
Hardware Support for Real-Time Systems – an Overview
 Susanna Nordström

Mälardalen University
+46 (0)21 470 21 95

susanna.nordstrom@realfast.se

ABSTRACT
Research at the Computer Architecture Laboratory (CAL) at
Mälardalen Real-Time Research Centre (MRTC), Mälardalen
University, has been performed in implementing a real-time
kernel in hardware in order to increase system predictability,
determinism and performance. The first article was published in
1991 and since then the real-time kernel has been further
developed, adjusted to multiprocessor systems and been exposed
to different kinds of benchmarks and comparisons to software
implemented real-time operating systems. It has also been
developed to a commercial product as an intellectual property
component. This article is a survey focusing on describing
previous work on the real-time kernel at CAL, also covering most
important related work and the conclusions drawn from the
research over the years.

Keywords
real-time operating system, real-time kernel, multiprocessor
system, scheduling co-processor, hardware architecture

1. INTRODUCTION
A real-time system is a system that reacts on events in the
environment and executes functions based on these within a
precise time. In these systems, time is a vital parameter and the
behaviour of the system is only considered correct if the correct
result is presented within a specified time limit. Real-time
systems are classified in soft- and hard real-time systems. Soft
real-time systems can tolerate timing failure to a certain degree
while a hard real-time system must fulfil both functional and
timing demands completely or it could lead to disastrous events.
[1] A real-time operating system (RTOS) is an operating system
that is implemented for real-time systems in order to simplify
design, execution and maintenance of real-time systems and
applications. The RTOS provides the designer with a
programming interface to the underlying hardware. [2]

The most common way of implementing real-time operating
systems is to do it completely in software. In the Computer
Architecture Laboratory (CAL) at Mälardalen Real-Time
Research Centre (MRTC), Mälardalen University, research has
been performed on a real-time kernel in hardware, i.e. it is
implemented in VHDL and used in integrated circuits, Field
Programmable Gate Arrays (FPGA) or Application Specific
Integrated Circuit (ASIC). The FPGA technology, released in
1985 introduced flexibility to the field of integrated circuits. An
FPGA can be reprogrammed an infinite number of times and this
has made it possible to implement established software algorithms
in hardware, in this research that is the real-time kernel activities.
[3] This means that scheduling, inter process communication,
interrupt management, resource management, synchronization

and time management control are implemented in hardware. This
makes it possible to utilise hardware characteristics such as
parallelism and determinism that consequently decreases system
overhead, improves predictability and increases response time.

The first article was published in 1991 [4] describing how the
kernel is implemented in a single processor system. Since then
the real-time kernel has been further developed, adjusted to
multiprocessor systems and been exposed to different kinds of
benchmarks and comparisons to software implemented RTOS. It
has also been developed to a commercial product as an
intellectual property component [5].

There have been a few similar publications on real-time kernels
implemented in hardware but most related work is special purpose
RTOS co-processors or RTOS standard processors.

This paper is organized as follows. Section 2 is an overview of the
real-time kernel developed at CAL. Section 3 covers the research-
projects where the CAL kernel has been in focus, section 4
describes related work of other research projects and section 5 is a
summary of conclusions from mainly previous work but also from
related work.

2. OVERVIEW
A real-time kernel handles an operating system’s scheduling
activities. In the real-time kernel developed at CAL, this is
implemented in hardware and is used together with a software
driver of 2 Kb code (also called API, Application Programmers
Interface) which makes it possible for the programmer to utilise
the hardware, i.e. handle the service calls to the kernel.
The hardware part together with the software driver makes a
complete RTOS kernel. It can also be used together with another
pure software RTOS, working as an operating system accelerator.
The scheduling in hardware is pre-emptive and is executed in
parallel to the CPU and the CPU is interrupted only when a task
switch is to take place. The communication with the CPU is
carried out through registers.
Except for the first prototype, the kernel is communicating with
the CPU through the bus. The outer technology dependent bus
interface can be adjusted to support any CPU.
During the years of development, the real-time kernel has had
many configurations but generally it consists of internal
components (see figure1); an interface, a scheduler, an interrupt
handler, a resource manager and a time manager that as a whole
supports 16 tasks or more, priority levels, external interrupts,
semaphores, flags, watchdogs, timers for delay and periodic start
of tasks.

Figure 1. Example of the CAL real-time kernel architecture. 1

[5]
The Interrupt Service Routines (ISR) of external interrupts have
priorities and are handled and scheduled like ordinary tasks.

3. PREVIOUS WORK
This section covers research-projects at the CAL where the real-
time kernel has been involved. It is presented with the kernel in
focus.

3.1 Realising a real-time kernel for single
processor systems
Obtaining absolute timing determinism is one of the main reasons
given why the kernel was implemented in hardware [4] [6]. The
first prototype of the kernel, FASTCHART, was a µ-processor
with an integrated hardware kernel in one chip. In the second
prototype, FASTCHARD, the kernel was implemented as a
separate unit on a stand-alone chip, adjusted to a CPU [7]. Further
developments have been implemented based on the second
approach.
The FASTCHARD was a part of a minor real-time system
consisting of a CPU, main memory and I/O ports. The system bus
and an interrupt line connected the CPU and FASTCHARD. Eight
external interrupts were connected; it contained seven registers
and task-queues implemented in Random Access Memory
(RAM).

3.2 Multiprocessor real-time kernel in
hardware
When the hardware kernel was introduced into multiprocessor
systems it was called real-time unit (RTU). The first version with
support for multiprocessor systems was called RTU94, followed
by RTU95. Both RTU94 and RTU95 could handle three CPUs
(see figure 2). More functionality and improvements were added.
The number of function calls was increased to include
semaphores, event flags and watchdogs and a real-time clock for
continuous supervision of time was added. This means that all
administration of resources that have any kind of time
dependency has to be supported by the RTU, e.g. distribution of
CPU time, semaphores, flags and sorting of queues. [8]

1 TDBI – Technology Dependent BusInterface, GBI – Generic

Bus Interface

Figure 2. RTU in multiprocessor system architecture. [9]

To support a multiprocessor environment, the RTU was
implemented to consist of one scheduler for each CPU and tasks
could be initialised to execute on a fixed CPU (local task), or on
any CPU (global task). There was one ready queue for each CPU
and one queue for the global tasks. Each scheduler checks both
the local and the global queues. [10] Since the RTU has
knowledge of the load of each CPU it can be used for dynamic
load balancing. [8] In [9] the RTU was presented as a co-
processor in multiprocessor environments.
In [11], [12] and [13] the RTU was used in a research project in
multiprocessor systems called Scalable Architecture for Real-
Time Applications (SARA). The SARA-system is based on the
idea to incorporate as many parts of a real-time operating system
into hardware as possible. The scalability of the SARA-system
could be used in the transition from a single processor system into
a multiprocessor system. The RTU handled the scheduling of the
system. In [11] the RTU based dynamic scheduling decisions on
extra observability in the form of load information from bus-
monitors.

3.3 Benchmarking and comparisons
In [14] and [15] the hardware kernel, the RTU, is used together
with a pure software RTOS and is handling the scheduling
activities. This results in the hardware kernel accelerating the
software RTOS. Figure 3 illustrates the RTUs placement in the
system.

Figure 3. Overview of a software and hardware implemented

real-time kernel solution. [9]

3.3.1 Benchmarking of application response time
and clock tick administration
In [14], the real-time kernel is called “booster” and the
functionality is reduced to merely consist of the scheduling part
(not semaphores, flags etc.). It is used together with a RTOS
implemented in software. Benchmark of a model of a

telecommunication application running in three different systems
was performed. The systems were:

1. A processor supervised by a commercial single
processor RTOS.

2. A processor supervised by a RTOS with the booster.
3. Two processors supervised by a RTOS with the booster.

Application response time and RTOS overhead for clock tick
administration was measured with and without data located in
local or global accessed memory, or cache memory.
The conclusions were that a real-time kernel in hardware
(booster) decreases the application response time, a fast memory
system decreases the difference in using and not using a hardware
kernel and the clock tick administration is zero when using a
hardware kernel.

3.3.2 Comparison of SoC architectures with
associated RTOS - in hardware, hardware/software
and pure software
In [15], the real-time kernel in hardware, here referred to as the
Real-Time Unit (RTU), was used in a performance comparison
with two other RTOSes: a pure software Atalanta RTOS2, and a
hardware/software RTOS composed of part of Atlanta RTOS
interfaced to a System-on-a-Chip Lock Cache3 hardware
(SoCLC). The SoCLC is a hardware support to accelerate
software locks and semaphores in a software RTOS [16]. All
systems contained three processors running a database application
with many different task level synchronization scenarios. A
framework to generate the three system configurations was used.
In measuring the average-case simulation time, the RTU system
showed best performance, a 50% speed-up over case performing
on 6 tasks and 36% speed-up performing on 30 tasks, compared to
the pure software RTOS. The RTU system also had best
performance when number of clock-cycles spent on
communication, context switch and computation was measured.

3.3.3 Comparison of hardware RTOS and software
RTOS
In [17] a performance comparison between the real-time kernel in
hardware and a corresponding kernel in software, in a
multiprocessor system, was done. The software kernel was
especially implemented for this comparison using almost the same
API as the hardware kernel uses.
The speed-up achieved with the hardware kernel was 2.6 times.
Other important results were that the time for creating tasks in the
software kernel increases with number of tasks while it is constant
in the hardware kernel. This is because of list management that
increases with number of tasks in a software kernel.
It was discovered that the software kernel was faster when tasks
was created on a master node, since it can draw benefits from
using system cache in this case while the hardware kernel suffers
from Peripheral Component Interconnect (PCI) bus access
latencies.

2 An open source multiprocessor RTOS developed at the Georgia

Institute of Technology, USA.
3 Developed at the Georgia Institute of Technology, USA.

3.4 Realising special purpose hardware
components utilising the real-time kernel in
hardware
Having the kernel implemented in hardware makes it possible to
create other hardware components that can benefit from the fact
that they can be integrated to the kernel in different useful
aspects.

3.4.1 Monitoring RTOS kernel activities
Multiprocess Application Monitor (MAMon) [2] is a non-
intrusive monitor that gives observability into the execution of a
single- or multiprocessor system supporting the real-time kernel
in hardware. MAMon is an integrated solution to on-chip
monitoring of system-level events in real-time systems. The
observability comes from a probe unit, which is integrated at the
rtl-level of the hardware kernel, detecting and collecting events
regarding process execution, communication, synchronisation and
I/O interrupt activities. Collected events are time stamped and
transferred to a separate computer system hosting an event
database and a set of monitoring application tools that shows the
results graphically.

3.4.2 Interprocess Communication Support
[18] describes a hardware implementation of asynchronous
Interprocess Communication (IPC) in an RTU based architecture.
It was investigated how performance and message flow in a
message intense system could be increased by adding some
functionality, like message priority, to the IPC functions and
implement it in an RTU architecture. This resulted in an IPC-
RTU, the ordinary RTU with an augmentated instruction set. The
IPC implementation supported message priority, priority
inheritance on message arrival and task time-out on message
send/receive. The IPC administration, sorting message queues etc.
was placed in the RTU. The conclusions were that it is possible to
implement IPC in hardware but that the design becomes too big to
fit into one FPGA.

3.5 Hardware kernel energy consumption
In order to study the RTUs impact on system energy
consumption, an energy characterisation of the RTU was
performed in [19]. The results obtained showed that the power
consumption is independent of what function the RTU performs
and that power consumption during idle periods are
approximately the same as during system calls. The conclusion
was that the RTU needs to be power optimised, using techniques
such as gated clocking, in order to beat a SW based RTOS. For
applications that use the RTOS functions extensively, a power
optimised RTOS hardware accelerator, like the RTU, would be
justified.

4. RELATED WORK
The related work section is limited to research projects of hard
real-time systems.
The related work of the real-time kernel includes two projects
also implementing kernel activities in hardware, TRON-project
and F-timer solution, and research in utilising co-processors to
accelerate scheduling; special purpose RTOS co-processors or
standard RTOS co-processors.

4.1 The TRON-project
The Real-time Operating System Nucleus project (TRON) with
the aim of creating an ideal computer architecture, started in
1984. The Industrial TRON (µITRON) is a subproject of TRON
and is an architecture for the real-time operating system for
embedded computers. It is used as the real-time multitasking
operating system for intelligent objects. [20]
[21] presents a high performance real-time OS using VLSI
technology. The solution consists of a hardware part, called
“silicon TRON”, and a software part, called µITRON. The
concept is illustrated in figure 4.

Figure 4. The concept of the Silicon OS. [21]

The hardware part implements the scheduler with the system call
functions and the software part implements other system call
functions and interface processes between applications and the
hardware part. The Silicon TRON together with the µITRON is
called a “Silicon OS”. Like the CAL kernel, this solution also
communicates with the CPU with register and interrupts for task
switch.
The time measurements on system calls regarding flags and
semaphores showed that the system call processing time in
hardware can be reduced to 130 to 1880 times faster than a
conventional implementation in software.

The latest article presented in 2003 on µITRON is a pure software
solution and does not use the hardware part “Silicon Tron”. [22]

4.2 F-Timer
[23] presents a hardware architecture for real-time operating
systems support using special hardware components implemented
in one FPGA.
The F-Timer is a co-processor that communicates with the
microprocessor and releases the processor of the tasks time
management. The F-Timer hardware architecture handles external
asynchronous interrupts and scheduling of tasks with priority. All
tasks are programmed and when the execution time of a certain
task is reached, the microprocessor is interrupted and the correct
task is available at the bus. It can handle 32 tasks.
A similar software solution, based on a microcontroller, was
created for comparison. Measuring the performance, the
conclusion was that the software solution was 18 times worse than
the F-Timer hardware architecture solution.

4.3 The Spring Scheduling Co-processor
The Spring scheduling co-processor (SSCoP) is a VLSI (Very
Large Scale Integration) accelerator for distributed multiprocessor
real-time systems. It can be used for both static and on-line
scheduling. The SSCoP accelerates the execution of the critical
activity of the Spring scheduling algorithms used by the Spring
operating system kernel. It speeds up the algorithm by three

orders of magnitude [24]. The resulting reduction in scheduling
latency will enable real-time systems to handle tasks with shorter
deadlines compared to scheduling done in software.
The Spring kernel is for example based on the ideas of integrated
CPU scheduling and resource allocation in use of the scheduler in
a planning mode, enhancing the system determinism. There is a
scheduler on the main system node and an application dispatcher
for each application node in the system, which is responsible for
the dispatching for the application tasks. The scheduler and
applications dispatcher processes are designed to run in parallel.
Concurrent execution of the scheduler and the multiple
dispatchers are achieved by reserving a set of tasks for each
dispatcher, where the scheduler is not free to reschedule the tasks
reserved for the dispatchers. Each dispatcher has tasks to execute
while the scheduler is trying to reschedule the remaining tasks to
guarantee the new task. [25]
The Spring co-processor is designed to plan work dynamically
into the future to meet the deadline of currently active tasks.
Some of the differences between the CAL real-time kernel and
the Spring co-processor is that it only guarantee that the tasks in
the executing state are those with highest priority among all the
tasks in the ready state. [9]

4.4 MARS
The Maintainable Real-Time System project (MARS) [26], is a
distributed computer system that consists of a number of
autonomous, fail-silent node computers. They are interconnected
by a real-time network. Each node is a self-contained computer
with a local real-time clock and an interface to the real-time
network. It is controlled by the MARS Operating System and
executes a set of application tasks. Communication among
components and tasks is achieved by exchanging broadcast
messages. There is no explicit synchronisation between tasks, all
component activities are implicitly synchronized using the global
time.
The tasks and messages are scheduled prior to the run time of the
application, statically scheduled, in a way that guarantees that all
deadlines will be met.
Special for MARS is a set of actively redundant components,
combined to form a Fault-Tolerant Unit (FTU). The FTU handles
the nodes failures.

4.5 A holistic approach to real-time system
design
The research in [27] is focusing on a holistic approach to real-
time system design instead of certain parts. The research project is
designed in a set of layers where predictable behaviour is a focus
at every layer. In the hardware layer, the parallel computer
hardware architecture consists of one main processor and three
co-processors in an asymmetrical multiprocessor concept:

• Main processor

• Kernel co-processor

• Arithmetic co-processor

• Data access co-processor
The main processor is the task processor and it is an
independently operating control system on which the application

programs are run. The operating system kernel services are
migrated out to the specialized kernel co-processor. It recognises
external signals, administrates time events and monitors access to
shared variables and synchronisers. An arithmetic co-processor is
provided to support numerically intensive computation and finally
there is an external data access processor that supports external
variables and peripheral device access. This co-processor also
handles the saving of contents occurring during a context switch.
The co-processors are connected point-to-point with each other.

4.6 HARTIK
HARTIK [28] is a hard real-time kernel for programming robot
tasks with explicit time constraints and guaranteed execution. It is
specifically designed to develop predictable robotics applications.
To adjust to multi-sensor robotic systems and to be flexible in
expressing timing constraints, HARTIK handles four types of
tasks; hard tasks, sporadic tasks, soft tasks and non-real-time
tasks. Also a dynamic pre-emptive scheduling with guarantee is
used, the system performs a schedulability analysis to see if a
critical task is to meet its timing constraints and if it is not, the
programmer is notified. A particular one-to-many
communications mechanism is used, the Cyclic Asynchronous
Buffer (CAB), which is designed for the communication among
periodic activities and eliminates unpredicted delays.

5. CONCLUSIONS
Implementing a real-time kernel in hardware makes it possible to
draw benefits from hardware characteristics such as parallelism
and determinism.
The execution time of real-time functions gets deterministic and
task switch can be performed without any CPU time delay. [6]
[23] When real-time kernels are implemented in software, one of
the disadvantages is that the execution time for the service calls
will have a minimum and a maximum time. The time gap can be
big and the worst-case time is one of the factors that will decide
the utilisation factor of the system. The scheduling time varies
with the number of tasks and scheduling algorithm and must be
bounded by a pessimistic worst case execution time, which
decrease the determinism. In hardware, the time gap can be
designed to be close to 0, which leads to predictable time
behaviour, simpler timing analysis of the system and almost no
overhead. It is also easier to debug tasks since different protection
modes are not required. [29] [10] [15] [30]
A hardware kernel executes in parallel to the CPU, which relieves
pressure from the CPU which gets almost 100% execution time
for the application tasks. There is less software code in memory
since the functionality is implemented in hardware instead. [7]
[23]
A software OS will generate a clock tick interrupt to the CPU
when it is executed. Also when the lists of tasks (queues) are
worked at and new periodic delay times are calculated for the
tasks. With the hardware kernel in the system, it checks all queues
concurrently and only generates an interrupt to the CPU when
there is to be a task switch. [29] [31]
Another advantage of having the kernel in hardware is the
possibility to use complex scheduling algorithms, unlimited of
different queue types without any performance loss. Also there is
an improved understandability and complexity reduction when the
system is divided into parts. [29] [10]

Hardware based RTOS is not energy efficient compared to
software RTOS. Even during idle periods there are big amounts of
power wasted due to unwanted activity triggered by the clock.
[18] Power consumption of FPGAs is not ideal, when low power
design is an issue. [23]

6. REFERENCES
[1] Norström, C., Sandström, K., Mäki-Turja, J., Hansson, H.,

Thane, H. and Gustafsson, J. Robusta realtidssystem.
(MRTC, Mälardalen University, Västerås, Aug. 2000).

[2] Mohammed, E.S. On-Chip Monitoring for Non-Intrusive
Hardware/Software Observability. IT Licentiate Thesis,
ISSN 1404-3041, ISRN MDH-MRTC-120/204, (Department
of Information Technology, Uppsala University, Sweden and
Department of Computer Science and Engineering,
Mälardalen University, Sweden, 2004).

[3] Lindh, L. and Sjöholm, S. VHDL för konstruktion. ISBN 91-
44-01250-0, 3rd edition, 1999.

[4] Lindh, L. and Stanischewski, F. FASTCHART – A Fast Time
Deterministic CPU and Hardware Based Real-Time-Kernel.
In IEEE, Euromicro workshop on Real-Time Systems, (June
1991).

[5] RealFast Intellectual Property AB, Skivfilargränd 2,
721 15 Västerås, Sweden, www.realfast.se [cited 2004-10-
01]

[6] Lindh, L. and Stanischewski, F. FASTCHART – Idea and
Implementation. In IEEE International Conference on
Computer Design (ICCD), Boston, USA (Oct. 1991).

[7] Lindh, L. FASTCHARD – A Fast Time Deterministic
HARDware Based Real-Time Kernel. In IEEE International
Conference on Computer Design (ICCD) (Cambrdge, USA,
Oct. 1991).

[8] Lindh, L. and Vörös, P. Applikationsanpassad Real-Tids Co
processor till styrsystem för industrirobotar.
(Applicationadjusted Real-Time Co-processor in
controlsystems for industrial robots). In Proceedings in
Electronic Design Automation. (April, 1996).

[9] Stärner, J., Adomat, J., Furunäs, J. and Lindh, L. Real-Time
Scheduling Co-Processor in Hardware for Single and
Mulitprocessor System. In ‘Beyond 2000: Hardware and
Software Design Strategies’, Proceedings of the 1996
EUROMICRO Conference, p. 509-512, (Prague Czech
Republic, Sep. 1996).

[10] Lindh, L., Stärner, J. and Furunäs, J. From Single to
Multiprocessor Real-Time Kernels in Hardware. IEEE Real-
Time Technology and Applications Symposium. (Chicago,
May, 1995).

[11] Klevin, T. and Lindh, L. Scalable Architecture for Real-Time
Applications And Use of bus-monitoring. In Proceedeings of
Sixth International Conference on Real-Time Computing
Systems and Applications, RTCSA’99, p. 208-211, (Dec.
1999).

[12] Lindh, L., Klevin, T. and Furunäs, J. Scalable Architecture
for Real-Time Applications – SARA. Swedish National Real-
Time Conference SNART99 (Linköping, Sweden, Aug.
1999).

[13] Enblom, L. and Lindh, L. Adding Flexibility and Real-Time
Performance by Adapting a Single Processor Industrial
Application to a Multiprocessor Platform. In ‘Parallel and
Distributed Processing’, Proceedings of the 2001
EUROMICRO Workshop, p. 487-490, (Mantova, Italy, Feb.
2001).

[14] Furunäs, J. Benchmarking of a Real-Time System that utilises
a booster. In International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA200), (June, 2000).

[15] Lee, J., Mooney, V. J., Ingström, K., Daleby, A, Klevin, T.
and Lindh, L. A Comparison of the RTU Hardware RTOS
with a Hardware/Software RTOS. In Proceedings of the
ASP_DAC 2003, Design Automation Conference, p. 683-
688, (Jan, 2003).

[16] Akgul, B. S., Lee, J. and Mooney, V. J. System-on-a-Chip
processor synchronization hardware unit with task
preemption support. International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES
’01), p 149-157. (Nov. 2001).

[17] Samuelsson, T., Åkerholm, M., Nygren, P., Stärner, J. and
Lindh, L. A Comparison of Multiprocessor Real-Time
Operating Systems Implemented in Hardware and Software.
International Workshop on Advanced Real-Time Operating
System Services (ARTOSS), (Porto, Portugal, 2003).

[18] Furunäs, J., Adomat, J., Lindh, L., Stärner, J. and Vörös, P. A
Prototype for Interprocess Communication Support, in
Hardware. In ‘Real-Time Systems’, Proceedeings in 1997
EUROMICRO Workshop, p. 18-24, (Toledo, Spain, June
1997).

[19] Haukilahti, R. Energy Characterization of a RTOS
Hardware Accelerator for SoCs. In System-on-Chip
Conference, (Falkenberg, Sweden, 2002).

[20] Overview of the TRON Project. In TRON Project
International Symposium 1995. Proceedings of the 12th.
p. 100-104. (Dec. 1995).

[21] Nakano, T., Komatsudaira, Y., Shiomi, A. and M. Imai.
VLSI Implementation of a Real-time Operating System. Proc.
of ASPDAC '97, pp. 679-680. (Jan. 1997).

[22] Srinivas, N.S., and Shankaran, S. µITRON customization for
use in Automated Test Equipment. AUTOTEST 2003, IEEE
Systems Readiness Technology Conference. Proceedings, p.
699 – 702. (Sep. 2003)

[23] Parisoto, A., Souza, A., Jr., Carro, L., Pontremoli, M.,
Pereira, C. and Suzim, A. F-Timer: dedicated FPGA to real-
time systems design support. In Real-Time Systems, In
Proceedings if the Ninth Euromicro Workshop, p.35 – 40.
(June, 1997).

[24] Burleson, W., Ko, J., Niehaus, D., Ramamritham, K.
Stankovic, J.A., Wallace, G. and Weems, C. The spring
scheduling co-processor: a scheduling accelerator.
Computer Design: VLSI in Computers and Processors, 1993.
ICCD '93 in Proceedings of the 1993 IEEE International
Conference p. 140 – 144. (Oct. 1993).

[25] Stankovic, J. and Ramamaritham, K. The Spring Kernel: A
new Paradigm for Real-Time Systems. In Software IEEE
Volume 8, Issue 3, 1991. p. 62-71. (May 1991).

[26] Kopetz, H., Fohler, G., Grunsteidl, G., Kantz, H., Pospischil,
G., Puschner, P., Reisinger, J., Schlatterbeck, R., Schutz, W.,
Vrchoticky, A. and Zainlinger, R. Real-time system
development: The programming model of MARS.
In Autonomous Decentralized Systems, 1993. Proceedings.
ISADS 93., International Symposium . p. 290 – 299.
 (March, 1993).

[27] Colnaric, M., Verber, D. and Halang W. A. Design of
Embedded Hard Real-Time Applications with Predictible
Behaviour. In Real-Time Applications, Proceedings of the
IEEE Workshop. (1993).

[28] Buttazzo, G. C. HARTIK: A Real-Time Kernel for Robotics
Applications. In Real-Time Systems Symposium,
Proceedings. P. 201 – 205. (Dec. 1993).

[29] Lindh, L. A Real-Time Kernel implemented in one chip. In
IEEE press, Real-Time Workshop (Oulu, June 1993).

[30] Adomat, J., Furunäs, J., Lindh, L. and Stärner, J. Real-Time
Kernel in Hardware RTU: A Step Towards Deterministic and
High-Performance Real-Time Systems. In Proceedings of the
1996 Euromicro Workshop on Real-Time Systems.
(L’Aquila, Italy, June, 1996).

[31] Lindh, L. Utilization of Hardware Parallelism in Realizing
Real Time Kernels. Doctoral Thesis, TRITA – TDE 1994:1,
ISSN 0280-4506, ISRN KTH/TDE/FR--94/1--SE,
(Department of Electronics, Royal Institute of technology,
Stockholm, Sweden, 1994).

