
Observability in Multiprocessor Real-Time Systems with
Hardware/Software Co-Simulation

Mohammed El Shobaki
Mälardalen University, IDt/CUS

P.O. Box 833, S-721 23 Västerås, Sweden
E-mail: mohammed.el.shobaki@mdh.se

Abstract

As an alternative to traditional software debuggers
and hardware logic simulators, hardware/software co-
verification tools have been introduced in novel design
processes for the embedded systems market. The main
idea behind co-verification is to reduce design time by
enabling an early integration of hardware and software
development. However, with this approach, several new
aspects on software debugging have been brought to
surface. Especially when we look at verification of
multithreaded applications, and multiprocessors in
embedded real-time systems, the use of co-simulation has
shown to be a promising method for reducing and/or
eliminating the intrusiveness on run-time behaviour that
is related to traditional software debugging. This paper
presents the key concepts with co-simulation as adopted
in two leading commercial tools. Furthermore, the use of
co-simulation for verification of a real-time system is
discussed. Ideas on applications that can benefit from
co-simulation are also proposed.

1. Introduction

The article presents the use and experience of co-
simulation as a verification tool in the real-time system
design process (special embedded systems) and how
today’s co-verification methods can be a complement to
the verification process.

The verification process occupies an increasing part of
the total development time for real-time systems and
today it is often the bottleneck in the development
process. The increase in time for the validation stage is
mainly dependent on four parameters:

• Increased software complexity
• Increased hardware complexity
• Complex and high frequency of interaction between

hardware and software
• The requirements of ”right first time”.

To shorten the development process it is a key
demand to decrease the verification time.

The new tools for developing application-specific
circuits (ASICs) have drastically reduced the design
time and today the verification time is the bottleneck in
the development process for ASICs [1]. For software,
the verification time is even worse. This is mainly
because
of the larger amounts of functionality that is typical to
software. For systems with multiple processing units
(parallel or distributed) it is likely that concurrent
software entities (or tasks, see below) shares common
resources such as processors, memory (commonly
referred to as ‘shared’), I/O devices, co-processors and
other integrated circuits (ASICs), etc. This kind of
parallelism and sharing of resources is another great
contributor to the complexity in the verification process.
For the software and hardware design processes
respectively, the verification time is typically over 60%
of the total development time.

Real-time systems [2] are known as computer
systems employed in environments where software
execution has to meet timing constraints. Such systems
are often realised in the fashion of an embedded
computer system. Since the embedded system is a
computer system it requires both hardware and software.
Typically, the hardware consists of a CPU, memory, I/O
components, and perhaps on or more ASICs performing
additional functionality, all of which communicate over
a common bus. Furthermore, software in a real-time

embedded system is often programmed using the task
model paradigm where portions of code, so-called tasks,
are scheduled with the aid of the real-time operating
system [2] (RTOS) to execute on the hardware.

In section 2, today’s verification methods are briefly
described as well as the new approach with co-simulation
as a complement. Co-simulation techniques and methods
used in two of the leading commercial tools are presented
in section 3. In section 4 we discuss the possibilities with
co-simulation as a complement to the verification process
for real-time systems.

In the text we do not distinguish between the terms co-
verification and co-simulation. However, for the sake of
clarity, co-verification refers to simultaneous
verification of software and hardware, whereas co-
simulation refers to the actual method using simulation
techniques.

2. Verification methods

In this section we present an overview on the
verification techniques commonly used today. As it will
be pointed out, the verification processes for software and
hardware design respectively, have traditionally been two
completely separated activities in the total design
process.

2. 1 Software verification techniques

In a mixed-design (hw/sw) project, the initial testing
phase (usually the functional testing phase) for the
software part is likely to suffer from the lack of a
complete hardware platform. Therefore, the verification
has to either take place in the host-machine environment,
or on a partially complete target. Incomplete targets can
for instance be development boards from the CPU
manufacturer, prototype boards with FPGAs, in-circuit
emulator (ICE) boards, etc. Verification in a host
environment is typically done using either of the
following techniques:

- Native compiled software (NCS); meaning that
the software is compiled for the host’s processor
architecture, then executed on the actual host.
Debugging of NCS can then be done by means of
debug tools for the host computer (e.g. dbx and
gdb)

- Emulation of the target processor’s instruction-
set; the technique is also referred to as

instruction-set simulation (ISS) and is typically
implemented in combination with a debug tool.

For either of the host or target environments, the
software module under test has to be complemented with
(or encapsulated in) additional code that simulates
absent component(s). These components, also called
stubs, are then used to simulate the interfacing with
other software and/or hardware modules. At this test-
level it is mostly the functional behavior of the software
module that is of interest. However, for timing
dependant applications, such as in real-time systems, it
is also desirable to make the verification in the function-
time domain, i.e. it is not only the functional correctness
of a computation that is of importance, but also, when
the computation is completed.

Among the verification environments discussed
above, prototype targets and emulation techniques
appears to provide the best near real-time verification
solutions. Nevertheless, the real timing delays occurring
in accesses to hardware components are absent. To deal
with this, either the software has to be designed for the
worst-case scenario [ref???], or the timing delays have
to be thoroughly calculated on beforehand. The latter
can be a very complicated task if the hardware still is
being developed, and thus, the true timing delays can
yet not fully be determined.

2. 2 Hardware verification

On the hardware side typically one is interested in
verification of the interaction (accesses, handshaking,
interrupts, signals, etc.) between software and ASICs
and other system components. ASICs are typically
designed at register transfer level (RT-level, see [3]).
This level represents a complete functional model of the
ASIC. The model must be verified in detail to
demonstrate correct functioning together with the
interfacing components and the software. One approach
to achieve this is to use testbenches. In a testbench
model the ASIC which is to be verified, is instanced as a
component, refer to figure 1. By using models of the
surrounding components (e.g. CPUs, RAM, I/O, etc.)
[3] stimulation input can be generated, thus enabling
verification of the responses according to specification.
Typically this is simulated on a workstation, often at a
slow simulation speed if the designs are large.
Consequently, simulation of software execution is a slow
process, which makes it difficult to simulate a complete
program.

VHDL-model

µP

RAM

EEPROM

ASIC

Figure 1: Testbench for a system simulation

After verification at the RT-level has been performed,
the verification process typically continues with fast
prototyping. Today a fast prototype is implemented either
in a FPGA (Field Programmable Gate Array [3, 9]) or in
a hardware emulator (typically uses FPGAs). The latter,
is used to enhance speed of the hardware simulation tools
on a workstation, thus enabling faster execution of
software and complete programs can be verified. One of
the advantages when using FPGAs is the ability to make
changes to a design very quickly compared to the
traditional ASIC fabrication. While the emulator
preserves observability into a design, the use of FPGAs
only has limited observability. To view internal signal
states in a FPGA one has to route the signals out to
external pins. One disadvantage in the FPGA/emulator
technique is that the timing is much slower in
comparison with that in the ASIC. Also, both emulation
and FPGAs are relatively expensive to use.

2. 3 Co-simulation

Co-simulation for verification has recently been
introduced as an alternative to testbenches and in some
cases to fast prototyping. In fact, the idea of co-
simulation was derived from using testbenches with
processor models. The idea of the new method is to have
real software execution as the event driver in a testbench
and also to reduce the impact of software simulation time
in the traditional testbench. An engine models the CPU,
which then is instanced by a testbench (typically using
VHDL or Verilog). There are different methods used to
run the engine, however, the overall technique in
common is to conceal the model from the processor’s
interfacing to the hardware. Figure 2 illustrates a
schematic overview of the connection of the hardware
with the software through a controlling unit, a so-called
co-simulation kernel.

Co-
simulation

Kernel

Software
Simulator

(Debugger
C, Asm etc)

Hardware
Simulator

CPU-model

Figure 2: A co-simulation environment

3. Co-simulation tools

Today there are two noted commercial tools
available, Eaglei [4] from ViewLogic, and Seamless [5]
from Mentor Graphics. An evaluation on both tools is
presented in [6]. They are very much similar but they
use different techniques. Following is an overview of the
techniques used in these tools.

3.1 Seamless’ Co-Verification Environment

In Seamless, the processor’s functionality is
separated from its interface. A Bus Interface Model
(BIM) simulates the input/output pin behaviour for the
hardware portion of the simulation. The software
portion executes as a separate process, allowing much
faster execution, either on an Instruction Set Simulator
(ISS) or as Native Compiled Software (NCS). The ISS
executes machine code produced by cross-compilers for
specific processors. NCS is software compiled for
execution on the host-machine. Communication
between SW and HW is controlled by the co-simulation
Kernel (CSK). Figure 3 shows the architectural
structure in which Seamless operates.

 Bus
Interface
 Models

Hardware
 Design

Memory
 Models

Application
 Code

BIM state

Bus cycle
 requests

Data accesses
Instruction timing

Data-space state
Interrupts

Instruction Set
 Simulator

Co-Simulation
 Kernel

Hardware
Simulation
 Kernel

Debugger
 Interface

Configuration
 Manager

Hardware
Simulation
 Interface

 Figure 3: Seamless’ architecture (ref. [6])

Supported ISSs and BIMs, respectively, are developed
for the most popular processors on the market. Examples
on processors include the x86 family, 68k, and the
PowerPCs. These processors are not always fully
modelled and there are some limitations. Some of these
limitations are the lack of (or reduced functionality in)
caches and memory management units (MMUs).

Apart from supported processor models, there are also
different types of memory models available. These
memory models have a particular connection to
Seamless, which enables optimisation of bus-cycles
(generated by the BIM), for instruction fetches and data
access. Supported types include SRAMs, DRAMs, FIFOs
and register elements.

3.2 EagleI

In EagleI, the equivalent to the co-simulation control
in Seamless (the CSK) is the Virtual Software Processor
(VSP). Three different simulation models are supported
in EagleI; the VSP/Link, VSP/Sim and VSP/Tap, each
suitable at different stages in a design process. The
VSP/Link model uses a technique similar to the NCS
execution (see below) which also is the fastest model. As
in Seamless, the VSP/Sim model is like an ISS with true
cycle behaviour. Not represented in the Seamless
environment, is the VSP/Tap model, which is a VSP that
takes advantage of an In-Circuit-Emulator (ICE). This
technique is similar to the ISS but with the extension of a
hardware accelerator. By using an ICE the observability
needed is kept, thus it’s possible to investigate internal
registers and memory.

3.3 Native Compiled Software

Simulation using NCS is the fastest method when
compared with the ISS approach because software is run
directly on the workstation. Compiling software coded in
any high-level language easily produces NCS. Thus
debugging of NCS can be done using a standard
workstation debugger (e.g. dbx). Placing calls to the
VSP/BIM through an Application Program Interface
(API) does the connection to the hardware process. This
interaction only drives the VSP/BIM pins to their
defined values and cycles. Thus, the modelled
processor’s internal registers and cache memory is not
available in this approach.

3.4 Instruction Set Simulator

An ISS is a software application that models the
functional behaviour of a processor’s instruction set. It
runs much faster than a hardware simulation because it
need not to cope with a processor’s internal signal
transitions. Since it is machine code for the target
processor that is executed, you are free to use any
language supported by the cross-development tools. The
ISS reports the number of clock cycles required for a
given instruction to the VSP/CSK. Notification of
external events (e.g. interrupts, resets) from the
VSP/BIM are reported to the ISS by way of the
VSP/CSK.

4. Real-time Co-simulation

To allow true timing examination a model of a real-
time system has to be as equivalent as the real hardware
upon which the software will execute. This leaves out
co-simulation using execution of NCS (refer to section
3.3) because it does not use the same instruction set, and
consequently the correct clock-cycles needed for each
instruction, as for the target processor. This means that
the ISS (refer to section 3.4) will be used for our
purposes.

One of the major strengths when co-simulating is
that timing information can easily be retrieved from the
hardware simulator. As software execution proceeds, the
system clock (i.e. which drives the processor) propagates
in time with the exact amounts needed for instruction
execution, accessing memory and peripherals, and
others. This could be utilised for a number of real-time
applications.

4.1 Software execution timing

As a contrary method to static computation of
software execution time (SET), timing information is
determined dynamically on the fly. Static computation
of SET is done by counting the number of clock cycles
needed for a piece of code without executing it. This
requires knowledge of cycle duration for each assembly
instruction. For a piece of code in a high-level language
this also needs compilation to assembly instructions for
the appropriate processor. The dynamic approach is to
measure the time elapsed (or count the clock cycles) for
the examined piece of code, simply by reading the
time/clock in the hardware simulation window. This
measurement also includes duration of instruction and
data fetches.

4.2 Timing access of memory and peripherals

Timing duration for accesses to memory is more of an
automatic matter. If the information is to be used for
computing SET it is already included in the dynamic
measurement (previous section). Duration of accesses to
memory are measured using the hardware simulator’s
facilities for reading time or counting clock cycles. The
same goes with timing of accesses to ASICs and other
peripherals. This feature can be convenient for
determining duration of a service call to an ASIC. Often
in a service-call, there are complex interactions between
the software code and the hardware involved.
Verification of these interactions can be a complex
matter, and often there is need for advanced and
expensive instrumentation. Former methods uses
monitors (debuggers) for examination of a processor’s
internal registers, and logic analysers and/or logic
disassemblers (with high sampling frequency capabilities
and enough memory to hold a complete service-call) to
examine bus-communication with hardware.

4.3 Interrupt and context-switching latency

Latency between the event of an asserted interrupt line
and execution of the corresponding interrupt service
routine (ISR) has traditionally been nontrivial to measure
without probing the software code with additional
supporting instructions. As discussed previously, it is the
propagation of the system clock that drives the software
simulator. This means that software execution can be
controlled by simulation of the hardware portion in a co-
simulation, which in turn means that the hardware
simulation is only depending on parameters such as
simulation time, events, and signal triggers. To verify
timing of interrupt response, the hardware simulator’s
facilities can be used to stop the simulation by triggering
on the signal in request and from there continue
simulation until the first instruction from the ISR is
fetched. By triggering on instruction fetches in the
hardware simulator, this technique can be used for
various applications. Verification of context-switch
timing is one mode of application where this can be very
useful.

4.4 Verification of multiprocessing

The ability to connect more the one ISS to one single
hardware platform is being supported in the leading co-
simulation tools. As a result of this, complex hardware
architectures incorporating several processors can be
modelled for co-simulation. This has a great deal when
processor communication (e.g. task synchronisation) is to
be verified. Figure 5 illustrates a model of an architecture
that can be co-simulated in practise. Software developed

to run for each of the processors in the system is
managed by a dedicated ISS, thus allowing
simultaneous verification. In practise this could be seen
as multiple simulator/debugger windows each
respectively dedicated for one processor. In such
complex systems using several processors

CPU 1 CPU 2 CPU N

GLOBAL
MEMORY

ASIC/
FPGA

LOCAL
MEMORY

LOCAL
MEMORY

LOCAL
MEMORY

Figure 4. Multiprocessor architecture

4.5 Limitations

For almost all processor models available partial or
complete internal functionality is left out for some
reasons. Memory management units (MMUs) and
internal cache memory are examples. Leaving out such
functions could and/or should decrease resemblance
with the real-time behaviour of the processor. From a
real-time aspect this has a great deal, because if
execution time is based on a processor whose for
instance the cache memory has been left out, the cost of
a cache miss could result in timing violations and
missed deadlines. Other weaknesses in using a model
for a real-time system, arise if there are incorrectness in
the processor model, ASICs, memory models, interface
logic, etc., which can not be revealed until implemented
in hardware. If software is suited to work with the
incorrect model there is no way to tell the real-time
behaviour on the implemented hardware.

5. Conclusions

Co-simulation has increased system observability. By
simulating software execution using an ISS on a cycle
accurate model, timing information can easily be
retrieved and be used as feedback when determining
task execution flow. Co-simulation has shown to be
suitable for verification of task switching, IRQ response
time, and software access of hardware components.

Due to the slow speed of hardware simulation it is
difficult to verify large applications and complete

systems. Thus, co-simulation will yet not verify all
possible interferences between hardware and software. In
many cases it surely will reduce design time, but as a
verification tool for ASIC design in large systems it will
still not exclude the need of FPGAs (Field Programmable
Gate Array) for fast prototyping (see [9]).

Lack of functionality like caches and MMUs in
processor models (Seamless’) are still a problem. A
model has to be as equivalent to the real hardware as
possible, especially when it comes in use in embedded
real-time systems.

6. References

[1] Stefan Sjöholm and Lennart Lindh, ”The need for
Co-simulation in ASIC-verification”. Euromicro
Conference 1997, September 1-4, Budapest, Hungary.

[2] J. A. Stankovic and K. Ramamritham, Tutorial
”Hard Real-Time Systems”, IEEE Computer Society
Press, ISBN 0-8186-0819-6

[3] Stefan Sjöholm and Lennart Lindh, ”VHDL for
Designers”, ISBN 0-13-473414-9

[4] Electronic Engineer, Electronic Design
Automation, September 1995

[5] Mentor Graphics, ”Seamless Co-Verification
Environment, User’s Reference Manual”, 1996

[6] Andreas Löfgren, Torbjörn Olsson, Stefan
Sjöholm, Lennart Lindh, Internal report: ”Evaluation
report on HW/SW Co-simulation using Eaglei and
Seamless”. Mälardalen University, December 1996,
Västerås, Sweden.

[7] Motorola, ”PowerQUICC, MPC860 User’s
Manual”, 1996

[8] Joakim Adomat, Johan Furunäs, Lennart Lindh,
and Johan Stärner, ”Real-Time Kernel in hardware RTU:
A step towards deterministic and high performance real-
time systems”, The 8th IEEE Real-Time Workshop, June,
1996, L´Aquila, Italy.

[9] Lennart Lindh, Johan Stärner, Joakim Adomat,
”Experiences with VHDL and FPGAs”, VHDL-Forum,
April 24-27, 1995, Nantes, France.

[10] Mentor Graphics (Microtec), ”Introduction to
XRAY Pro”, 1996

