
Transforming Temporal Skeletons to Timed
Automata

Gustaf Naeser
Department of Computer Science and Electronics

Mälardalen University
Sweden

Email: gustaf.naeser@mdh.se

Abstract—This paper presents a transformation
from the intermediate temporal skeletons notation to
timed automata, the notation used by the Uppaal tool.
The transformation includes only the transformation of
the application, separate real-time kernel transforma-
tion is required.

I. Introduction

Making formal models used for verification easy to read
and understand should be mandatory. However, the detail
needed in the actual verification often thwarts this desire.
The approach taken in the SafetyChip framework is to use
an easy-to-read intermediate model, a temporal skeleton,
for model validation and the using further transformation
from this model into the notation of the verification tool
used for the formal verification. The Uppaal tool is used
for verification and design and the transformation from
the temporal skeletons into the timed automata used by
the Uppaal tool is described.

The choice of using an intermediate notation was to
open the possibility of strengthening the verification by
using several verification tools. Allowing several backends
can take advantage of enabling verification of the com-
bined properties of the backend rather than limiting the
verification to the properties one backend alone.

An predecessor to the SafetyChip kernel was modelled
using Uppaal by Lundqvist and Asplund [1]. To allow
comparison of the two kernels the SafetyChip kernel uses
the same backend.

The Uppaal tool consists of three main modes: mod-
elling, simulation and verification. Modelling is done in
a graphical environment where timed automata can be
drawn and decorated. The automata can then be trans-
fered to the simulation and verification modes of the tool.
The simulation allows execution of the automata to be
visually shown and the verification part allows properties
of the system to be formally verified.

The source code transformation into the notation of
intermediate timing skeletons has been described in [5],
this paper describes how the timing skeletons can be
transformed into Uppaal’s timed automata.

II. Timing skeletons and interfaces to the RTK

The timing skeletons categorises application instruc-
tions as either passive or active instructions. Passive in-
structions only impact on run-time behaviour of a system
comes from their consumption of computational resources
while active instructions takes part in designing the tem-
poral behaviour during run-time through communication
with the RTK. Communication with the RTK is accom-
plished by using interface functions of the kernel compo-
nents. A full description of the kernel and its interfaces
can be found in [2]. A more detailed descriptions of the
Ready Queue can be found in [4] and of the Delay Queue
in [3].

A short description of the RTK’s interface functions is
shown in Table I.

An application task can call some of the kernel compo-
nents’ interface functions to instruct the kernel to carry
operations like suspending a task, changing its priority,
delaying it until a specific time, etc. Other interface func-
tions are the means by which the kernel informs the tasks
of what is happening, e.g., the kernel can inform a task
that it is running when its execution is resumed after a
time of suspension.

III. Backend model

The synchronisation available in Uppaal is used for
RTK calls, i.e., for affecting the temporal behaviour of
the execution. The model can not take advantage of the
clocks available in Uppaal since their functionality does
not meet the properties the RTK requires. Hence a clock
variable, time, containing the current system time has to
be used.

The rest of this section describes how different con-
structs of the temporal skeletons can be described using
the timed automata of Uppaal.

A. Sequential execution

Sequential execution is in the timed skeletons described
using serial composition blocks. This serial composition is
directly translated into the timed automata and is found in
every automata, e.g., in Figure 2 where transition n0 −→ n1

is followed by transition n1 −→ n2. Serial composition can



TABLE I

RTK component interfaces functions accessible by tasks

and protected subroutines. Functions set in italic are used

by the RTK to control the application, whereas other

functions are used to instruct the RTK.

(a) The Ready Queues interfaces used to manage the schedul-
ing of application tasks.

create(Tid , T p) associate T p with Tid

runnable(Tid) add Tid to queue
suspend(Tid) remove Tid from queue
changep(Tid , T p) change the priority of Tid to T p

unblock(Tid) put Tid last within its priority

run(Tid) Used by the Ready Queue to
inform Tid that it is running.1

preempt(Tid) Used by the Ready Queue to
inform Tid that it has been pre-
empted.1

nopreempt(Tid) Used to indicate that Tid

should continue to run while
it might have expected to be
preempted.

(b) The Delay Queues (input) interface for delaying until given
times.

delay until(Tid, T p, d) Delay Tid until p at priority
T p.2

(c) The Protected Object Queue interface used by tasks and
protected objects.

call(Tid, POid, C, K) Used when Tid calls POid.C

which is of kind K.
aquire(POid, C, U, Tid) Start POid.C for caller Tid. U

is used to indicate if the task is
running.

end call(Tid) Informs task Tid that it leaves
the protected object.

release(POid) Used to release POid.

1 The preempt function belongs to the processing unit but has for
reasons of keeping this presentation siple been moved to the Ready
Queue. The relocation has no effect on the operational behaviour as
it is seen in this presentation.
2 The priority is used by Delay Queues implementing prioritised
release of tasks released at the same time.

be used to serialise any kind of the skeletons’ blocks
regardless whether or not they are temporal.

B. Conditional execution

When blocks are separated by conditional expressions
the construct shown in Figure 1 is used.

The transitions n0 −→ n1 and n0 −→ n2 should be at-
tributed with guards, synchronisations and/or assign-
ments derived from the source code. There can be any
number of transitions n0 −→ ni to create more choices.

C. Task initiation

A normal application task should announce its existence
to the RTK at system initiation so that the RTK can
insert it in its tables and Ready Queue. The RTK Ready
Queue listens for a create signal which is sent on transition
n0 −→ n1 in Figure 2. Directly following the create a
normal application also informs the Ready Queue that the

n0

n1

n2

Fig. 1. Conditional execution is described using a location with
two or more exiting transitions. The location is committed since
execution must not linger in it.

n2n1n0 n3

Rt:=t,
Rp:=p

create!

runnable!
Rt == t
run?

Fig. 2. The building block automaton for creating a task and make
it runnable. Since location n1 is committed the task identity need
only be set at the n0 −→ n1.

task is ready to execute, i.e., that the task is runnable,
which is made on n1 −→ n2.

Tasks are created with a set priority which is stored in
the ready queue. Special tasks, like interrupt tasks, do not
have the runnable transition, n1 −→ n2, in their initiation
as they rely on external activation, e.g., by a an interrupt
queue.

There is no need for a block which terminates a task
since the Ravenscar profile does not allow task ter-
mination. However, a task which suspends and is not
made ready by another entity will behave as if it was
terminated. This behaviour is shown in the transitions
n15 −→ n16 −→ n17 in Figure 9.

D. Execution blocks

A snippet of code that have no RTK interaction and
whose sole temporal effect is consumption of execution
time is modelled as shown in Figure 3.

n1time <= w

n0

n2

n3

b:=time+BCET,
w:=time+WCET

Rt == t
preempt?
stoptime:=time

Rt == t
run?
b+=time-stoptime,
w+=time-stoptime,
stoptime:=0

time >= b, time <= w

Fig. 3. The building block automaton for time consumption in an
preemptive environment. If the task is preempted it will be suspended
in the location n2 until it is run again.

The transition leading into location n0 initiates the time
consumption by calculating the actual best and worst
times with regard to the current system time which is
stored in the global variable time. When at least b time
has passed, i.e., the task has been processing that amount
of time, the exiting transition n1 −→ n3 becomes enabled.



The exiting transition remains enabled until the time w
is reached, at which time the transition leading to n3 is
forced.

If the task is preempted, n1 −→ n2, the time at which the
preemption occurred will be recorded so that the execution
times b and w can be updated correctly when the task
starts running again, n2 −→ n1.

E. Delay until

Delay until a specific time is shown in Figure 4.
The Ravenscar tasking profile only allows Ada’s absolute
delay until, and not the relative delay. In the model
we present here the could with little effort implement both
constructs at little extra cost. Specifically, there would be
no additional verification cost since the RTK Delay Queue
component can work equally effectively with absolute and
relative delays both.

When a task suspends there are two immediate possibil-
ities. Either the release time, the time the task suspends
until, a) is in the past or is on the present, or b) the it is
in the future. If the release time has passed or is in the
present the task should not be suspended and n1 −→ n3

will be used. Otherwise the task will be preempted and in
location n2 wait for its future activation.

n3

n2

n0
time <= w

n1

Rt:=t,
Rp:=p,
Rd:=delay

delay_until!
preempt?
Rt == t

Rt == t
nopreempt?

Rt == t
run?

Fig. 4. The delay until construct. A delaying task is preempted if
the release time is in the future, otherwise no preemption occurs and
it can promptly continue its execution in location n3.

F. Protected objects

Protected objects [6] are the mechanism used to achieve
mutual exclusion in Ada. The objects are interesting since
they are a source of non-determinism in Ravenscar tasking
profile for systems with multiple processors.

A protected object has a data part and a code part.
The data part contains the protected variables, and the
code part contains subprograms used to access the data
part. The code part can have functions, procedures and
entries. Functions may not change the variables and are
allowed to run concurrently with other functions. Accesses
to the entries and procedures are however exclusive since
they are allowed to modify data. In the Ravenscar profile
the number of entries of a protected object is limited to
one. Queueing is used to manage concurrent calls to proce-
dures and entries. All restrictions made in the Ravenscar
profile but for one can be checked with static analysis of
source code. In order to verify if an application preserves
the dynamic restriction (Max_Entry_Queue_Depth => 1),

verification needs to be done using the execution times of
the application or other means of analysis of the systems
run-time behaviour.

The mechanism for mutual exclusion and handling of
barriers is located in the Protected Object Queue of the
RTK. Calls to protected objects are passed through that
component and the component will make a task runnable
when the object it calls is free and the task’s turn to access
the object comes up. The building blocks for accessing,
calling, protected subroutines, bodies, is shown below.

1) Procedure and entry calls: The building block to call
a procedure or entry of a protected object is shown in
Figure 5. The sequence is started with the raising of the
executing tasks priority. A change in priority can, if the
priority is lowered, result in that the task is preempted,
but since a task calling a protected object will always
raise its priority, and since this never will preempt the
task, there is only one transition leading from location n0.
However, there is no guarantee that the task will not be
preempted one it has raised it priority and hence location
n2 allows preemption before the call to the protected
object component it made, n2 −→ n4 −→ n5.

n0

n4

n9

n8

n2

n1

n5

n7

n3

n6

Rt:=t,
Rpo:=po,
Rpy:=py,
Rpc:=pc

call!

endcall?
Rt == t

Rt == t
run?

changep!
Rt:=t,
Rp:=p

changep!
Rt:=t,
Rp:=pop

Rt == t
nopreempt?

Rt == t
preempt?

Rt == t
nopreempt?

Rt == t
preempt?

Rt == t
run?

Rt == t
preempt?

Rt == t
run?

Fig. 5. The building block for calling a procedure or entry in a
protected object. The task handles the priority changes prior to and
after accessing the object.

2) Function calls: The building block for calling a
function of a protected object is the same as that for call-
ing procedures and entries, as above, with the exception
that the function’s code is inserted into the task rather
than placed in a separate body automaton. The changes
needed in Figure 5 is in location n5 where the block for
the protected function, described in Figure 6 should be
inserted.

3) Body code: The body code for a protected procedure,
entry or function is modelled as shown in Figure 6.



n3n0

n1 n2

n6 n5

n4

Rpo == po,
Rpc == id,
Ru == 1
aquire?
t:=Rt

Rpo == po,
Rpc == id,
Ru == 0
aquire?
t:=Rt

runnable!

Rt == t
run?

endcall!
Rpo:=po

release!
t:=0,
b:=0,
w:=0

Rt:=t

Fig. 6. The building block for the body of protected object code.
The body code is started in location n3 and ended in n4.

A protected body consists of an aquire part, between n0

and n3, where the body code is invoked by the task, and
a release part, between n4 and n0, where the protected
call is done with its computation. The call specific code is
inserted to form a transition chain n3 −→ n4.

IV. An Example Application

In this section an example application is presented.
Timing skeletons and the timed automata for entities of
the application is shown and explained. The automata
below are patched so that they do not terminate and hence
conform to the Ravenscar profile.

A. Protected Objects and the Application

The problem of racing conditions occurring when access-
ing protected objects will be illustrated in this section. The
problem is interesting to this report since it cannot be non-
pessimisticly verified without temporal information. The
source code and outlines of the temporal skeletons for the
application used in the discussion is shown in Figure 7.

We will in Section IV-C briefly show how to verify if
tasks Task2 and Task3 can be calling the protected entry
at the same time, thus violating the dynamic restriction
of Ravenscar. We assume that all tasks, Task1, Task2
and Task3, are started at the same time, zero, and that
there are no other tasks in the system. We use call to
the procedure work(2, 3) to indicate that the tasks
executes for between 2 and 3 microseconds (BCET and
WCET). The delay until in Task2 is used to delay the
release of the task until the system time reaches 10. We
assume that the Barrier is initially false.

Even if all tasks have the same priority operation of the
program will lead to that Task1 sets the barrier to true
and allows the other tasks to call the entry. Task2 will
either beat Task1 in calling the protected object, and be
suspended since the barrier is false, or reach the barrier
when Task1 has opened it. From looking at the code it
is obvious that Task2 will have left the protected objects
entry before Task3 will call it. However, this information

1 protected body Critical is2 procedure Open is3 begin4 work(1, 1);5 Barrier := True;6 end Open;78 entry Call when Barrier is9 begin10 work(2, 3);11 end Call;12 end Critical;1314 task body Task1 is15 begin16 Critical.Open;17 end Task1;1819 task body Task2 is20 begin21 Critical.Call;22 end Task2;2324 task body Task3 is25 begin26 delay until 10.0;27 Critical.Call;28 end Task3;

Fig. 7. A small system with a protected object and three tasks
of which two contend for the access to the object. Outlines of the
temporal skeletons are superimposed over the source code.

will not be obvious to a model without time. Such a model
has no way in which the two calls to the procedure can
be separated, i.e., the temporal behaviour the execution
times add is needed for a non-pessimistic verification of
this property.

B. Transformation into timed automata

We start by creating an automaton for the protected
entry, Call, for the protected object, Critical. Any
automaton we can construct with the building blocks
presented above starts with the either a task initiation
building block or with a block for protected object body
code. The protected entry starts with the latter and within
that block an execution block is used for the function call
(work). The resulting automaton is shown in Figure 8.

The next automaton we create is that of Task3. Task3
is started with a task initiation building block, followed
by a delay block, a block to make a protected object entry
call, and finally a block for suspending the automaton.
There blocks are expanded to the timed automaton shown
in Figure 9. The transitions between locations n0 and n2

are used for the task initiation, locations between n3 and
n6 implements the delay, the call to the protected entry



n5n4
time <= w

n0

n1 n2

n7n8

n3

n6 run?
Rt == t

b+=time-stoptime,
w+=time-stoptime,
stoptime:=0

Rt:=t

Rt == t
preempt?
stoptime:=time

Rpo == po,
Rpc == id,
Ru == 1
aquire?
t:=Rt

Rpo == po,
Rpc == id,
Ru == 0
aquire?
t:=Rt

runnable!

b:=time+2,
w:=time+3

endcall!
Rpo:=po

release!
t:=0,
b:=0,
w:=0

Rt == t
run?

time >= b, time <= w

Fig. 8. The automaton for the protected entry Critical.Call of
Figure 7.

is made by the ones between n6 and n16, and the final
transitions, between locations n16 and n18, suspends the
task. Even in the final model the distinctive blocks are
visible.

The other two tasks of Figure 7, Task2 and Task1
can be created by removing or changing blocks in Task3.
Task2 is created by fusing location n3 with n6 and remov-
ing all transitions in between, thus creating a automaton
which does not make a delay. Task1 looks like Task2
but on transition n8 −→ n10 it calls Critical.Open, not
Critical.Call.

The verification model for the application is composed
of the protected object subroutines Critical.Open and
Critical.Call, the tasks Task1, Task2, Task3, and
automata for the RTK. The RTK automata needed model
the Ready Queue, the Delay Queue, protected objects,
processing units and their null tasks, and the system clock.

C. Verification

Interesting for the task at hand, i.e., the investigation
if the two application tasks codewTask2 and codewTask3
can be queueing to call the entry at the same time, will
be the property of the RTK automaton managing the
protected object, the protected object queue. The queue
is designed to enter an error location, n8, if it detects
that a task attempts to queue for an entry another task
is already queueing for. Verification of the property in
an application system can in Uppaal be made using the
query ∃♦(PO.n8).

In general, the tool allows verification of a) reachability
of states, b) global properties, like that certain conditions
never occur during execution, and c) deadlocks. Transi-
tions can be attributed with counters to gain detailed
information about possible executions, e.g., the number
of times a specific transition can or will be be used.

Other temporal properties that can be verified are, e.g.,

• if a specific building block can be, or always will be,
reached before or after a given time

n6

n10

n15

n14

n8

n7

n11

n13

n9

n12

n3 n4

n5

n16n17

n1n0 n2

Rt:=t,
Rpo:=Critical,
Rpy:=ENT,
Rpc:=Call

call!

endcall?
Rt == t

Rt == t
run?

changep!
Rt:=t,
Rp:=p

changep!
Rt:=t,
Rp:=pop

Rt == t
nopreempt?

Rt == t
preempt?

Rt == t
nopreempt?

Rt == t
preempt?

Rt == t
run?

Rt == t
preempt?

Rt == t
run?

delay_until!
Rt:=1, Rp:=p,
Rd:=10

Rt == t
nopreempt?

Rt == t
preempt?

Rt == t
run?

suspend!
preempt?
Rt == t

create!
Rt:=t,
Rp:=p runnable!

Rt == t
run?

Fig. 9. The automaton for Task3 of Figure 7.

• how many times a specific task will do something, like
being preempted, loop, etc.

V. Conclusions and Future Work

This report presents a set of building blocks that can
be used to describe a tasking application. The report
describes how temporal skeletons can be translated into
the blocks in a straight forward way. Temporal properties
of the skeleton can, together with a model of a real-time
kernel, be formally verified and it is shown show how the
highly elusive dynamic restriction of the Ravenscar tasking
profile can be verified.

References

[1] K. Lundqvist, and L. Asplund, ”A Ravenscar-Compliant run-
time kernel for safety critical systems”, Real-Time Systems,
24(1), 2003.

[2] G. Naeser, ”A Real-Time Kernel for Ravenscar”, MRTC
report ISSN 1404-3041 ISRN MDH-MRTC-186/2005-1-SE,
Mälardalen Real-Time Research Centre, 2005.

[3] G. Naeser and J. Furunäs, ”Evaluation of Delay Queues for
a Ravenscar Hardware Kernel”, MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-176/2005-1-SE, Mälardalen Real-
Time Research Centre, 2005.

[4] G. Naeser and K. Lundqvist, ”Component-Based Approach to
Run-Time Kernel Specification and Verification”, ECRTS 05,
2005.

[5] G. Naeser, K. Lundqvist and L. Asplund, ”Temporal Skeletons
for Verifying Time”, In Proceedings of SIGAda 2005, ACM,
2005.

[6] A.J. Wellings, B. Johnson, B. Sanden, et al., ”Integrating
Object-Oriented Programming and Protected Objects in Ada
95”, ACM Transactions on Programming Languages and Sys-
tems, 1999


