etc. Cases E1, E2, F1, F2, and F3
occurred within the same organizations (E and F). For
the data sources, the acronyms used are IX for
interviews, DX for documents, and PX for participation,
where X is the case name (as e.g. in IA, the interview of
case A), plus an optional lower case letter when
several sources exist for a case (as e.g. for interview
IDa, one of the interviews for case D). IX:n refers to the
answer to question n in interview IX. In the present
paper, we have provided explicit pointers into this
source of data.

Table 1: Summary of the cases.

 Organization System Domain Goal Information Resources
A Newly merged

international
company

Safety-critical
systems with
embedded software

New HMI* platform to
be used for many
products

Interview: project leader for “next
generation” development project (IA)

B Organization
within large
international
enterprise

Administration of
stock keeping

Rationalizing two
systems within
corporation with
similar purpose

Interview: experienced manager and
developer (IB)

C Newly merged
international
company

Safety-critical
systems with
embedded software

Rationalizing two core
products into one

Interviews: leader for a small group
evaluating integration alternatives (ICa);
main architect of one of the systems (ICb)

D Newly merged
international
company

Off-line manage-
ment of power
distribution systems

Reusing HMI* for
Data-Intensive Server

Interviews: architects/developers (IDa, IDb).

E1 Cooperation
defense research
institute and
industry

Off-line physics
simulation

Creating next
generation simulation
models from today’s

Interview: project leader and main interface
developer (IE1)
Document: protocol from startup meeting
(DE1)

E2 Different parts of
Swedish defense

Off-line physics
simulation

Possible rationali-
zation of three
simulation systems
with similar purpose

Interview: project leader and developer (IE2)
Documents: evaluation of existing
simulation systems (DE2a); other
documentation (DE2b, DE2c, DE2d, DE2e, DE2f)

F1 Newly merged
international
company

Managing off-line
physics simulations

Possible rationali-
zation by using one
single system

Participation: 2002 (R.L.) (PF1a); currently
(R.L.) (PF1b).
Interviews: architects/developers (IF1a, IF1b);
QA responsible (IF1c)
Documentation: research papers (DF1a);
project documentation (DF1b)

F2 Newly merged
international
company

Off-line physics
simulation

Improving the current
state at two sites

Interviews: software engineers (IF2a, IF2b,
IF2f); project manager (IF2c); physics experts
(IF2d, IF2e)

F3 Newly merged
international
company

Software issue
reporting

Possible rationali-
zation by using one
single system

Interview: project leader and main
implementer (IF3)
Documentation: miscellaneous related (DF3a,
DF3b)

* HMI=Human-Machine Interface

Some cases have successfully performed some
integration, others are underway. All cases reported
both successes and mistakes, which are all taken into
account in the present paper.

5. Analysis
This section presents recurring characteristics of the
processes in the cases.

5.1 The Vision Process
The obvious starting point for integration is often an
initial vision from higher management (ICa:6, ICb:6,
IDb:3,5,6, IF2c:3). The goal is to rationalize the activities
related to the products (maintenance, data overlap,
duplicated processes) (IA:2,3, IB:1, ICa:6, ICb:6,
IDb:3,5,6, PF1a, PF1b, DF1b, IF2d:3). In cases C and F1,
higher management gave directions how a system
merge should be achieved: “try to agree and reuse as
much as possible” (ICb:6, also PF1a). In case C, this

caused an expensive delay as well as other problems
(ICa:6,7), and in case F1 the architecture and outlined
integration plan felt watered-down (DF1a, IF1c:6), and
nothing happened to realize it (PF1a, PF1b). Case E1
may be mentioned as a counter-case, where enthusiasm
and a successful combination of people, and an
eagerness to get started overcame many obstacles and
seem to have been the starting point (IE1:6,7,9,11); at
the startup meeting, the interviewee already had the
fundamental structure clear (IE1:7, DE1).

We have observed the following seven patterns of
the vision process:

Small evaluation group. Statement: After higher
management has identified some potential benefits
with integration, a small group of experts should be
assigned to evaluate the existing systems from many
points of view and describe alternative high-level
strategies for the integration. In cases C and F1 a
small group evaluated the existing systems with the
specific goal to identify how integration should or
could be carried out, at the technical level (ICa:6, ICb:6,
IF1c:6, PF1a, PF1b, DE1a). In case F1, users were also
involved in this process, in order for them to grade
different features of the existing systems (PF1a, DF1a). It
is important to involve both sides, as no single
individual has overview of all systems (both cases
concern newly merged companies). Also, everyone
involved is partial and there is a clear risk that
everyone “defends” their own system (ICb:6), there
must be an open mind for other solutions than “ours”
(IF3:11). In the cases it appears that there has indeed
been a good working climate with a “good will” from
everyone (ICb:6, PF1a). In both cases this was
considered a good scheme; in case C the architects
immediately saw that there were no major technical
advantages of either system, and wanted to
immediately discontinue one of the two systems,
indifferent which, rather than trying the (ICb:6). The
late decision (indeed, to discontinue one of the
systems) was due to other reasons (see “timely
decisions” below. A similar scheme was used in case
E2, an external investigation was made, however with
less technical expertise (I E2:6, DE2a).

Life cycle phase of existing systems. Statement:
The life cycle phases of the existing systems affect the
choice of integration strategy (ICb:1,7, ICb:6, IE1:4,
IF2e:6, IF2a:3). For example, proven high-quality
systems are not easily discarded, and systems
considered aged are candidates for retirements. In case
C, a new generation of both systems was being
developed, but not yet released, and the obvious choice
would seem to be to discard either of them before
release (ICb:7, ICb:6); however development did
continue until both systems were released, which led to

lots of extra costs and problems (ICb:6). In case D, one
of the existing HMIs was considered aged and was
replaced be another (IDb:3). In case F2, one of the sites
was about to develop something new, while the other
had realized some fundamental problems with the
physical models their software embedded (IF2e:6,
IF2a:3). This led to a successful common development
project, however suffering from a lack of resources
(see “commitment” pattern in section 5.2).

Reusing experience from existing systems.
Statement: All experience of the existing systems, in
terms of e.g. user satisfaction and ease of maintenance
must be collected in order to be able to describe the
envisioned system properly (IA:6, PF1a, DF1a, IF2e:6,
IF2f:6, IF3:11). Ideally, one would like to define the new
system as consisting of the best parts of the existing
systems; however, this is in practice not as simple as it
first may seem. The requirements on the future system
are clearly dependent on the experience of the previous
systems, and can be stated in terms of existing systems
(IA:6, PF1a, DF1a, IF3:6). However, this means that the
requirements need not (some of the sources even say
should not) be too detailed (IA:5,6,11, IC1a:6, PF1a,
DF1a). In case A, the development organization
explicitly asked sales people for “killing arguments”
only, not a detailed list of requirements (IA:5). This,
combined with the experience and understanding of
the existing systems, makes a detailed list of
requirements superfluous (i.e. during these early
activities; later a formal requirements specification
may be required). The people developing the vision of
the future system (e.g. a small evaluation group) need
to study the other systems, preferably live (ICa:6, DE2a,
IF3:6). Case F2 involves complex scientific physics
calculations, and the study of the existing systems’
documentation of the implemented models was an
important activity (IF2e:6, IF2f:6). When looking at the
state of the existing systems, an open mind for other
solutions than the current way of doing things is
essential (IF3:11). Reuse of experiences in the cases,
divided into requirements and architectural solutions is
elaborated elsewhere [8].

Improve the current state. Statement: To gain
acceptance, the efforts invested in the integrated
system must not only present the same features as the
existing system, but also improve the current state. The
existing systems must be taken into account (see
pattern “reusing experience from existing systems”),
but one should not be restricted by the current state
(IF2f:6); in case F2, it was indeed considered a mistake
to keep the old data format and adapt new
development to it (IF2a:9, IF2d:7,9,11). The actual needs
must be more important than to preserve the features
of the existing systems (IF3:11). One interviewee stated

that a new system would take ~10 years to implement,
and a merged (and improved) system must be allowed
to take some years as well (IF2f:6). In case E1,
integrating several small, separate pieces as was
envisioned required a more structured language (Ada),
even though it would in principle be possible to reuse
many existing parts as they were written in Fortran
(IE1:6); the organization was interested in Ada as such,
which also contributed to this choice (IE1:7).

Timely decisions. Statement: Making decisions in
a timely manner is important (ICa:6, ICb:6,11). When
no decisive technical information has been found, a
decision should be made anyway. In case C, the
decision to discontinue one of the systems could have
been made much earlier, as no new important
information surfaced during the endless meetings with
the small technical group (ICb:6). This means that one
year of development money was wasted on parallel
development, and the discontinued system has to be
supported for years to come (ICa:6, ICb:6). “It is more
important with a clear decision than a ‘totally right’
decision” (ICb:11). You cannot delegate the
responsibility to agree to the grassroots (ICb:6).
“Higher management must provide clear information
and directives… It is… unproductive to live in a long
period of not knowing” (ICb:11).

Sufficient analysis. Statement: Before committing
to a vision, sufficient analysis must be made. Obvious
as that may seem, the difficulty is the tradeoff between
the need for understanding the existing systems well
enough without spending too much time. In case F2,
insufficient analysis caused large problems: what was
believed to involve only minor modifications resulted
in complete re-design and implementation (IF2a:9,
IF2b:9, IF2c:3, IF2d:6, 11). One method of ensuring
sufficient analysis could be to use the “small
evaluation group” pattern. Of course, pre-decision
analysis somewhat contradicts the pattern “timely
decisions”; a stricter separation from the actual
integration process is also introduced, implying a more
waterfall-like model which might not be suitable
(IF1b:5,6).

Consider commercial alternatives. Statement:
When the existing systems do not embed core
knowledge about the domain of the organization, the
best alternative may be to choose an existing system.
There might e.g. be commercial or open source
alternatives. This actually happened in one of the
cases, where software issue tracking systems had been
developed in-house, but after the company merger a
new, commercial system was acquired and
implemented throughout the organization (IF3:6, 7).

In addition to these seven patterns, two more
observations should be described:

No vision and no integration. Some interviewees
proposed the opinion of not integrating at all. “Why
integrate at all?” (ICb:7) is indeed a valid question,
which will arise if a decision is not accompanied with
priority and enough resources (IF1b:3, IF1c:6,9,11, PF1a).
Sometimes it might simply not be worth the effort to
integrate – will the future savings through
rationalization be larger than the integration efforts?
(IF1c:9, IF2d:3). Reasonable project plans for reaching
the vision must be considered; in case E2 there were
very few resources available, which led to a very
modest vision, in practice meaning no integration
(IE2:6). This is further discussed in section 5.3
concerning the interaction between the vision process
and the integration process.

Architecture. Essential when developing a vision
for a future system are the architectures of the existing
systems, and the technologies used. Are they
compatible or not (IF2a:1, IF2b:1,7)? Will it involve
more effort to merge than to discontinue one and
evolve the other system (ICb:6)? We believe involving
architecture in the process is so important that it
deserves a separate paper and will not elaborate it
further here [8].

5.2 The Integration Process
Recalling Figure 1 again, the desire is to make the
systems converge. However, without interference the
development will rather diverge. Convergence must be
forced; without such forces, the vision will never be
reached (IDa:3, , IDb:3,5,6, IF1c:6,9, PF1a, PF1b). Obvious
as that may seem, several of the cases have had large
problems with this. In several cases, the decision about
the future was not accompanied by any (or at least
enough) concrete measures to achieve integration
(IDa:3, IDb:3,5,6, IF1c:6,9, PF1a, PF1b).

In the cases, the following six patterns were found
concerning the integration process:

Strong project management. Statement: To run
integration efforts in parallel with other development
efforts, a strong project management is needed (e.g.
IF1c:9,11, IF2b:5,11, IF2e:9,11). To be able to control
development, higher management and project
management must have economical means of control
(ICa:11, IF1b:11). In case C, not until economical means
of control were put into place did development of the
system-to-be-discontinued stop (ICa:6). Case E1, a
cooperation led by a research institute, can serve as a
counter-example. Here, enthusiasm apparently was the
driving force, and the lack of strict management was
even pointed out as contributing to success (IE1:9,11).
Although we agree it is important to create a good and
creative team spirit, we believe it would be bad advice
to recommend weak or informal project management,
at least for larger projects.

Commitment. Statement: It is not possible to
succeed with integration if the efforts are half-hearted.
Commitment is needed from all stakeholders (IF1b:11,
IF1c:11), which must also be accompanied with enough
resources (IF1c:11). In case F2 it was pointed out
(based on negative experience) that for strategic work
as integration is, one cannot assign just anyone with
some of the required skills; the right (i.e. the best)
people must be assigned, which is a task for project
management (IA:11, IF2b:11, IF2d:9,11, IF2e:9,11).
Realistic plans must be prepared, and resources
assigned in line with those plans (IF1c:11). When
directives and visions are not accompanied with
resources, integration will be fundamentally
questioned (IF1b:3, IF1c:6,9). When there is a lack of
resources, short-term goals tend to occupy the mind of
the people involved. Without a minimum effort in
integration, the environment and the vision will change
more rapidly than the integration makes progress,
which means only a waste of resources. Integration
will be doubted, which takes even more energy from
the people involved. A long period of integration is
problematic, since you need to maintain the existing
system meanwhile (and for a while after they are
retired as well) (IF2f:6).

Cooperative grassroots. Statement: In order to
succeed, the “grassroots” (i.e. the people who will
actually do the hard work) must be cooperative, both
with management and each other. The overall goals
must be clear and they need to get commitment and
“buy-in” (IF1b:11). The organization must be kept
motivated (ICb:11). In case D, the grassroots
considered explicitly whether cooperation was of
benefit to themselves (IDb:6); they decided that for
cooperation to succeed they needed to show they were
willing to build trust, that they had no hidden agenda
(IDb:6,11). The “not invented here syndrome” is
dangerous for cooperation (IDb:6, IF1c:11). Case E1
illustrates that a fun project with fun people may drive
the integration so that the need for strict management
project schedules is reduced (IE1:9); what contributed
most to success were the fun people and the lack of
strict management (IE1:11).

Make agreements and keep them. Statement: To
be able to manage and control a distributed
organization formal agreements must be made and
honored. In case F2, it was pointed out as a big
problem that requirements and design evolved driven
by implementation (IF2b:6, IF2c:9, IF2d:6, 11). Even in
the informally managed case E1, the importance of
agreeing on interface specifications and keeping them
stable was emphasized (IE1:7,9). More formalism than
usual is required, you must have agreements written
down and then stick to them (IF1c:9,11).

Common development environment. Statement:
To be able to cooperate efficiently, a common
development environment is needed (PF1b, IF2b:6,11,
IF2e:11,12, IF2f:12). With “development environment”
we include e.g. development tools, platforms and
version control systems. In case F2, it was difficult to
synchronize the efforts (IF2e:11); e.g. source code was
sent via email and merged manually (IF2b:6). In case
F1, the difficulties of accessing the other site’s
repository caused an unnecessarily long period of
(unknowing) parallel development (PF2b).

Achieving momentum. Statement: Achieving
“momentum”, i.e. an inner driving force is desirable.
(IF2f:9) The external converging forces cannot be too
strong for too long, which would take a lot of energy
from the staff and the organization, will create stress
and tension, and may also lead to a recurring
questioning about the purpose of integration (IF1b:3,11,
IF1c:6,9). One of the interviewees in case F1 (which has
not made significant measurable progress during the 4
years that have passed since the company merger)
asked “from where comes the driving force?” (IF1c:9),
pointing at the fact that integration is not a goal in
itself. (These terms: converge, diverge, driving force,
momentum, were terms used by many of the
interviewees themselves).

5.3 The Interaction between Vision and
Integration Processes
We made the following observations concerning the
interaction between vision and integration process:

Stepwise delivery. Typically, the vision lies far
into the future, and integration processes are less
predictable than other development projects
(IF2c:10,12). Maintaining the long-term focus without
some way to monitor and measure progress is
impossible (IA:6,9, IB:1, IDa:12, IDb:6, IF1b:6, IF2c:6,11,
IF2f:6). In contrast to development of new products, or
new product versions, these activities are performed in
parallel and often not considered the most important.
For these reasons the decisions regarding the
integration process do not only depend on the process
itself, but also on many unrelated and unpredictable
reasons. Stepwise deliveries and prototyping have
been used for new development to increase process
flexibility and this was also a recurring opinion among
the interviewees. This could be one way of achieving
the desirable momentum. There were some variations
on this theme:
• Some of the interviewees maintained that there

must be a focus on deliveries that gives user value,
and a clearly identified customer (IB:1,7,11,13,
IF1b:6,11). If it is possible to utilize a customer
delivery to perform some of the integration

activities, this will be the spark needed to raise the
priority, mobilize resources, gaining commitment
etc. (IF2c:6,11). However, it should also be noted
that customer delivery projects typically have
higher priority than long-term goals such as
integration, and may steal resources and
commitment from the integration process. The
extreme would be to focus only on immediate
needs, questioning the need of integration at all
(IF1b:3,11, IF1c:6,9).

• Case A used prototyping as a way to show an
early proof of concept (IA:1,6,9,11).

• In some cases where it has been difficult to
formulate, or agree on, or commit to a vision, the
opinion has been raised that you rather need to
move on and do something more concrete. There
might be too many unknowns, and the best way to
carve out a more concrete vision is to do
something that is useful in the shorter term, and
use it as a learning experience (IF2c:11, IF2f:6). In
case F2 requirements and design evolved
uncontrolled, driven by implementation (IF2b:6,
IF2c:9, IF2d:6,11); it would have been better to
either freeze the requirements or to include
constant change into the development model.

• For a large system, a waterfall model is not
suitable (IF1b:5,6). It is often considered too risky
to define the complete integrated system and
implement it, as this runs the risk of not being
feasible at time of delivery; there is a too long
time to return of investment (IB:1). Closely
associated is the approach of a loosely integrated
system: an integration point should be found and
all subsequent activities, although run as separate
delivery projects, will little by little make
integration happen (IB:6,7, IF1b:6,7,8,11; the
proposed integration point in case F1 was a data
storage format). There is however a tradeoff to be
made, there are typically some common
fundaments that need to be built first (PF1a, DF1a,
IF2e:7).

• In order to develop and install a number of
customer-specific systems in parallel, divergence
can be allowed, if there are mechanisms that will
enforce standardization and convergence from
time to time (IB:7,11,13).

Relation to other development activities. As
integration has to be done in parallel with the ordinary
work within the organization, this often leads in
another direction (IF1a:9). There is a need to
synchronize all parallel development efforts within the
company, otherwise projects run too freely and sub-
optimal solutions are created (IF1c:6). This additional

complexity is not explicitly addressed by the present
research.

5.4 Distributed Software Development
All cases involve distributed organizations, as the need
for software integration typically comes from new
collaborations such as company mergers. The well-
known problems of alleviating distance (both physical
and cultural) [2,3,6] were discernible in the cases.
Many of the interviewees emphasized the need for
meeting in person, and also the benefits of job rotation
(IA:11, IF2b:11, IF2c:9,11, IF1a:11, IF1c:11, IF2d:9, IF2e:11).

Two particular “software culture” differences
were described:
• In the small evaluation group of case C, the US

organization sent managers while the Swedish
organization wanted technicians to evaluate the
systems (ICa:6).

• In case A, the Swedish site had a like for a
particular commercial platform, while the German
counterpart strongly advocated open source
(IA:2,7,8).

In cases A and C, the difficulties with distributed
development were solved by assigning the task to one
single site. In case A, development was assigned to the
site historically strongest in HMIs (IA:1), and in case
C, discontinuing one system in practice meant a
possibility to reduce other development sites (ICb:6).
Local development is, if possible, the preferred way of
addressing the problems with distributed development.
However, this assumes there are indeed enough
resources available at that site (which may not always
be the case). This also assumes that there is enough
knowledge at that site, which might not be possible if a
tighter merge of the software is chosen than in the
cases A (involving new development) and C (where
one system was discontinued).

6. Summary and Conclusions
We have studied 9 cases of software integration, to
answer the three questions that were asked in the
beginning.

6.1 Summary of Patterns
To answer the first question, Q1 (about common
experiences) we chose to formulate the results in terms
of recurring patterns. We have distinguished two
processes: A vision process and an integration process.
Seven patterns were found in the vision process: small
evaluation group; life cycle phase of the existing
systems (may be beneficial); reusing experience from
existing systems; improve the current state; timely
decisions; sufficient analysis; consider commercial
alternatives (the last is only appropriate if the systems
are not core products). Six patterns were found

concerning the integration process: strong project
management; commitment; cooperative grassroots;
make agreements and keep them; common
development environment; achieve momentum. The
main pattern found concerning the interaction between
the vision and integration processes was stepwise
delivery. This is the preferred way to monitor progress,
maintain financing and commitment. It also provides a
possibility to learn and refine the vision along the way.

The fact that the same patterns replicated
themselves across the heterogeneous systems and
organizations of the cases gives some confidence about
the generality of the results, thus addressing Q2 (the
possibility to generalize these experiences).

6.2 What Makes Integration Specific?
We can recognize many of the presented patterns
being proposed as important factors in development
software processes, or as important activities from
experiences from best practices. However, the fact that
the organizations of the cases found difficulties
implementing the patterns indicates that during
integration some already known “best practices” [4]
must be implemented even stronger than usual, or may
require much more efforts, or are different in technical
details.

We believe that the higher importance of some
patterns can be explained by other factors than the
specific integration context. The patterns strong
project management; commitment; cooperative
grassroots; make agreements and keep them; common
development environment seem to come mainly from
the fact that there are two (distributed) groups
involved; these patterns are thus recommendable to
every distributed software development effort. The
importance of some other patterns can be explained
with the long time scale of integration and large
organizations: improve the current state; stepwise
delivery. Part of what makes integration unique is that
these difficulties occur simultaneously. Some of the
patterns seem to be more specific to the integration
context, with two existing systems (not only one, as
during ordinary evolution) and two groups of people
with no one having complete overview or knowledge
of both systems: small evaluation group; reusing
experience from existing systems; life cycle phase of
the existing systems.

6.3 Future Work
Answering the third question (which experiences are
specific to integration) in more depth could involve
refining the experiences into a process (model) for
integration.

The two interrelated processes described in the
present paper do not explain the complete course of
events in the cases. For example, the architecture of
the existing systems also heavily influences what is
possible to do. We are currently viewing the same
material from this point of view as well [8].

7. Acknowledgements
We would like to thank all interviewees and their
organizations for sharing their experiences and
allowing us to publish them.

8. References
 [1] Bonner J. M., Ruekert R. W., and Walker O. C., “Upper

management control of new product development projects
and project performance”, In Journal of Product Innovation
Management, volume 19, issue 3, pp. 233-245, 2002.

 [2] Carmel E., Global Software Teams - Collaborating Across
Borders and Time Zones, ISBN 0-13-924218-X, Prentice-
Hall, 1999.

 [3] Carmel E. and Agarwal R., “Tactical Approaches for
Alleviating Distance in Global Software Development”, In
IEEE Software, volume 18, issue 2, pp. 22-29, 2001.

 [4] CMMI Product Team, Capability Maturity Model ®
Integration (CMMI SM), Version 1.1, report CMU/SEI-
2002-TR-011, Software Engineering Institute (SEI), 2002.

 [5] Cummins F. A., Enterprise Integration: An Architecture for
Enterprise Application and Systems Integration, ISBN
0471400106, John Wiley & Sons, 2002.

 [6] Karolak D. W., Global Software Development - Managing
Virtual Teams and Environments, ISBN 0-8186-8701-0,
IEEE Computer Society, 1998.

 [7] Land R. and Crnkovic I., “Existing Approaches to Software
Integration – and a Challenge for the Future”, In
Proceedings of Software Engineering Research and Practice
in Sweden (SERPS), Linköping University, 2004.

 [8] Land R., Crnkovic I., Larsson S., and Blankers L.,
“Architectural Reuse in Software Systems In-house
Integration and Merge – Experiences from Industry”, In
Proceedings of First International Conference on the
Quality of Software Architectures (QoSA), Springer, 2005.

 [9] Land R., Larsson S., and Crnkovic I., Interviews on Software
Integration, report MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-177/2005-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, 2005.

 [10] Meyers C. and Oberndorf P., Managing Software
Acquisition: Open Systems and COTS Products, ISBN
0201704544, Addison-Wesley, 2001.

 [11] Ruh W. A., Maginnis F. X., and Brown W. J., Enterprise
Application Integration, A Wiley Tech Brief, ISBN
0471376418, John Wiley & Sons, 2000.

 [12] Wallin C., A Process Approach for Senior Management
Involvement in Software Product Development, Licentiate
Thesis, Department of Computer Science and Engineering,
Mälardalen University, 2003.

 [13] Wallnau K. C., Hissam S. A., and Seacord R. C., Building
Systems from Commercial Components, ISBN 0-201-70064-
6, Addison-Wesley, 2001.

 [14] Yin R. K., Case Study Research : Design and Methods (3rd
edition), ISBN 0-7619-2553-8, Sage Publications, 2003.

