
R. Reussner et al. (Eds.): QoSA-SOQUA 2005, LNCS 3712, pp. 123 – 139, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Architectural Reuse in Software Systems In-house 
Integration and Merge – Experiences from Industry 

Rikard Land1, Ivica Crnković1, Stig Larsson1, and Laurens Blankers1,2 

1 Mälardalen University, 
Department of Computer Science and Electronics, 

PO Box 883, SE-721 23 Västerås, Sweden 
2 Eindhoven University of Technology, 

Department of Mathematics and Computing Science, 
PO Box 513, 5600 MB Eindhoven, Netherlands 

{rikard.land, ivica.crnkovic, stig.larsson, 
laurens.blankers}@mdh.se 

http://www.idt.mdh.se/{~rld, ~icc} 

Abstract. When organizations cooperate closely, for example after a company 
merger, there is typically a need to integrate their in-house developed software 
into one coherent system, preferably by reusing from all of the existing systems. 
The parts that can be reused may be arbitrarily small or large, ranging from 
code snippets to large self-containing components. Not only implementations 
can be reused however; sometimes it may be more appropriate to only reuse 
experiences in the form of architectural solutions and requirements. In order to 
investigate the circumstances under which different types of reuse are 
appropriate, we have performed a multiple case study, consisting of nine cases. 
Our conclusions are, summarized: reuse of components from one system 
requires reuse of architectural solutions from the same system; merge of 
architectural solutions cannot occur unless the solutions already are similar, or 
if some solutions from one are incorporated into the other. In addition, by 
hierarchically decomposing the systems we make the same observations. 
Finally, among the cases we find more architectural similarities than might had 
been expected, due to common domain standards and common solutions within 
a domain. Although these observations, when presented, should not be 
surprising, our experiences from the cases show that in practice organizations 
have failed to recognize when the necessary prerequisites for reuse have not 
been present.  

1   Introduction 

Given two high-quality systems with similar purpose and features, how can you create 
one single system? Can they somehow be merged? In other words, is it possible to 
reuse the best out of the existing systems and reassemble a new, future system of 
perhaps even higher quality? This is the challenge and desire of many organizations in 
today’s era of company mergers and other types of close collaborations; this may 
even be the reason for acquiring a competitor in the first place. The software may be 
the core products of the companies, or some support systems for the core business. If 



124 R. Land et al. 

the software systems are mainly used in-house, performing further evolution and 
maintenance of two systems in parallel seems wasteful. If the software systems are 
products of the company, it makes little sense to offer customers two similar products. 
In either case, the organization would ideally want to take the best out of the existing 
systems and integrate or merge them with as little effort as possible, i.e. reusing 
whatever can be reused when building a future system.  

However, it can be expected that “architectural mismatch” [8] makes this task 
difficult. Combining parts of two systems built under different assumptions, following 
different philosophies, would likely violate the conceptual integrity [3] of the system. 
It has been observed that qualities largely are determined by the architecture of a 
system [2], but no matter what the quality of the existing systems are, integrating or 
merging them – if possible at all – does not necessarily lead to a new high-quality 
system. There seems to be a range of possibilities in practice, and the choices are 
influenced by many factors. Possibilities include a tight merge where the old systems 
are no longer distinguishable, a looser integration, to discontinue some systems and 
evolve others, or even to not integrate at all but rather start a new development effort, 
or even (just to be exhaustive about the alternatives) doing nothing but let the existing 
systems live side by side. The current paper outlines the prerequisites for a tighter 
merge, in terms of the existing systems (other important points of view are e.g. 
processes, people, organization, and culture). That is: under what circumstances it is 
possible and feasible to reuse parts of the existing systems, and when is it more 
appropriate to only reuse experiences and implement something new? 

In order to investigate this we have carried out a multiple case study [21]. It 
contains nine cases from six organizations working in different domains. The cases 
are situations where two or more systems were found to overlap and the intention was 
to create a new system for the future. This paper takes the viewpoint of reuse, and two 
specific questions are, within the context outlined: 

Q1. Which are common experiences (good and bad) concerning reuse when 
merging two or more systems? 

Q2. To what extent are the lessons learned from these experiences possible to 
generalize into recommendations for other organizations? 

The rest of the paper describes the cases and provides answers to these questions. 
Section 1.1 describes related work, section 1.2 describes the methodology used in the 
research, and section 1.3 introduces the cases. Section 2 categorizes reuse and section 
3 presents reuse in the cases. Section 4 consolidates the observations from all cases, 
summarized according to the categorization given. Section 5 concludes the paper by 
summarizing the observations made and outlining future work. 

1.1   Related Work 

Software integration may mean many different things, and there is much literature to 
be found. Three major fields of software integration are component-based software 
[20], open systems [16], and Enterprise Application Integration, EAI [17]. In a 
previous survey of existing approaches to software integration [13], we found no 
existing literature that directly addresses the context of the present research: 
integration or merge of software controlled and owned within an organization. 



 Architectural Reuse in Software Systems In-house Integration and Merge 125 

Software reuse usually means finding existing software pieces possible to use in a 
new situation [10,12]. In the context of the present paper, the procedure is rather the 
opposite: given two (or more) systems to reuse from, what can be reused? In addition, 
reuse traditionally concerns reusing implementations, while the cases also mention 
reuse of experiences, i.e. of requirements and known architectural and design 
solutions. 

1.2   Research Methodology 

The multiple case study [21] consists of nine cases from six organizations that have 
gone through an integration process. Our main data source has been interviews, but in 
some cases we also had access to certain documentation. In one case (F1) one of the 
authors (R.L.) also participated as an active member. Details regarding the research 
design and material from the interviews are available in a technical report [14].   

1.3   Overview of the Cases 

The cases come from different types and sizes of organizations operating in different 
domains, the size of the systems range from a maintenance and development staff of a 
few people to several hundred people, and the types of qualities required are very 
different depending on the system domain. What the cases have in common though is 
that the systems have a significant history of development and maintenance.  

The cases are summarized in Table 1. They are labelled A, B, etc. Cases E1, E2, 
F1, F2, and F3 occurred within the same organizations (E and F). For the data 
sources, the acronyms used are IX for interviews, DX for documents, and PX for 
participation, where X is the case name (as e.g. in IA, the interview of case A), plus an 
optional lower case letter when several sources exist for a case (as e.g. for interview 
IDa, one of the interviews for case D). IX:n refers to the answer to question n in 
interview IX. The complete copied out interview notes, and details about the 
participation activities and documents used are found in [14]. In the present paper, we 
have provided explicit pointers into this source of data. 

2   Categorizing Reuse 

This section first describes development artefacts (i.e. not only implementations) that 
can be reused that were mentioned in the cases (section 2.1) followed by a 
presentation of three basic reuse types that can apply to each of these artefacts 
(section 2.2). 

2.1   What Software Artefacts Can Be Reused? 

Although software reuse traditionally means reuse of implementations [12], the cases 
repeatedly indicate reuse of experience even if a new generation is implemented. In 
order to capture this, we have chosen to enumerate four types of artefacts that can be 
 



126 R. Land et al. 

reused: requirements, architectural solutions (structure and framework), components 
and source code. The first two means reuse of concepts and experiences, and the two 
latter reuse of implementations. We have chosen the terms “component” and 
“framework”, although aware that the terms is often given more limited definitions 
than is intended here, “component” in e.g. the field of Component-Based Software 
Engineering [19], and “framework” in e.g. object oriented frameworks [6,9] and 
component based frameworks [5]. 

• Reuse of Requirements. This can be seen as the external view of the system, what 
the system does, including both functionality and quality attributes (performance, 
reliability etc.). Reusing requirements means reusing the experience of features and 
qualities that have been most appreciated and which needs improvement compared 
to the current state of the existing systems. (Not discussed in the present paper is 
the important aspect of how the merge itself can result in new and changed 
requirements as well; the focus here is on from which existing systems 
requirements were reused.) 

• Reuse of Architectural Solutions. This can be seen as the internal view of the 
system. Reusing solutions means reusing experience of what have worked well or 
less well in the existing systems. With architectural solutions, we intend two main 
things:  

− Structure (the roles of components and relations between them), in line with 
the definition given e.g. by Bass et al [2]. Reusing structure would to a large 
part explicitly recognize architectural and design patterns and styles 
[1,4,7,18]. 

− Framework. A definition suitable for our purposes is an “environment which 
defines components, containing certain rules to which the components must 
adhere to be considered components (it can be compliance to component 
models, or to somewhat vaguer definitions)”. A framework embodies these 
rules in the form of an implementation enforcing and supporting some 
important decisions. 

• Reuse of Components. Components are the individual, clearly separate parts of 
the system that can potentially be reused, ideally with little or no modification.  

• Reuse of Source code. Source code can be cut and pasted (and modified) given the 
target programming language is the same. Although it is difficult to strictly 
distinguish between reusing source code and reusing and modifying components, 
we can note that with source code arbitrary chunks can be reused.  

For a large, complex system, the system components can be treated as sub-systems, 
i.e. it is possible to discuss the requirements of a component, its internal architectural 
solutions, and the (sub-) components it consists of, and so on (recursively). If there 
are similar components (components with similar purpose and functionality) in both 
systems, components may be “merged”. We can thus talk about a hierarchical 
decomposition of systems. Large systems could potentially have several hierarchical 
levels. 



 Architectural Reuse in Software Systems In-house Integration and Merge 127 

Table 1. Summary of the cases 

In
fo

rm
at

io
n 

R
es

ou
rc

es
 

In
te

rv
ie

w
: 

pr
oj

ec
t l

ea
de

r 
fo

r 
“n

ex
t g

en
er

at
io

n”
 

de
ve

lo
pm

en
t p

ro
je

ct
 (

I A
) 

In
te

rv
ie

w
: 

ex
pe

ri
en

ce
d 

m
an

ag
er

 a
nd

 
de

ve
lo

pe
r 

(I
B
) 

In
te

rv
ie

w
s:

 le
ad

er
 f

or
 a

 s
m

al
l g

ro
up

 e
va

lu
at

in
g 

in
te

gr
at

io
n 

al
te

rn
at

iv
es

 (
I C

a)
; m

ai
n 

ar
ch

ite
ct

 o
f 

on
e 

of
 th

e 
sy

st
em

s 
(I

C
b)

 

In
te

rv
ie

w
s:

 a
rc

hi
te

ct
s/

de
ve

lo
pe

rs
 (

I D
a, 

I D
b)

. 

In
te

rv
ie

w
: 

pr
oj

ec
t l

ea
de

r 
an

d 
m

ai
n 

in
te

rf
ac

e 
de

ve
lo

pe
r 

(I
E

1)
 

D
oc

um
en

t:
 p

ro
to

co
l f

ro
m

 s
ta

rt
up

 m
ee

tin
g 

(D
E

1)
 

In
te

rv
ie

w
: 

pr
oj

ec
t l

ea
de

r 
an

d 
de

ve
lo

pe
r 

(I
E

2)
 

D
oc

um
en

ts
: 

ev
al

ua
tio

n 
of

 e
xi

st
in

g 
si

m
ul

at
io

n 
sy

st
em

s 
(D

E
2a

);
 o

th
er

 d
oc

um
en

ta
tio

n 
(D

E
2b

, 
D

E
2c

, D
E

2d
, D

E
2e

, D
E

2f
) 

P
ar

ti
ci

pa
ti

on
: 

20
02

 (
R

.L
.)

 (
P F

1a
);

 c
ur

re
nt

ly
 (

R
.L

.)
 

(P
F1

b)
. 

In
te

rv
ie

w
s:

 a
rc

hi
te

ct
s/

de
ve

lo
pe

rs
 (

I F
1a

, I
F1

b)
; Q

A
 

re
sp

on
si

bl
e 

(I
F1

c)
 

In
te

rv
ie

w
s:

 s
of

tw
ar

e 
en

gi
ne

er
s 

(I
F

2a
, I

F
2b

,  I
F

2f
);

 
pr

oj
ec

t m
an

ag
er

 (
I F

2c
);

 p
hy

si
cs

 e
xp

er
ts

 (
I F

2d
, I

F2
e)

 

In
te

rv
ie

w
: 

pr
oj

ec
t l

ea
de

r 
an

d 
m

ai
n 

im
pl

em
en

te
r 

(I
F3

) 
 

D
oc

um
en

ta
ti

on
: 

m
is

ce
lla

ne
ou

s 
re

la
te

d 
(D

F3
a, 

D
F3

b)
 

G
oa

l 

N
ew

 H
um

an
-M

ac
hi

ne
 

In
te

rf
ac

e 
(H

M
I)

 p
la

tf
or

m
 to

 
be

 u
se

d 
fo

r 
m

an
y 

pr
od

uc
ts

 

R
at

io
na

liz
in

g 
tw

o 
sy

st
em

s 
w

it
hi

n 
co

rp
or

at
io

n 
w

ith
 

si
m

ila
r 

pu
rp

os
e 

R
at

io
na

li
zi

ng
 tw

o 
co

re
 

pr
od

uc
ts

 in
to

 o
ne

 

R
eu

si
ng

 H
um

an
-M

ac
hi

ne
 I

nt
er

-
fa

ce
 f

or
 d

at
a-

in
te

ns
iv

e 
se

rv
er

 

C
re

at
in

g 
ne

xt
 g

en
er

at
io

n 
si

m
ul

at
io

n 
m

od
el

s 
fr

om
 

to
da

y’
s 

Po
ss

ib
le

 r
at

io
na

liz
at

io
n 

of
 

th
re

e 
si

m
ul

at
io

n 
sy

st
em

s 
w

it
h 

si
m

ila
r 

pu
rp

os
e 

P
os

si
bl

e 
ra

tio
na

liz
at

io
n 

by
 u

si
ng

 o
ne

 s
in

gl
e 

sy
st

em
 

Im
pr

ov
in

g 
th

e 
cu

rr
en

t 
st

at
e 

at
 tw

o 
si

te
s 

P
os

si
bl

e 
ra

tio
na

liz
at

io
n 

by
 

us
in

g 
on

e 
si

ng
le

 s
ys

te
m

 

Sy
st

em
 D

om
ai

n 

S
af

et
y-

cr
it

ic
al

 s
ys

te
m

s 
w

it
h 

em
be

dd
ed

 s
of

tw
ar

e 

A
dm

in
is

tr
at

io
n 

of
 s

to
ck

 
ke

ep
in

g 

S
af

et
y-

cr
it

ic
al

 s
ys

te
m

s 
w

it
h 

em
be

dd
ed

 s
of

tw
ar

e 

O
ff

-l
in

e 
m

an
ag

em
en

t o
f 

po
w

er
 d

is
tr

ib
ut

io
n 

sy
st

em
s 

O
ff

-l
in

e 
ph

ys
ic

s 
si

m
ul

at
io

n 

O
ff

-l
in

e 
ph

ys
ic

s 
si

m
ul

at
io

n 

M
an

ag
in

g 
of

f-
lin

e 
ph

ys
ic

s 
si

m
ul

at
io

ns
  

O
ff

-l
in

e 
ph

ys
ic

s 
si

m
ul

at
io

n 

So
ft

w
ar

e 
is

su
e 

re
po

rt
in

g 
 

O
rg

an
iz

at
io

n 

M
er

ge
d 

in
te

rn
at

io
na

l 
co

m
pa

ny
 

O
rg

an
iz

at
io

n 
w

ith
in

 
la

rg
e 

in
te

rn
at

io
na

l 
en

te
r p

ri
se

 

M
er

ge
d 

in
te

rn
at

io
na

l 
co

m
pa

ny
 

M
er

ge
d 

in
te

rn
at

io
na

l 
co

m
pa

ny
 

C
oo

pe
ra

tio
n 

de
fe

ns
e 

re
se

ar
ch

 in
st

it
ut

e 
an

d 
in

du
st

ry
 

D
if

fe
re

nt
 p

ar
ts

 o
f 

S
w

ed
is

h 
de

fe
ns

e 

M
er

ge
d 

in
te

rn
at

io
na

l 
co

m
pa

ny
 

M
er

ge
d 

in
te

rn
at

io
na

l 
co

m
pa

ny
 

M
er

ge
d 

in
te

rn
at

io
na

l 
co

m
pa

ny
 

 A
 

B
 

C
 

D
 

E
1 

E
2 

F
1 

F
2 

F
3 

 



128 R. Land et al. 

Reusing, decomposing and merging components means that the interfaces (in the 
broadest sense, including e.g. file formats) must match. In the context studied, where 
an organization has full control over all the systems, the components and interfaces 
may be modified, so an exact match is not necessary (and would be highly unlikely). 
For example, if two systems or components write similar info to a file, differences in 
syntax can be overcome with reasonable effort, and the interfaces can be considered 
compatible. However, reuse of interfaces also requires semantic compatibility, which 
is more difficult to achieve and determine. The semantic information is in most cases 
less described and assumes a common understanding of the application area. 

Although reuse of all artefacts is discussed in the present paper, the focus is on 
reuse of architectural solutions and components, and on the recursive (hierarchical) 
decomposition process. 

2.2   Possible Primitive Types of Reuse in Software Merge 

Assuming there are two systems to be integrated, there are three basic possibilities of 
reuse: a) reuse from both existing systems, b) reuse from only one of the existing 
systems, and c) reuse nothing. See Fig. 1. In reality there may be more than two 
existing systems (IA:1, IE1:1, IE2:1, DF2a, IF3:1), and more reuse alternatives can easily 
be constructed by combining these primitive reuse types, i.e. reuse from one, or two, 
or …, or n-1 of the n existing systems. For simplicity, we only discuss this in text in 
connection to the cases. 

Different types of reuse can be applied at each of the above mentioned/enumerated 
artefacts. For example, requirements might be reused from all systems (type a), but 
only the architecture and components of one is evolved (type b). An important pattern 
to search for in the cases is how different types of reuse for different artefacts are 
related. For example, is it possible to reuse architectural solutions from only one of 
the existing systems but reuse components from both? If so, under what 
circumstances? 

 

a) Reuse from both c) No reuseb) Reuse from one  

Fig. 1. The three basic types of reuse in the integration context 

We want to emphasize that this is a very simple way of describing a complex 
phenomenon that cannot capture everything. For example, the focus of the paper is on 
reuse, not new influences. A problem with the three simple types is where to draw the 
border between type a, “reuse from both”, and b, “reuse from one”, in the situation 
when only very little is reused from one of the systems. However, it would be 
problematic to describe different amounts of reuse – what would “reuse of 34% of the 
architectural solutions of system A” mean? This difficulty is taken into account in the 
analysis (section 4), by discussing the implications of classifying each case into either 
reuse type. 



 Architectural Reuse in Software Systems In-house Integration and Merge 129 

3   Reuse in the Cases 

This section will present the type of reuse applied to the different artefacts in all of the 
nine cases, including considerations and motivations. One of the cases (case F2) is 
described in depth, followed by more summarized descriptions of the others. More 
details for all cases can be found in a technical report [14]. 

The motivation for selecting case F2 for the in-depth description is that being 
halfway into full integration it represents all types of reuse, at different hierarchical 
levels. It is also the case with the largest number of interviews made (six), and one of 
the authors (R.L.) has worked within the company (in case F1) and taken part of 
information not formalized through interview notes. 

3.1   Case F2: Off-Line Physics Simulation 

Organization F is a US-based global company that acquired a slightly smaller global 
company in the same business domain, based in Sweden. To support the core 
business, physics computer simulations are conducted. Central for many simulations 
made is a 3D simulator consisting of several hundreds of thousands lines of code 
(LOC) (IF2e:1, IF2f:1). Case F2 concerns two simulation systems consisting of several 
programs run in a sequence, ending with the 3D simulator (IF2a:1, IF2b:1). The pipe-
and-filter architecture and the role of each program is the same for both existing 
systems, and all communication between the programs is in the form of input/output 
files of certain formats (IF2a:1,9, IF2b:7, IF2c:10,11, IF2d:8, IF2e:5, IF2f:8). See Fig. 2.  

 

US 3D SimulatorUS Preprocessor US 2D Simulator US Postprocessor

SE 3D SimulatorSE Preprocessor SE 2D Simulator SE Postprocessor

US System

Swedish System

 

Fig. 2. The batch sequence architecture of the existing systems in case F2. Arrows denote 
dependency; data flows in the opposite direction.  

The 3D simulator contains several modules modelling different aspects of the 
physics involved. One of these modules, which we can call “X”, needs as input a 
large set of input data, which is prepared by a 2D simulator. In order to help the user 
preparing data for the 2D simulator, there is a “pre-processor”, and to prepare the data 
for the 3D simulator, a “post-processor” is run; these programs are not simple file 
format translators but involve some physics simulations as well (IF2a:1, IF2b:1).  

It was realized that there was a significant overlap in functionality between the two 
simulation systems present within the company after the merger. It was not 
considered possible to just discontinue either of them and use the other throughout the 
company for various reasons. In the US, a more sophisticated methodology for their 
2D simulations was desired, a methodology already implemented in the Swedish 



130 R. Land et al. 

system (IF2a:3). In the Swedish system on the other hand, fundamental problems with 
their model had also been experienced (IF2a:3). In addition, there are two kinds of 
simulations made for different customers (here we can call them simulations of type 
A and B), one of which is the common type among US customers, the other common 
among Swedish customers (IF2a:1, IF2c:10). All this taken together led to the formation 
of a common project with the aim of creating a common, improved simulation system 
(IF2c:3). The pre-processor, post-processor, and the “X” module in the 3D simulator 
are now common, but integration of the other parts are either underway or only 
planned. There are thus still two distinct systems. The current state and future plans 
for each component are: 

• Pre-processor. The pre-processor has been completely rewritten in a new language 
considered more modern (IF2b:1,7). Based on experience from previous systems, it 
provides similar functionality but with more flexibility than the previous pre-
processors (IF2b:7). It is however considered unnecessarily complex because two 
different 2D simulators currently are supported (IF2b:7,9).  

• 2D Simulator. By evolving the US simulator, a new 2D simulator is being 
developed which will replace the existing 2D simulators (IF2a:9, IF2b:7, IF2d:7,8). It 
will reuse a calculation methodology from the Swedish system (IF2a:3, IF2c:9). 
Currently both existing 2D simulators are supported by both the pre- and post-
processor (IF2b:7,9, IF2d:7).  

• Post-processor. It was decided/assumed that the old Swedish post-processor, with 
three layers written in different languages, would be the starting point, based on 
engineering judgments (IF2a:7, IF2c:7, IF2d:6). This led to large problems as the 
fundamental assumptions turned out to not hold; in the end virtually all of it was 
rewritten and restructured, although still with the same layers in the same 
languages (IF2a:9, IF2c:7,9, IF2d:6,7, IF2e:7). 

• 3D simulator. The plan for the (far) future is that the complete 3D simulator 
should be common (IF2a:3, IF2c:3, IF2f:3). “X” physics is today handled by a new, 
commonly developed module that is used in both the Swedish and US 3D 
simulators (IF2e:7). It has a new design, but there are similarities with the previous 
modules (IF2d:7). In order to achieve this, new data structures and interfaces used 
internally have been defined and implemented from scratch (IF2e:7, IF2f:6,7); 
common error handling routines were also created from scratch (IF2e:7); these 
packages should probably be considered part of the framework rather than a 
component. All this was done by considering what would technically be the best 
solution, not how it was done in the existing 3D simulators (IF2e:7,8, IF2f:6). This 
meant that the existing 3D simulators had to undergo modifications in order to 
accommodate the new components, but they are now more similar and further 
integration and reuse will arguably become easier (IF2e:7).  

Fig. 3 shows the current states of the systems. Although there are two 3D simulators, 
some internal parts are common; this illustrates the hierarchical decomposition 
described in section 2.1 and is visualized in Fig. 4.  

 



 Architectural Reuse in Software Systems In-house Integration and Merge 131 

US 3D Simulator

Preprocessor

US 2D Simulator

Postprocessor

SE 3D SimulatorSE 2D Simulator

US System

Swedish System
 

Fig. 3. The currently common and different parts of the systems in case F2 

"X" PhysicsError Handling

US 3D Simulator

Swedish 3D Simulator
 

Fig. 4. The currently common and different parts (only exemplified) of the 3D simulators in 
case F2 

3.2   Other Cases 

This section presents the most relevant observations in each of the remaining cases. 

Case A. Each of the previous separate companies had developed software human-
machine interfaces (HMIs) for their large hardware products (IA:1,2). To rationalize, it 
was decided that a single HMI should be used throughout the company (IA:2,3). One 
of the development sites was considered strongest in developing HMIs and was 
assigned the task of consolidating the existing HMIs within the company (IA:2). New 
technology (operating system, component model, development tools, etc.) and (partly) 
new requirements led to the choice of developing the next generation HMI without 
reusing any implementations, but reusing the available experience about both 
requirements and design choices (IA:5,6,7). This also included reuse of what the 
interviewee calls “anti-design decisions”, i.e. learning from what was not so good 
with previous HMIs (IA:7). The most important influence, apart from their previous 
experience in-house, was one of the other existing HMIs which was very 
configurable, meaning it was possible to customize the user interface with different 
user interface requirements, and also to gather data from different sources (IA:3,5).  

Case B. One loosely integrated information system had been customized and 
installed at a number of daughter companies within a large enterprise (IB:1). In one 
such daughter company, a tightly integrated system had already been built, but for the 
future, it should be merged with the loosely integrated system (IB:3). The total 
integrated system was stripped down piece by piece, and functionality rebuilt within 
the framework of the loosely integrated system (IB:3,7). Many design ideas were 
however reused from the totally integrated system (IB:7). 



132 R. Land et al. 

Case C. Two previously competing safety-critical and business-critical products 
with embedded software had to be integrated (ICa:1, ICb:1). The systems and 
development staff of case C is the largest among the cases: several MLOC and 
hundreds of developers (ICb:1,9). The systems’ high-level structure were similar 
(ICa:7, ICb:1), but there were differences as well: some technology choices, framework 
mechanisms such as failover, supporting different (natural) languages, and error 
handling, as well as a fundamental difference between providing an object model or 
being functionally oriented (ICb:1,6,7). Higher management first demanded reuse of 
one system’s HMI and the others underlying software in a very short time, which by 
the architect’s was considered unrealistic and the wrong way to go (ICa:6,8, ICb:6). The 
final decision was to retire one of the systems and continue development of the other 
(ICa:6, ICb:6). Once this decision was made, reusing some components of the 
discontinued system into the other became easier (ICb:7). It took some twenty person-
years to transfer one of the major components, but these components represented so 
many person-years that this was considered “modest size” compared to rewrite, 
although “the solutions were not the technically most elegant” (ICb:7). 

Case D. After the company merger between a US and a European company the 
two previously competing systems have been continued as separate tracks offered to 
customers; some progress has been made in identifying common parts that can be 
used in both systems, in order to eventually arrive at a single system (IDa:1,3, IDb:5,6). 
As the US system’s HMI was considered out of fashion, two major improvements 
were made: the European HMI was reused, and a commercial GIS tool was acquired 
(instead of the European data engineering tool) (IDa:1, IDb:3,8). Reuse of the European 
HMI was possible thanks to its component-based architecture (IDa:1, IDb:3,7,8) and the 
similarities between the systems, both from the users’ point of view (IDb:6) and the 
high-level architecture, client-server (IDa:7, IDb:7,8). The similarities were partly due 
to a common ancestry some twenty years earlier (IDa:1). In the European HMI, a 
proprietary component framework had been built and it has been possible to transfer 
some functionality from the US HMI by adding and modifying components (IDb:7). 
The servers are still different and the company markets two different systems (IDa:12, 
IDb:7).  

Case E1. A number of existing simulation models were implemented in 
FORTRAN and SIMULA, which would make reuse into an integrated system 
difficult (IE1:6). Also, the new system would require a new level of system complexity 
for which at least FORTRAN was considered insufficient; for the new system Ada 
was chosen and a whole new architecture was implemented using a number of Ada-
specific constructs (IE1:6,7). Many ideas were reused, and transforming some existing 
SIMULA code to Ada was quite easy (IE1:7). 

Case E2. A certain functional overlap among three simulation systems was 
identified (IE2:1, DE2a). Due to very limited resources, one of these was retired, and the 
only integration between the remaining two has been reuse of the graphical user 
interface of one into the other (IE2:6). Even though the systems belong to the same 
narrow domain, the same language were used and the integration was very loose, this 
reuse into the other system required more effort than expected, due to differences in 
input data formats, log files, and the internal model (IE2:7).  



 Architectural Reuse in Software Systems In-house Integration and Merge 133 

Case F1. After a company merger there was a wish to integrate the software 
simulation environment within the company, focused around the major 3D simulators 
used, but also including a range of user interfaces and automation tools for different 
simulation programs (IF1a:1, IF1b:1, IF1c:1,2, DF1a, PF1a, PF1b). An ambitious project was 
launched with the goal of evaluating three existing systems; the final decision was to 
make the system share data in a common database (IF1a:3, IF1c:3, DF1a, PF1a). However, 
nothing has yet happened to implement it; it appears as this solution was perceived as 
a compromise by all involved (IF1c:6, PF1a, PF1b). Subsequent meetings has not led to 
any tangible progress, and four years after the company merger there are still 
discussions on how to arrive at a future integrated environment, although even this 
goal itself is being questioned by some of the people concerned (IF1b:3,9, IF1c:6,9). A 
difficulty has been to integrate the existing data models (IF1a:6, IF1b:6, IF1c:6,7,9, DF1a, 
PF1a, PF1b). Part of the problem might also be that the scope of such a future system is 
unclear; discussions include the whole software environment at the departments 
(IF1b:6,9, IF1c:1, PF1b).  

Case F3. Three different software systems for tracking software issues (errors, 
requests for new functionality etc.) were used at three different sites within the 
company, two developed in-house and one being a ten-year old version of a 
commercial system (IF3:1). Being a mature domain, outside of the company’s core 
business, it was eventually decided that the best practices represented by the existing 
systems should be reused, and a configurable commercial system should be acquired 
and customized to support these (IF3:6). 

4   Analysis 

The cases are summarized in Table 2. In four cases (D, E2, F1, and F2) the systems 
are not (yet) integrated or merged completely, and there are still two (or more) 
separate systems deployed, sharing some common parts. This means that if system X 
has reused something from system Y but not the other way around, and the two 
systems are still deployed separately, we would have instances of reuse type a, “reuse 
from all” (from X’s point of view) and type b, “reuse from one” (from Y’s point of 
view). In order to be able to describe this in terms of the “primitive” reuse types 
described above, reuse is considered from the point of view of the currently deployed 
systems (where applicable) as well as the future envisioned system (where 
applicable). In addition, there is a possibility to recursively look into components and 
consider the requirements, architectural solutions, and (sub-) components of the 
components, etc. This is done for cases D and F2 where we consider us to have 
enough material to do so (for case F2 in two levels); for most of the others, this did 
not make sense when reuse from more than one did not occur.  

1. Architectural solutions were reused mainly from one, with heavy influence from 
one of (several) other systems. 

2. The systems had already similar architecture, and the integrated system have thus 
reused the same solutions from two systems. 

3. It is unknown what will be reused in the future integrated system. 



134 R. Land et al. 

4. One component (the post-processor) started out as an attempt to reuse from the 
Swedish system, but in the end only a small fraction of the original component was 
left and should probably be considered source code reuse. 

5. It is unknown what will be reused in the future integrated system. Comment 5 also 
applies. 

6. It is unsure whether any source code was reused from the retired system (not 
enough information). 

7. The future systems will be an evolution of the US system, while incorporating a 
methodology from the Swedish system; it is not known whether this means reuse 
of certain architectural solutions and components (the latter seems unlikely).  

Table 2. The types of reuse for the different artefacts in the cases 

Sys 3

visionUS SEUS SE

vision US SEUS SE

US Sys 1SE vision vision US SE visionUS SESys 2

US SE US SE US SE US SEvision US SE vision

2 22

Legend

Requirements

Architectural
solutions

Components

A
final

Source code

Case
Point of view
(italics = future)

D F2F1E2B
final

C
final

E1
final

F3
final

6

Reuse from both

Reuse from one

No reuse

D:HMI F2:PreD:Server D:GIS F2:2D F2:Post

4

F2:3D

System level

First level of decomposition:

Second  level of decomposition:

US SE
F2:3D:X F2:3D:Error F2:3D:Other

Case
Point of view
(italics = future)

Case
Point of view
(italics = future)

Numbers = Comments, see below

21

3

3

2 2 2

4

4

5

5

Requirements

Architectural
solutions

Components

Source code
4

Requirements

Architectural
solutions

Components

Source code

D
is

co
n

ti
n

u
ed

7

7

N
o

 c
le

ar
 p

la
n

 y
et

N
o

 c
le

ar
 p

la
n

 y
et

N
o

 c
le

ar
 p

la
n

 y
et

N
o

 c
le

ar
 p

la
n

 y
et

 
  

In the table, for each system we have listed the four artefacts considered 
(requirements, architectural solutions, components, and source code) and visualized 
the type of reuse with black for reuse of type a “reuse from all”, dark grey for reuse of 
type b “reuse from one”, and light grey for reuse of type c “no reuse”. Fields that have 



 Architectural Reuse in Software Systems In-house Integration and Merge 135 

not been possible to classify unambiguously are divided diagonally to show the two 
possible alternative classifications. These and some other fields have been marked 
with a number indicating a text comment (to be found below the table).  

Based on Table 2, we can make a number of observations: 

Observation 1. A striking pattern in the table is the transition when following a 
column downwards from black to dark grey to light grey, but not the other way 
around (not considering transitions between components and source code). This 
means that:  

• If it is not possible to reuse requirements from several of the existing systems, then 
it is difficult, if not impossible, or makes little sense to reuse architectural solutions 
and components from several systems.  

and:  
• If it is not possible to reuse architectural solutions from several of the existing 

systems, then it is difficult, or makes little sense to reuse components from several 
systems. 

There is only one possible exception from these general observations (system F2:2D, 
see comment 8). We can also note that the type of reuse of architectural solutions very 
often comes together with the same type of reuse for components. This means that if 
architectural solutions are reused, components are often reused. 

Observation 2. In the cases where “reuse from all” occurred at the architectural 
solutions level, this did not mean merging two different architectures, but rather that 
the existing architectures were already similar (comment 2). In the only possible 
counter-case (case A), the development team built mainly on their existing knowledge 
of their own system, adapted new ideas, and reused the concept of configurability 
from one other existing system. This is a strong indication of the difficulty of merging 
architectures; merging two “philosophies” (IE1:1), two sets of fundamental concepts 
and assumptions seems a futile task [8]. This means that: 

• For architectural solutions to be reused from several systems, there must either be 
a certain amount of similarity, or at least some architectural solutions can be 
reused and incorporated into the other (as opposed to being merged). 

That is, the fundamental structures and framework of one system should be chosen, 
and solutions from the others be incorporated where feasible. 

Observation 3. In case D and F2 where the overall architectures structure were 
very similar (client-server and batch sequence respectively), the decomposed 
components follow observations 1 and 2. This means that: 

• Starting from system level, if the architectural structures of the existing systems are 
similar and there are components with similar roles, then it is possible to 
hierarchically decompose these components and recursively consider observations 
1 and 2. If, on the other hand, the structures are not similar and there are no 
components with similar purpose and functionality, it does not make sense to 
consider further architectural reuse (but source code reuse is still possible). 

In the other case with similar system structures (case C) the approach was to 
discontinue one and keep the other, in spite of the similar structures. The reasons 
were: differences in the framework, the high quality of both systems, and the very 
large size of the systems. This shows that architectural structure is not enough for 



136 R. Land et al. 

decomposition and reuse to make sense in practice. Nevertheless, in case C it was 
possible to reuse some relatively small parts from the other system (with some 
modification). We believe that by considering the roles of the components, it might be 
possible to find similarities and possibilities for component reuse, even if the structure 
of the components is dissimilar; this however remains a topic for further research. 

Observation 4. In several of the cases, the architectures were similar (cases C, D, 
F2, and possibly E2). The explanations found in the cases were two: first, in two of 
the cases the systems had a common ancestry since previous collaborations as far 
back as twenty years or more (IDa:1, IF2a:1). Second, there seems to be common 
solutions among systems within the same domain, at least at a high level (e.g. 
hardware architecture); there may also be domain standards (ICb:1,7¸ IF2a:1). This is 
also illustrated by the fact that all instances of similar architectures found were at the 
system level, in no case within a component in a decomposed system (although we do 
not think this would be impossible).  

Although not directly based on the table, we would like to make an additional 
remark. When it is not possible to reuse architectural solutions or components it might 
still be possible to reuse and modify arbitrary snippets of source code. The benefit of 
this type of reuse is the arbitrary granularity that can be reused (e.g. an algorithm or a 
few methods of a class) combined with the possibility to modify any single line or 
character of the code (e.g. exchanging all I/O calls or error handling to whatever is 
mandated in the new framework). There seems to be a simple condition for reusing 
source code in this way, namely that the programming language stays the same (or 
maybe “are similar enough” is a sufficient condition), which should not be unlikely 
for similar systems in the same domain. Source code thus requires a much smaller set 
of assumptions to hold true compared to combining components, which require the 
architectural solutions to be “similar enough” (involving both structure and 
framework).  

We have met the opinion from researchers and software practitioners that these 
observations confirm intuition, on the border to being trivial. On the other hand, we 
have also encountered contrary views mainly from management (for example in the 
cases), that it should be straightforward to reuse and merge the best parts (i.e. 
implementations) of the existing systems. Our contribution is thus the confirmation of 
knowledge that some call common sense, but others apparently are not fully aware of. 

5   Conclusion 

The topic of the present paper is how organizations in control over two or more 
similar software systems, typically as a result of a company merger or some other 
close collaboration, can arrive at a single software system. Let us recapitulate the two 
questions asked in the beginning:  

Q1. Which are common experiences (good and bad) concerning reuse when merging 
two or more systems?  

Q2. To what extent are the lessons learned from these experiences possible to 
generalize into recommendations for other organizations? 

The experiences from the cases answer Q1, and can be used as a reference for how 
specific problems were solved in the past. The observations were structured into three 



 Architectural Reuse in Software Systems In-house Integration and Merge 137 

types of reuse (reuse from all, reuse from one, and no reuse) of four artefacts 
(requirements, architectural solutions, components, and source code), and some 
general patterns were described on when it seems appropriate to reuse. 

Answering Q2 means motivating the external validity of the research. The cases all 
concern large-scale software systems with development and maintenance histories of 
many years or decades, and the wide range of domains represented hints at the 
observations being representative for a large number of integration and merge efforts.  

One can argue that studying other cases in slightly other contexts would lead to 
different results. For example, companies using a product-line architecture approach, 
or COTS-based development might give different observations concerning reuse. 
There are also known patterns or best practices that are not directly in line with our 
observations. For example, the existence of architectural patterns that are reused in 
completely different systems with completely different requirements could be taken 
as a contradiction of observation 1 (which says that without reusing requirements, 
reuse of the architecture is difficult). While this can be true for functional 
requirements, it is not so with the non-functional requirements; in the case when we 
use particular architectural patterns we want to provide solutions related to specific 
concerns (for example reliability, robustness, or maintainability) that might not 
necessarily be explicitly specified as requirements.  

Similarly, observation 2 (which says that the reuse of components is difficult or 
impossible, without reusing the architecture) may seem to contradict the component-
based approach in which the systems are built from already existing components (i.e. 
components can be developed independently of the systems, and the component 
developers can completely be unaware of the systems which will use these 
components). However, it is known that with a component-based approach, an 
architectural framework is determined and many architectural decisions are assumed. 
Indeed, it is known that it is very difficult to reuse components that assume different 
architectural styles or frameworks. In this way, observation 2 confirms the experience 
from component-based approach.  

Finally, we would like to comment on the remark that reuse of source code is 
opportune even if the components or architecture is not reused. This is of course true, 
although it is about reuse on a low level, which can very likely result in abuse (for 
example if the same source code is reused on several places without some 
synchronization mechanism). This observation might be an indication of a lower 
maturity of the development organisations, or for a need to encapsulate such code in 
components. This also suggests that when the new, integrated system is released the 
existing systems should be discontinued.  

With this argumentation, we can claim a certain generality of our observations.   

5.1   Future Work 

Further cases could reveal more details and would also either support or contradict the 
observations presented in the present paper. Other case studies and theoretical 
reasoning could provide further advice on how systems built with different 
architectural styles and in different frameworks can, and should, be integrated.  

To succeed with integration, not only technology is important. We have analyzed 
the case study material from a process point of view [15], and will continue by 



138 R. Land et al. 

describing how to choose between high-level strategies such as merging existing 
systems, discontinuing some systems and evolve others, starting a new development 
effort, or even doing nothing but let the existing systems live side by side. The 
selection among these strategies arguably involves much more than technical aspects; 
the observations on reuse in the present paper are only one among many influences.  

A fundamental question is what architectural compatibility or similarity means in 
practice, and how dissimilarities can be overcome; the answer would presumably 
involve both what we have labelled “structure” (including e.g. architectural styles and 
patterns) and “framework”. Even if the structure is dissimilar, the role of some 
components may be similar enough to allow for component reuse; the circumstances 
under which this could be possible need to be identified. One important issue for 
compatibility could be the notion of crosscutting concerns from the field of aspect-
oriented programming [11]. The data models of the existing programs would also 
need to be taken into account, something we have only touched upon in the present 
paper. 

There exist standardized and commercial solutions for integrating information 
systems (such as enterprise resource planning systems) that has been acquired and 
cannot be modified (only customized, wrapped, etc.). One question to study is how to 
choose between a tight merge and a loose integration in the context we have studied, 
i.e. when such systems have been developed and are fully controlled within a single 
organization. Such a study would presumably need to focus around data integration.  

Acknowledgements 

We would like to thank all interviewees and their organizations for sharing their 
experiences and allowing us to publish them.  

References 

1.  Abowd G. D., Allen R., and Garlan D., “Using Style to Understand Descriptions of 
Software Architecture”, In Proceedings of The First ACM SIGSOFT Symposium on the 
Foundations of Software Engineering, 1993. 

2.  Bass L., Clements P., and Kazman R., Software Architecture in Practice (2nd edition), 
ISBN 0-321-15495-9, Addison-Wesley, 2003. 

3.  Brooks F. P., The Mythical Man-Month - Essays On Software Engineering, 20th 
Anniversary Edition (20th Anniversary edition), ISBN 0201835959, Addison-Wesley 
Longman, 1995. 

4.  Bushmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M., Pattern-Oriented 
Software Architecture - A System of Patterns, ISBN 0-471-95869-7, John Wiley & Sons, 
1996. 

5.  Crnkovic I. and Larsson M., Building Reliable Component-Based Software Systems, ISBN 
1-58053-327-2, Artech House, 2002. 

6.  Fayad M. E., Hamu D. S., and Brugali D., “Enterprise frameworks characteristics, criteria, 
and challenges”, In Communications of the ACM, volume 43, issue 10, pp. 39-46, 2000. 

7.  Gamma E., Helm R., Johnson R., and Vlissidies J., Design Patterns - Elements of Reusable 
Object-Oriented Software, ISBN 0-201-63361-2, Addison-Wesley, 1995. 



 Architectural Reuse in Software Systems In-house Integration and Merge 139 

8.  Garlan D., Allen R., and Ockerbloom J., “Architectural Mismatch: Why Reuse is so Hard”, 
In IEEE Software, volume 12, issue 6, pp. 17-26, 1995. 

9.  Johnson R. E., “Frameworks = (Components + Patterns)”, In Communications of the ACM, 
volume 40, issue 10, pp. 39-42, 1997. 

10. Karlsson E.-A., Software Reuse : A Holistic Approach, Wiley Series in Software Based 
Systems, ISBN 0 471 95819 0, John Wiley & Sons Ltd., 1995. 

11. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C. V., Loingtier J.-M., and Irwin 
J., “Aspect-Oriented Programming”, In Proceedings of European Conference on Object-
Oriented Programming (ECOOP), LNCS 1241, Springer-Verlag, 1997. 

12. Krueger C. W., “Software reuse”, In ACM Computing Surveys, volume 24, issue 2, pp. 131-
183, 1992. 

13. Land R. and Crnkovic I., “Existing Approaches to Software Integration – and a Challenge 
for the Future”, In Proceedings of Software Engineering Research and Practice in Sweden 
(SERPS), Linköping University, 2004. 

14. Land R., Larsson S., and Crnkovic I., Interviews on Software Integration, report MRTC 
report ISSN 1404-3041 ISRN MDH-MRTC-177/2005-1-SE, Mälardalen Real-Time 
Research Centre, Mälardalen University, 2005. 

15. Land R., Larsson S., and Crnkovic I., “Processes Patterns for Software Systems In-house 
Integration and Merge - Experiences from Industry”, In Proceedings of 31st Euromicro 
Conference on Software Engineering and Advanced Applications (SEAA), Software Process 
and Product Improvement track (SPPI), 2005. 

16. Meyers C. and Oberndorf P., Managing Software Acquisition: Open Systems and COTS 
Products, ISBN 0201704544, Addison-Wesley, 2001. 

17. Ruh W. A., Maginnis F. X., and Brown W. J., Enterprise Application Integration, A Wiley 
Tech Brief, ISBN 0471376418, John Wiley & Sons, 2000. 

18. Schmidt D., Stal M., Rohnert H., and Buschmann F., Pattern-Oriented Software 
Architecture - Patterns for Concurrent and Networked Objects, Wiley Series in Software 
Design Patterns, ISBN 0-471-60695-2, John Wiley & Sons Ltd., 2000. 

19. Szyperski C., Component Software - Beyond Object-Oriented Programming (2nd edition), 
ISBN 0-201-74572-0, Addison-Wesley, 2002. 

20. Wallnau K. C., Hissam S. A., and Seacord R. C., Building Systems from Commercial 
Components, ISBN 0-201-70064-6, Addison-Wesley, 2001. 

21. Yin R. K., Case Study Research : Design and Methods (3rd edition), ISBN 0-7619-2553-8, 
Sage Publications, 2003. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


