
Component-based vs. Model-based Development: A Comparison in the
Context of Vehicular Embedded Systems

Martin Törngren1, DeJiu Chen1, Ivica Crnkovic2

1KTH, Stockholm, 2MdH, Västerås
martin@md.kth.se, chen@md.kth.se, ivica.crnkovic@mdh.se

Abstract

Component based and model based development
(CBD vs. MBD), in their various interpretations, are in
focus in many efforts in order to better handle the
efficient development of increasingly complex
embedded systems. We elaborate on what CBD and
MBD represent, on their differences and similarities.
Although CBD represents a bottom-up approach
whereas MBD is more top-down in nature, it turns out
that the concepts have much in common and can
benefit from cross-fertilization. In particular, MBD
requires improved handling of ‘model’ components,
and CBD requires improved component models to
assure component composition and reuse. We discuss
their mutual opportunities and other relationships.

1. Introduction

The motivation behind this paper arose in the
context of the SAVE research project [1], dealing with
component based development of software for safety
critical vehicular systems, such as aircraft and trucks.

In research communities working on these and
related topics, two buzzwords that frequently appear
are Component based and Model based development
(CBD and MBD), see e.g. [2]. Such buzzwords cause
confusion because the terms are quite generic and are
consequently used in a variety of contexts for different
purposes. We believe, however, that there are needs to
correlate the two, one reason being to facilitate
communication and reduce unnecessary redundant
work among researchers. Misconceptions such as
“MBD is only about code generation” can then be
avoided. Moreover, we believe that cross-fertilization
is possible by reusing concepts and results across the
two approaches. In this paper we elaborate on what
CBD and MBD represent, on their differences and
similarities, and discuss how they can be combined.
More underlying material and case studies can be
found in [3].

Embedded systems constitute an essential enabling
technology for vehicular systems, providing
possibilities for high performance and entirely new
functionality such as diagnostics, active safety systems
and passenger entertainment. As a consequence,
embedded systems carry an increasing portion of the
total vehicle cost as well as the value-added.

Key characteristics of vehicular embedded systems
include their environmental dependence and increasing
connectivity. The “embedding” dimension strongly
affects the requirements on the software and hardware
portion of a product, on the one hand since this portion
will inherit requirements related to the product itself
(such as constraints on safety and performance) and on
the other hand, since the embedded systems have to
withstand the harsh environments typical for vehicular
systems. The embedding dimension among other
things leads to real-time constraints and tight relations
to the environment, see e.g. [4], complicating system
design and component reuse. In providing more
functionality and answering demands relating to
performance and flexibilities, embedded systems have
over the past 30 years evolved from stand-alone
microprocessor based systems to distributed embedded
systems, which today also are increasingly connected
to the external world. The flip-side of the coin is the
increasing complexity, which comes in many forms
including a large amount of entities and relationships
of various types, variants, and many (and conflicting)
requirements.

This paper includes 6 main sections. In the next
section, we present the major ideas behind the
characterization and comparison. Key characteristics
of these two approaches are described in the section 3
and 4, and compared in section 5. Finally, a discussion
on their mutual opportunities is provided in Section 6.

2. Comparison approach

To be able to profile and compare CBD and MBD
we have developed a framework that codifies

important issues. The framework considers three
related dimensions of engineering as depicted in Fig. 1
to address the following questions, further discussed in
Sections 3 and 4: Q1. Why is an approach attractive?
Q2. What are the concepts and techniques? Q3. When
and where is it applied? Q4. How to apply it?

Business Context
- Drivers

- Organization ·
- Technology
- Discipline & domain
- Lifecycle
- Product qualities

Product
- Ontology

- Process effectiveness
- Complexity control
- Traceability
- Reuse
- Process maturity

Engineering and lifecycle

Demands

Satisfies

Creates

Demands

Demands

Satisfies

Figure 1. Context and content of engineering in

three dimensions.

Relating to the question Q1, the dimension of
business context characterizes the motivations or aims
of a particular approach with respect to customer- or
enterprise-needs, referred to as its drivers.

The dimension of product relates to the question Q3
with respect to the target systems being developed or
managed by an approach. One key issue is ontology,
referring to the explicitly considered means,
relationships, and environmental issues of a complex
whole constituting a product [5]. Due to its purpose(s)
and role(s), an approach can have different focuses and
adopt different interpretations of system synthesis.

The dimension of engineering and lifecycle support
relates to questions Q2, Q3, and Q4 with respect to the
supported development activities. Such activities are
managed into processes, including technical processes
for creations, evaluation, and synthesis of products,
and management processes for resources, changes,
configurations, work planning, and integration of
teams [6, 7]. For complex products, multiple processes,
organized into levels and domains, are involved,
targeting different phases and concerns (e.g., safety
and performance). Within each process, iterations are
often necessary for rectifying design errors or taking
changes into account.

In this dimension, we highlight a set of factors, as
listed in Table 1. For the development of complex
products, one central issue is support for the ease of
cognition and knowledge transfer, i.e., complexity
control. A closely related issue is support for
information traceability, over time, from requirements
to solutions, within or across engineering tasks. Since
engineering seldom starts from scratch, support for
reuse is also an issue of concern. This requires not
only run-time compatibility, but also support for

variant management, IP-protection, and design-time
integration, etc. To perform development tasks, it is
always preferred that explicit methodology and tool
support are provided by an engineering approach. This
is covered by the process maturity factor. The process
effectiveness is affected by factors like the number of
iterations within each process. To this end, a parallel
organization is often advocated, such as in concurrent
engineering where the expertise associated with a
specific stage is made available at every stage [8].

3. CBD

A basic idea in component based software
development is building systems from existing
components as opposed to building the entire
application from the scratch. This idea has two
important consequences:
• The components are built to be reused in different

systems. It allows reuse of development effort by
allowing components to be reused across products
and in the longer term it enables building a market
for software components. In particular for the
development of many variants of products the
component-based approach is attractive.

• The component development process is separated
from the system development process. This allows
significantly shorter time-to market as products
are integrated from the already existing
components.

The latest trends show that different component
technologies are being developed for different
domains. Similarly to the object-oriented paradigm that
is exploited in different OO languages, a component-
based paradigm based on certain common principles is
slowly built and used in different component
technologies [2, 9].

The main features of CBD originate from business
requirements:
• Short time to market – large savings in time can be

Factors of Engineering
and Lifecycle Support

Definitions

Organization Organizational prerequisites and consequences of adopting
the approach.

Technology Required technologies for performing the approach.
Discipline&Domain Intended disciplines and engineering domains.
Lifecycle Stages of the product lifecycle.

Product qualities Support for evaluation criteria and evaluation related tasks in
technical processes.

Complexity-control Explicit support for the ease of comprehension and
communication.

Traceability Explicit support for managing information dependencies.
Reuse Explicit support for managing and using existing solutions.

Process effective-ness Applied principles and concepts for promoting engineering
efficiency.

Process maturity Completeness and formality of provided engineering
methodology and tools.

Table 1.Comparison factors in engineering and
lifecycle support.

achieved by constructing applications from
already existing parts.

• Distribution of work among dedicated experts for
development of components. Since components
are developed independently of the products the
experts in particular domains can develop them.

From the engineering point of view the advantages
of CBD are based on standardisation and reusability.
Standardisation plays a crucial role as it enables
independent development and seamless integration of
components. By reusing the same entities the
confidence of their behaviour and properties increases.

Similar to other engineering domains, CBD aims
for targeting complexity: By reusing existing solution
not only on the component level but also on the system
structure level CBD enables better understanding of
complexity; the implementation details of components
are hidden and only component services that are
exposed through component interfaces are visible. In
this way the abstraction level is increased which is a
key factor in managing complexity.

Further, in the CBD approach the maintenance is
focused on replacement similar to replacement of spare
parts of components rather than on re-implementation
of specific parts.

3.1 Basic characteristics of CBD

The central terms in CBD are the component and
the component model. In classic engineering
disciplines, a component is a self-contained part or
subsystem that can be used as a building block in the
design of a larger system. It provides specified services
to its environment across well-specified interfaces.
Ideally, the development of components is decoupled
from the development of the systems that contain
them. Components are assumed to be reusable assets in
different contexts.

A component model specifies the standards and
conventions that are needed to enable the independent
development of components, and the composition of
independently developed components. More
concretely, a component model defines the set of rules
that the components and application obey in order to
make it possible to interact and to be composed. These
rules include component specification, component
deployment and execution and communication
between components. The specifications of component
interface and component interactions determine the
architectural framework of component-based systems.
Indeed different component models assume different
architectural styles.

The key consideration of CBD is reusability and

adaptability. The component models must have a mean
by which component can be reused and adapted to the
requirements.

Reusability is an ability of reusing the same
component in different applications. This desired
property includes a number of assumptions:
• The architectural framework of the applications

must be the same.
• Non-functional run-time properties of the

applications are similar.
• The component functionality is general enough to

be reusable, but simple enough to be
understandable.

Adaptability is an ability to respond to changing
requirements, either in different applications or in an
application during its lifecycle. In CBD it is realized
by the following properties: Substitutability and
Expandability.

CBD aims to provide support for performing safe
substitution of a component. Substitutability is related
to contractual interfaces and dependencies. The
contractual interfaces distinguish “require” interface
from “provide” interface and for them they specify the
pre-conditions that must be valid for a correct
execution of the component and post-conditions which
are valid for output values after the component
specification. The contractually specified interface also
identifies the states (invariants) that hold after the
component execution. The dependences, expressed
through the “require” interface indirectly specifies on
which other components a particular component is
dependent of. However, while the principles of
functional substitutability are known, theses principles
are much more diffuse for non-functional properties.

For expandability CBD provides support either in
an ability of adding new interfaces to existing
components, or ability to add new components in the
system that provide the new functionality.

Since CBD assumes of existence of components
before the development of an application or system,
many activities in the development process follow
bottom-up principles (within given frames defined by
the component model). For this reason composability
is an important concern in CBD.

Since CBD aims for reusing existing components
the important issue is a composition of components –
not only for providing the mechanisms for the
composition but also for modeling applications
reasoning about different properties. The main goal is
to provide theories, methods and tools to predict the
composition properties from the properties of
components.

)()()(2121 cPcPccP oo =

Again, there is much more work done and there is
more experience in predicting compositions of
functional properties; functional composability often it
is immanent part of the component models.
Composition of non-functional properties is in general
more complex; There are properties that are results of
composition and architectural solutions, there are
properties that are visible on the system level, but do
not exist for the components, and there are properties
that are nit composable at all.

3.2 MBD related efforts and challenges

The primary drivers of the CBD approach come
from the business motivations and from engineering in
different domains: Components should be reused and
only specifications of the components are necessary
for their usage. This requirement states the main
challenge: How to specify components? The
specification include identification of different aspects
– from the functional formal specification, to the
specification of different properties such as resource
usage, detailed documentation about the component
usage, test support, etc.

For component specification, different modeling or
specification languages are used – for example UML,
or other Architectural Definition Languages, or IDL
(interface definition Language). While functional
specifications follow certain standards or are an
integrated part of the component technology, for non-
functional properties there are is a wide range of
different notations that originate from different
theories, not directly related to CBD. One systematic
approach is given in PECT (Prediction-Enabled
Component Technology) [10] by which the component
specification is implemented via interface
specifications classified in (i) constructive interface,
and (ii) analytical interface.

The constructive interface specifies how the
components can be connected (“wired”) and it is an
integrated part of a component model. The analytical
interface originates from different property theories
(for example theories of timeliness, or reliability) For
a particular component model this interface provides
the mapping between specification of the components
and the notation from particular theories (for example
a component may be an executable unit with
specification of execution time, which is then used by
scheduling theory to design a time-correct system).

A challenge related to a component specification is
the verification; How to verify that a component will
behave correctly in a new environment? The example
of Ariane 5 [11] illustrates the case in which a
component has been reused in a new environment,

resulting in a major system failure . The question of
verification is related to testing and formal verification.
In both cases it is a challenge – what specification is
needed and which methods can be applied.

 From the business perspective the main challenge
is that of trustworthiness related both the run-time
performance and lifecycle issues. For example, there is
a question, how trustworthy the specification is? Or a
question related to the lifecycle of a product: Who is
responsible for the maintenance, or how the evolution
of the component will be related to the evolution of the
product, and the evolution to other components?

Another challenge of the business model is the
reusability: If one of the goals is to develop a
component for reuse, how much additional efforts will
be required to achieve this, and how much overhead
will be encapsulated in the component and how much
additional system resources this will require.

These challenges make the progress of the CBD
approach slower, particularly in the domains in which
the non-functional properties are the primary concerns.

4. MBD

Modeling and models are strongly associated with
engineering [7, 12]. They are used for communicating
information, for analyzing a system, thus providing
answers to certain questions about a system, and for
synthesizing a system, e.g. through transformations.
One traditional definition of a model is: “A model is a
simplified representation of a system intended to
enhance our ability to understand, predict and possibly
control the behavior of the system” [13]. For example,
consider a body sliding on the ground and affected by
an external force F. Based on Newtonian laws and
certain assumptions we can obtain a behavioral model
in the form of a differential equation: d2x/dt2=F-kdx/dt.
The resulting model can be used to predict the body’s
motion and for synthesizing a feedback control system,
as long as the assumptions are valid with respect to the
design tasks at hand.

MBD has been introduced and evolved in many
engineering disciplines. For embedded system we find
an extraordinary amount of modeling languages and
tools that have been introduced for a wide variety of
purposes. This fragmentation mirrors the broad
applicability of embedded systems, but also the
increased specialization and, possibly, the immaturity
of the area [14]. It is consequently not surprising to
find a number of interpretations of what comprises an
MBD approach. These interpretations are related to the
usage of models and tools in different industrial
domains and specialist disciplines. For example, a

control engineering approach to MBD typically uses
languages such as Simulink and Modelica, with
modeling activities related to function design,
prototyping, implementation and testing. In software
development, the UML is in frequent usage. Yet other
approaches use SDL, Statecharts, or hardware
description languages. It is clear that these efforts
reflect different design objectives and target different
stages of the development process.

 4.1. Basic characteristics of MBD

A typical model based development process starts

in the very early stages, using models with well
defined syntax and semantics for capturing
requirements and for designing the functionality.
These models are then successively refined,
incorporating more detail and peculiarities of the
implementation. While formal abstractions are
important for analysis and synthesis, visual
representations of models are often important for
comprehension and communication of designs.

Figure 2 depicts a model based embedded systems
development, using abstract descriptions for the
design, and tools for generation of executable code or
hardware configurations from these descriptions. The
figure indicates the trend to synthesize not only
functionality, but also parts of the (software) platform.
For embedded systems, code generation constitutes an
interface between function and implementation
specialists. With code generation, some of the manual
implementation steps can be removed, leading to a Y-
or even a T-cycle, instead of the traditional V-model
[2]. However, it is important to understand that there is
much more to MBD than code generation. Models are
also essential for early design validation and
verification, for architectural design, for testing and
integration. In many cases, executable environment
models also form part of the embedded code, for

example for diagnostics or estimation purposes. Other
usages of models include information and process
modeling. Developed in the right way, models become
assets that can be reused within and between projects.

MBD provides possibilities to develop and use a
multitude of models for different system aspects (i.e.
product properties and constraints) such as failure
modes of components and their propagation, required
timing behavior of a real-time implementation, power
consumption, and the behavior of the expected
environment. As discussed previously, some models,
e.g. describing the intended behavior of a product, can
also be the basis for direct synthesis of the
implementation, whereas others instead implicitly
affect the resulting product structure/behavior by
providing one basis for design decisions.

Cornerstones for the successful adoption of an
MBD approach include theoretical foundations – as a
basis for modeling languages, analysis and synthesis,
tool support – to assist in complexity management by
automating design tasks, and modeling methodology –
providing guidelines for how to model and how to
choose an appropriate level of abstraction.

The use of models and supporting tools must
always - as the use of any tool - be evaluated within
the given context. Increasingly complex products with
tough requirements require more powerful tools – thus
increasing the need for an MBD approach. The
handling of complexity causes the resulting need to
strive for abstract descriptions, formal methods and
tools which support information management, reuse,
automated analysis and automated/ assisted synthesis.
With respect to reuse, MBD approaches in principle
enable reuse of earlier developed models and of
tooling efforts.

4.2 Challenges and CBD related efforts

A challenge for MBD is that of handling the
increasing gap to reality and the availability of suitable
tools. Methodology and techniques for model
validation and verification are therefore essential.

The introduction of MBD is strongly related to and
affected by organizational, process and technology
constraints. For example, the personnel of the
organization needs to be prepared and/or trained to use
a certain modeling methodology (their tradition may
make it difficult to use a certain approach). The
process needs to recognize and take the use of models
supporting the development into account. It is
important to assess the maturity of the available
supporting technology to avoid mismatches between
needs and support tools [14]. Figure 2. One illustration of MBD.

Hardware platform

Software integration framework

E.g. Simulink or UML tools

E.g. OS
synthesis

Software platform (OS, com., drivers)
I/O drivers

Hardware platform

Software integration framework

E.g. Simulink or UML tools

E.g. OS
synthesis

Software platform (OS, com., drivers)
I/O drivers

The increasing exploitation of MBD highlights two
important challenges, the integration of multiple
models, and the management and reuse of models.

MBD tools today only support the handling of a
limited number of aspects (or views), consequently
model and tool integration is today an intense research
area. A complete development chain typically involves
a multitude of tools and pieces of information that are
loosely integrated. Some efforts try to develop ‘all-
encompassing’ languages to cover as many aspects as
possible. Examples in this direction include the EAST-
ADL, the AADL and the UML. The former two are
specialized for vehicular embedded systems
development and provide constructs and properties
required for analysis of safety, reliability and timing,
as well as explicit models of software components [15,
16]. While the UML was initially intended for general
purpose software systems, work is being undertaken to
provide more capabilities for non-functional aspects by
defining UML profiles [2]. Other OMG related efforts
focus on establishing the Model Driven Architecture
for which a key ingredient is research on the
systematization of transformations between models.

Yet other efforts in different ways strive for
integration platforms that allow models and tool
services to be combined – thus still allowing existing
tools and modeling languages to be used, see e.g. [18].
The need to describe multiple aspects is also strongly
relevant for CBD and software systems in general.
Here it should be of interest to further evaluate and
compare model integration approaches with aspect-
oriented approaches in software. It does at least seem
that the techniques can be equally well applicable to
models [19].

The model management problem becomes apparent
with an increasing usage of MBD. Working with MBD
tools has, in fact, many similarities to CBD. A designer
will work by composing model components from
libraries. Newly developed models or just components
thereof can be stored there as components, for reuse.
However, models appear in many versions and
variants, are used by many persons, and associated
with even more information such as parameters,
verification status etc. Reuse of model components and
models (component assemblies) faces a reuse problem
not far from that in CBD. That is, a pure textual
description and interface definitions are not sufficient.
Additional contextual information is also required.
Keeping track of all model information requires
explicit consideration, and tool support for larger
systems. Proper configuration management thus has to
be in place. This is a rather new problem for MBD in
embedded systems, however less so for the more
mature area of mechanical engineering [20, 21].

A key challenge for MBD in embedded systems is
to combine such best practices with the emerging
results in embedded systems MBD.

Several efforts today address model management
and techniques similar to those used or advocated in
CBD, see for example [22-24]. Within the European
project NFCCPP [25], a system reference model has
been developed for future generation of automotive
fuel cell systems. The model defines standardized
system components and sub-systems in terms of well-
modularized functional simulation model blocks (e.g.,
air compressor). To promote continuous system
evolution and a component market, the cross-
enterprise exchange and integration of functional
solutions are supported, covering issues such as
independent evaluation of individual components,
protection of proprietary information and prevention of
unauthorized component usage, as well as
configuration management.

5. Comparison

Table 2 compares CBD with MBD, based on the
comparison approach established in Section 2.

The differences in emphasis are clearly seen. The
two approaches have originated to address different
needs with different technology assumptions. While
CBD tries to combine a bottom-up and a top-down

 CBD MBD

Drivers
Emphases on reuse across
products, time-to market, and
component market

Support for design and evaluation;
emphasis on complexity control.

Ontology

Targeting software programs,
interactions, design- and run-time
composition. Structure emphasis.

Targeting entire system including
functional solutions and
implementation, as well as their
run-time relationships. Structure
and behavior emphasis.

Organiza-
tion

Assuming separated component
development processes from
system development process

Assuming multiple teams normally
in the same organization.

Technology
Relying on component technologies
for component specification,
integration, management, and code
generation.

Relying on modeling techniques
and tools for specification,
analysis, realization and
information management.

Discipline&
domain

Software engineering

Lifecycle Targeting software design,
implementation and maintenance.

Targeting a broad spectrum of
stages in system development.

Product
qualities

Mainly concerning the functionality
related effects of reuse (e.g.,
composability).

Providing description and
formalization support for many
types of analysis, and of many
qualities - .

Complexity-
control

Increasing composition granularity,
encapsulating and hiding details,
and standardizing system
components.

Abstracting, separating concerns
in views, standardizing in
languages, tool automation.

Traceability Supporting standardization and
versions/variants management.

Forming a basis for documentation
and information management.

Reuse
Component specifications,
components, integration
architecture/infrastructure

Providing global context of
solutions hence forming a basis of
reuse.

Process
effective-
ness

Bottom-up integration, distribution
of work, quality assurance from
reuse.

Early V&V!, risk reduction,
automation, including techniques
such as executable requirements,
rapid prototyping, and auto-coding

Process
maturity

Well-established in engineering of
general purpose software systems

Application domain dependent
(e.g., automotive vs. avionics).

 The precise scope is defined by the MBD domain/ approach as discussed in section 4.

Table 2. CBD vs. MBD

approach, where the “run-time thinking is strong”,
MBD constitutes a top-down approach where
knowledge about the systems under development is a
critical aspect. While MBD adopts code generation,
CBD relies on the reuse of already existing code.

The focus of MBD is traditionally on the early life-
cycle stages where the forthcoming product is
modeled, evaluated and optimized with respect to the
intended functionality and quality attributes. In
contrast, CBD emphasizes the creation, integration and
maintenance of reusable software solutions, where the
functionality related effects of reuse traditionally have
been in focus. Formal techniques play an increasingly
important role for both approaches to increase their
capability for analysis. In MBD, it is assumed that the
design teams have a much more complete access to
system information. For CBD, however, the
applicability of using formal techniques depends on
the completeness of the provided and derivable
information from components.

Both approaches adopt many concepts found in
systems engineering and utilize some fundamental
software engineering concepts and technologies.

The architecture concept appears in both
approaches, relating to the design of the overall system
structures. Although differing in scopes (i.e., software
or entire system), architectures in both approaches
constitute the basis for solution integration, change
control, concurrent engineering and outsourcing. The
component concept exists in many modeling efforts at
different levels. As a generic term for “system
constituent units”, components can have different
interpretations. A CBD component, most often refers
to binary code (e.g., COM-components) and a concrete
execution platform. In MBD, components exist in the
form of for example “function blocks”. However, these
may, or may not have direct relationships with the final
implementation. For example, a block may represent
an environment model, defining the context rather than
the target system itself. A block may also only be a
visual representation, grouping several primitive
blocks together. In contrast, in some modeling
languages like Rapide and AADL/MetaH, components
have a direct link to the coding structure.

Both approaches address complexity control using
general principles like information-hiding, separation-
of-concern, and standardization. The main difference is
that these principles are applied at different levels.
Using such measures in CBD is directly related to
changing the product itself (e.g., changes in product
decomposition structure). However, in MBD there is
the additional degree of freedom to use these principles
for other purposes such as usability and for analyzing
different aspects.

While reuse in CBD targets a complete solution in
terms of a run-time executable (e.g., .dll), reuse in
MBD is not restricted to a certain level and can hence
be applied to various partial solutions such as
algorithms, structuring styles, etc.

A further connection point, from MBD to CBD is
that of code generation. For example, code generation
from models can be used to generate code
corresponding to component-internal functionality,
where CBD provides the mechanisms for gluing
components together, see e.g. [2].

Typically, MBD approaches provide quite a lot of
flexibility, with options to generate only pieces of
code, or even complete systems. This flexibility also
allows incorporating and reusing legacy code. Some
CBD efforts, on the other hand, provide the possibility
to configure a system and generate glue code.

6. Discussion

To summarize many of the topics previously
discussed, consider Fig. 3, which depicts system
development in terms of a number of conceptual levels
(or design stages), each treating a particular level of
abstraction. As indicated, the product and its
constituents are, at each design level, typically
represented by a multitude of models representing
different aspects, concerns or views. design models are
successively refined and mapped (e.g. one to one, or
many to one), with varying precision and concreteness.

 Aspects

Levels

Functionality Performance Safety/reliability Reuse Maintenance …

Views

Components, level i

Platforms, level i

Components and
Platform, level j

Refinement

Product

Refinement (model of)

Aspects

Levels

Functionality Performance Safety/reliability Reuse Maintenance …

Views

Components, level i

Platforms, level i

Components and
Platform, level j

Refinement

ProductProduct

Refinement (model of)

Figure 3. A conceptual view of CBD and MBD.

Each level can be seen to be composed of

components and one or more platforms. It is however
important to note as discussed previously that a model
component is a much more general notion compared to
a CBD component. At higher levels, platforms can
correspond to a simulation environment and other
analysis facilities, together with a database for storing
the models. At the bottom level (the product), the

platform corresponds to hardware and system software
such as an operating system, and executable software
components. Each platform provides its own services
to its components.

MBD is related to all higher levels. Since multiple
models are used a key challenge becomes the
correlation and integration between the different
models. CBD corresponds to the bottom – product
level – and to (at least) one higher level, the
description of the component models. As discussed in
section 3, we can say that there is a trend of CBD to
treat higher design levels to ensure reuse and
composability. As a consequence, the boarder-line
between CBD and MBD is becoming fuzzy.

The differences between CBD and MBD are related
to the mappings between the levels. One assumption in
MBD is that, under given constraints and formally
specified conditions, a transformation from a higher
level to the lower level can be achieved more or less
automatically. The properties of the lower level are the
results of a synthesis from models on the higher level.
CBD assumes that the automatic transformation is not
the most efficient way of reuse; rather all levels should
be reused in its entirety. There is no need to regenerate
the lower level; it is more efficient to reuse it directly.
However, problems occur when certain conditions
change, functionality is to be extended or requirements
change. A related problem is that of keeping
documentation and code consistent. The strength of
MBD is then the ability to reuse, but at a higher level.
However, for this purpose, MBD is strongly relying on
tool support compared to CBD. CBD has to handle
changes by component adaptation or by developing
new components.

The MDB approach is obviously more efficient in
domains in which the transformations are feasible and
well defined. Examples of such domains are control
and signal processing. The CBD approach is more
efficient for applications which are more difficult to
formalize, such as Human-Machine Interfaces.

There are a number of ongoing efforts that
investigate the integration of CBD and MBD. Such
efforts indicate the potential and feasibility of such
integration, see for example [16, 18], where a strong
point is the ability to utilize and combine the
component based approach of “systems architecting”
together with the MBD approach of analyzing different
aspects and synthesizing different parts of the system,
thus promoting complexity management.

CBD addresses issues such as component and
architecture specifications, reuse and product
evolution. These techniques from CBD can be applied
in MBD on different levels and are important to
support complexity management at the model level.

However, it must be realized that CBD techniques are
currently mainly delimited to functionality aspects at
the implementation level. For the organization of a
particular structure, component identification and
specification is important. The techniques in CBD for
component specifications can be adopted – in
particular the ability of using strong (e.g. including
application specific protocols) and contract-based
interfaces. In addition, CBD highlights the needs for
rigorous specifications at the lower levels.

From the above discussion, it is clear that there are
many efforts within CBD, striving to develop
specifications (models) of components, their
interactions, etc. to support configuration and
composability. There are obviously many issues here
where MBD can play an important role for CBD.
Composability is a key issue for CBD. Many modeling
techniques support compositional analysis for example
dealing with logical, performance, timing, reliability
etc. properties of composed systems. This relates back
to the possibility with MBD to describe different views
of a system. An MBD approach is also required to
ensure reuse by providing context models, model-
based verification and model-based testing.

7. Conclusions

While CBD traditionally is concerned with handling
binary software units, their integration and reuse,
MBD uses the concept of formalized descriptions for
the purposes of supporting communication, analysis
and synthesis during the product development. From
the analysis, it is clear that the approaches complement
each-other, and that they to some extent overlap.

It is concluded that concepts from MBD and CBD
can reinforce one and another, and that both concepts
are required for the development of complex systems.
A remaining central challenge is the full integration of
the two, taking multiple aspects into account.

8. Acknowledgements

This work was supported in part by the Swedish
Strategic Research Foundation (the SAVE project) and
by the European Commission through the ARTIST2
Network of Excellence. We wish to acknowledge
useful feedback from the anonymous reviewers.

9. References

1. The SAVE project: <http://www.mrtc.mdh.se/SAVE/>
2. B Bouyssounouse,; J Sifakis, (Eds.). Embedded Systems

Design - The ARTIST Roadmap for Research and

Development Series: LNCS, Vol. 3436 2005, Springer.
3. M Törngren, DJ Chen, I Crncovic. Component based

and Model based development in the context of
embedded systems: Characterization, comparison and
case studies. Tech Rep, KTH 2005. TRIA-MMK-2005-
15, ISSN 1400-1179, ISRN/KTH/MMK/R-05/15-SE

4. B Artemis. Report by the High-level Group on
Embedded Systems. European Commission, 2003 -
<ftp://ftp.cordis.lu/pub/ist/docs/dir_c/ems/everything-
final_en.pdf>

5. E Rechtin, MW Maier. The Art of System Architecting,
CRC Press. 1997.

6. AT Bahill, B Gissing, Re-evaluating systems
engineering concepts using systems thinking, IEEE
Trans on Systems, Man, Cybernetics, Part C, Vol: 28,
Issue:1, Nov.1998.

7. DW Oliver, TP Kelliher, JG Keegan Jr., Engineering
Complex Systems with Models and Objects, McGraw-
Hill, 1996.

8. B Prasad. Concurrent Engineering Fundamentals,
Volume I: Integrated Product and Process
Organization. New Jersey: PTR Prentice Hall, 1996.

9. I Crnkovic and M Larsson. (editors), Building Reliable
Component-Based Software Systems, Artech House
Publishers, ISBN 1-58053-327-2, 2003.

10. KC Wallnau. Volume III: A Component Technology for
Predictable, Assembly from Certifiable Components.
Tech Rep, SW Eng Institute, CMU, April 2003.

11. JM Jazequel, B Meyer. Design by contract: the
lessons of Ariane. Computer, Volume: 30, Issue: 1,
page(s): 129 – 130, Jan. 1997. IEEE Computer Society.

12. R Stevens, P Brook, K Jackson & S Arnold. Systems
Engineering - coping with complexity. Pearson
Education 1998. ISBN 0-13-095085-8

13. F Neelamkavil. Computer simulation and modeling.
John Wiley & Sons Inc, 1987.

14. M Törngren and O Larses. Characterization of model
based development of embedded control systems from a
mechatronic perspective - drivers, processes,
technology and their maturity. Tech Rep, KTH 2004.
TRITA-MMK 2004:23. ISSN 1400-1179.
ISRN/KTH/MMK/R-04/23-SE.

15. U Freund, O Gurrieri, J Küster, H Lonn, J Migge, M-O
Reiser, T Wierczoch and Weber: An Architecture
Description Language for developing Automotive ECU-
Software. INCOSE 2004.

16. M Törngren, N Adamsson, and P Johanessen. Lessons
Learned from Model Based Development of a
Distributed Embedded Automotive Control System.
SAE World Congress, Detroit, 2004. SAE paper no.
2004-01-0713.

17. Atkinson C., Bunse C., Wust J., Driving component-
based software development through quality modeling.
Component-based software quality, LNCS 2003.
Springer-Verlag Berlin Heidelberg, A. Cechich et al.
(Eds).

18. Workshop on Tool Integration in System Development
at ESEC/FSE 2003 9th European Software Eng Conf
and 11th ACM SIGSOFT Symp on the Foundations of
SW Eng, Helsinki, Finland, Sept. 1-5, 2003.

19. J Gray, T Bapty, S Neema, J Tuck. Handling
crosscutting constraints in domain-specific modeling.
Communications of the ACM, Vol. 44, Issue 10, October
2001.

20. I Crnkovic, U Asklund. and DA Persson, Implementing
and integrating product data management and software
configuration management, Artech House Publishers,
2003.

21. U Sellgren, C Hakelius. A Survey of PDM
Implementation Projects in Selected Swedish Industries.
ASME Design Eng Tech Conf, August 18-22, Irvine,
California, 1996.

22. M Tiller. Model Management Tools and Technologies.
Modelica Automotive Workshop 2002, Dearborn, MI,
USA, 2002.

23. K Steppe, D Garlan, G Bylenok, B Schmerl, K Abirov,
and N Shevchenko. Tool Support for Model Based
Architectural Design for Automotive Control Systems.
First European Workshop on Model Driven
Architecture with Emphasis on Industrial Application,
Enschede, The Netherlands, March 17-19, 2004.

24. S Neema, J Sztipanovits, G Karsai1, and K Butts.
Constraint-Based Design-Space Exploration and Model
Synthesis. Proc. Of EMSOFT 2003, LNCS 2855, pp.
290–305. Springer-Verlag, Berlin Heidelberg 2003

25. CJ Sjöstedt, DJ Chen, I Faye, T Huelshorst, A Kells, I
Harkness, C Schönfelder. Virtual Component Testing
for PEM Fuel Cell Systems – An Efficient, High
Quality and Safe Approach for Suppliers and OEM´s,
3rd European PEFC Fuel Cell Forum, Lucerne, Swiss,
July 4-8, 2005.

