
Component-based vs. Model-based Development: A Comparison in the 
Context of Vehicular Embedded Systems 

 
Martin Törngren1, DeJiu Chen1, Ivica Crnkovic2 

1KTH, Stockholm, 2MdH, Västerås 
martin@md.kth.se, chen@md.kth.se, ivica.crnkovic@mdh.se 

 
 

Abstract 
 

Component based and model based development 
(CBD vs. MBD), in their various interpretations, are in 
focus in many efforts in order to better handle the 
efficient development of increasingly complex 
embedded systems. We elaborate on what CBD and 
MBD represent, on their differences and similarities. 
Although CBD represents a bottom-up approach 
whereas MBD is more top-down in nature, it turns out 
that the concepts have much in common and can 
benefit from cross-fertilization. In particular, MBD 
requires improved handling of ‘model’ components, 
and CBD requires improved component models to 
assure component composition and reuse. We discuss 
their mutual opportunities and other relationships.  
 
1. Introduction 
 

The motivation behind this paper arose in the 
context of the SAVE research project [1], dealing with 
component based development of software for safety 
critical vehicular systems, such as aircraft and trucks. 

In research communities working on these and 
related topics, two buzzwords that frequently appear 
are Component based and Model based development 
(CBD and MBD), see e.g. [2]. Such buzzwords cause 
confusion because the terms are quite generic and are 
consequently used in a variety of contexts for different 
purposes. We believe, however, that there are needs to 
correlate the two, one reason being to facilitate 
communication and reduce unnecessary redundant 
work among researchers. Misconceptions such as 
“MBD is only about code generation” can then be 
avoided. Moreover, we believe that cross-fertilization 
is possible by reusing concepts and results across the 
two approaches. In this paper we elaborate on what 
CBD and MBD represent, on their differences and 
similarities, and discuss how they can be combined. 
More underlying material and case studies can be 
found in [3]. 

Embedded systems constitute an essential enabling 
technology for vehicular systems, providing 
possibilities for high performance and entirely new 
functionality such as diagnostics, active safety systems 
and passenger entertainment. As a consequence, 
embedded systems carry an increasing portion of the 
total vehicle cost as well as the value-added.  

Key characteristics of vehicular embedded systems 
include their environmental dependence and increasing 
connectivity. The “embedding” dimension strongly 
affects the requirements on the software and hardware 
portion of a product, on the one hand since this portion 
will inherit requirements related to the product itself 
(such as constraints on safety and performance) and on 
the other hand, since the embedded systems have to 
withstand the harsh environments typical for vehicular 
systems. The embedding dimension among other 
things leads to real-time constraints and tight relations 
to the environment, see e.g. [4], complicating system 
design and component reuse. In providing more 
functionality and answering demands relating to 
performance and flexibilities, embedded systems have 
over the past 30 years evolved from stand-alone 
microprocessor based systems to distributed embedded 
systems, which today also are increasingly connected 
to the external world. The flip-side of the coin is the 
increasing complexity, which comes in many forms 
including a large amount of entities and relationships 
of various types, variants, and many (and conflicting) 
requirements.  

This paper includes 6 main sections. In the next 
section, we present the major ideas behind the 
characterization and comparison. Key characteristics 
of these two approaches are described in the section 3 
and 4, and compared in section 5. Finally, a discussion 
on their mutual opportunities is provided in Section 6.  
 
2. Comparison approach 
 

To be able to profile and compare CBD and MBD 
we have developed a framework that codifies 



important issues. The framework considers three 
related dimensions of engineering as depicted in Fig. 1 
to address the following questions, further discussed in 
Sections 3 and 4: Q1. Why is an approach attractive? 
Q2. What are the concepts and techniques? Q3. When 
and where is it applied? Q4. How to apply it? 
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Figure 1. Context and content of engineering in 

three dimensions. 
 

Relating to the question Q1, the dimension of 
business context characterizes the motivations or aims 
of a particular approach with respect to customer- or 
enterprise-needs, referred to as its drivers. 

The dimension of product relates to the question Q3 
with respect to the target systems being developed or 
managed by an approach. One key issue is ontology, 
referring to the explicitly considered means, 
relationships, and environmental issues of a complex 
whole constituting a product [5]. Due to its purpose(s) 
and role(s), an approach can have different focuses and 
adopt different interpretations of system synthesis.  

The dimension of engineering and lifecycle support 
relates to questions Q2, Q3, and Q4 with respect to the 
supported development activities. Such activities are 
managed into processes, including technical processes 
for creations, evaluation, and synthesis of products, 
and management processes for resources, changes, 
configurations, work planning, and integration of 
teams [6, 7]. For complex products, multiple processes, 
organized into levels and domains, are involved, 
targeting different phases and concerns (e.g., safety 
and performance). Within each process, iterations are 
often necessary for rectifying design errors or taking 
changes into account.  

In this dimension, we highlight a set of factors, as 
listed in Table 1. For the development of complex 
products, one central issue is support for the ease of 
cognition and knowledge transfer, i.e., complexity 
control. A closely related issue is support for 
information traceability, over time, from requirements 
to solutions, within or across engineering tasks. Since 
engineering seldom starts from scratch, support for 
reuse is also an issue of concern. This requires not 
only run-time compatibility, but also support for 

variant management, IP-protection, and design-time 
integration, etc. To perform development tasks, it is 
always preferred that explicit methodology and tool 
support are provided by an engineering approach. This 
is covered by the process maturity factor. The process 
effectiveness is affected by factors like the number of 
iterations within each process. To this end, a parallel 
organization is often advocated, such as in concurrent 
engineering where the expertise associated with a 
specific stage is made available at every stage [8]. 
 
3. CBD 
 

A basic idea in component based software 
development is building systems from existing 
components as opposed to building the entire 
application from the scratch. This idea has two 
important consequences: 
• The components are built to be reused in different 

systems. It allows reuse of development effort by 
allowing components to be reused across products 
and in the longer term it enables building a market 
for software components. In particular for the 
development of many variants of products the 
component-based approach is attractive.  

• The component development process is separated 
from the system development process. This allows 
significantly shorter time-to market as products 
are integrated from the already existing 
components. 

The latest trends show that different component 
technologies are being developed for different 
domains. Similarly to the object-oriented paradigm that 
is exploited in different OO languages, a component-
based paradigm based on certain common principles is 
slowly built and used in different component 
technologies [2, 9]. 

The main features of CBD originate from business 
requirements: 
• Short time to market – large savings in time can be 

Factors of Engineering 
and Lifecycle Support 

Definitions 

Organization Organizational prerequisites and consequences of adopting 
the approach. 

Technology Required technologies for performing the approach. 
Discipline&Domain Intended disciplines and engineering domains. 
Lifecycle Stages of the product lifecycle. 

Product qualities Support for evaluation criteria and evaluation related tasks in 
technical processes. 

Complexity-control Explicit support for the ease of comprehension and 
communication. 

Traceability Explicit support for managing information dependencies. 
Reuse Explicit support for managing and using existing solutions. 

Process effective-ness Applied principles and concepts for promoting engineering 
efficiency. 

Process maturity Completeness and formality of provided engineering 
methodology and tools. 

Table 1.Comparison factors in engineering and
lifecycle support. 



achieved by constructing applications from 
already existing parts. 

• Distribution of work among dedicated experts for 
development of components. Since components 
are developed independently of the products the 
experts in particular domains can develop them. 

From the engineering point of view the advantages 
of CBD are based on standardisation and reusability. 
Standardisation plays a crucial role as it enables 
independent development and seamless integration of 
components. By reusing the same entities the 
confidence of their behaviour and properties increases.  

Similar to other engineering domains, CBD aims 
for targeting complexity: By reusing existing solution 
not only on the component level but also on the system 
structure level CBD enables better understanding of 
complexity; the implementation details of components 
are hidden and only component services that are 
exposed through component interfaces are visible. In 
this way the abstraction level is increased which is a 
key factor in managing complexity. 

Further, in the CBD approach the maintenance is 
focused on replacement similar to replacement of spare 
parts of components rather than on re-implementation 
of specific parts. 
 
3.1 Basic characteristics of CBD 
 

The central terms in CBD are the component and 
the component model. In classic engineering 
disciplines, a component is a self-contained part or 
subsystem that can be used as a building block in the 
design of a larger system. It provides specified services 
to its environment across well-specified interfaces. 
Ideally, the development of components is decoupled 
from the development of the systems that contain 
them. Components are assumed to be reusable assets in 
different contexts.  

A component model specifies the standards and 
conventions that are needed to enable the independent 
development of components, and the composition of 
independently developed components. More 
concretely, a component model defines the set of rules 
that the components and application obey in order to 
make it possible to interact and to be composed. These 
rules include component specification, component 
deployment and execution and communication 
between components. The specifications of component 
interface and component interactions determine the 
architectural framework of component-based systems. 
Indeed different component models assume different 
architectural styles. 

The key consideration of CBD is reusability and 

adaptability. The component models must have a mean 
by which component can be reused and adapted to the 
requirements.   

Reusability is an ability of reusing the same 
component in different applications. This desired 
property includes a number of assumptions:   
• The architectural framework of the applications 

must be the same. 
• Non-functional run-time properties of the 

applications are similar.  
• The component functionality is general enough to 

be reusable, but simple enough to be 
understandable.  

Adaptability is an ability to respond to changing 
requirements, either in different applications or in an 
application during its lifecycle. In CBD it is realized 
by the following properties: Substitutability and 
Expandability. 

CBD aims to provide support for performing safe 
substitution of a component. Substitutability is related 
to contractual interfaces and dependencies. The 
contractual interfaces distinguish “require” interface 
from “provide” interface and for them they specify the 
pre-conditions that must be valid for a correct 
execution of the component and post-conditions which 
are valid for output values after the component 
specification. The contractually specified interface also 
identifies the states (invariants) that hold after the 
component execution. The dependences, expressed 
through the “require” interface indirectly specifies on 
which other components a particular component is 
dependent of. However, while the principles of 
functional substitutability are known, theses principles 
are much more diffuse for non-functional properties. 

For expandability CBD provides support either in 
an ability of adding new interfaces to existing 
components, or ability to add new components in the 
system that provide the new functionality.  

Since CBD assumes of existence of components 
before the development of an application or system, 
many activities in the development process follow 
bottom-up principles (within given frames defined by 
the component model). For this reason composability 
is an important concern in CBD.  

Since CBD aims for reusing existing components 
the important issue is a composition of components – 
not only for providing the mechanisms for the 
composition but also for modeling applications 
reasoning about different properties. The main goal is 
to provide theories, methods and tools to predict the 
composition properties from the properties of 
components. 
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Again, there is much more work done and there is 
more experience in predicting compositions of 
functional properties; functional composability often it 
is immanent part of the component models. 
Composition of non-functional properties is in general 
more complex; There are properties that are results of 
composition and architectural solutions, there are 
properties that are visible on the system level, but do 
not exist for the components, and there are properties 
that are nit composable at all. 

 
3.2 MBD related efforts and challenges 
 

The primary drivers of the CBD approach come 
from the business motivations and from engineering in 
different domains: Components should be reused and 
only specifications of the components are necessary 
for their usage. This requirement states the main 
challenge: How to specify components? The 
specification include identification of different aspects 
– from the functional formal specification, to the 
specification of different properties such as resource 
usage, detailed documentation about the component 
usage, test support, etc. 

For component specification, different modeling or 
specification languages are used – for example UML, 
or other Architectural Definition Languages, or IDL 
(interface definition Language).  While functional 
specifications follow certain standards or are an 
integrated part of the component technology, for non-
functional properties there are is a wide range of 
different notations that originate from different 
theories, not directly related to CBD. One systematic 
approach is given in PECT (Prediction-Enabled 
Component Technology) [10] by which the component 
specification is implemented via interface 
specifications classified in (i) constructive interface, 
and (ii) analytical interface. 

The constructive interface specifies how the 
components can be connected (“wired”) and it is an 
integrated part of a component model. The analytical 
interface originates from different property theories 
(for example theories of timeliness, or reliability)  For 
a particular component model this interface provides 
the mapping between specification of the components 
and the notation from particular theories (for example 
a component may be an executable unit with 
specification of execution time, which is then used by 
scheduling theory to design a time-correct system). 

A challenge related to a component specification is 
the verification; How to verify that a component will 
behave correctly in a new environment? The example 
of Ariane 5 [11] illustrates the case in which a 
component has been reused in a new environment, 

resulting in a major system failure . The question of 
verification is related to testing and formal verification. 
In both cases it is a challenge – what specification is 
needed and which methods can be applied. 

 From the business perspective the main challenge 
is that of trustworthiness related both the run-time 
performance and lifecycle issues. For example, there is 
a question, how trustworthy the specification is? Or a 
question related to the lifecycle of a product: Who is 
responsible for the maintenance, or how the evolution 
of the component will be related to the evolution of the 
product, and the evolution to other components?  

Another challenge of the business model is the 
reusability: If one of the goals is to develop a 
component for reuse, how much additional efforts will 
be required to achieve this, and how much overhead 
will be encapsulated in the component and how much 
additional system resources this will require. 

These challenges make the progress of the CBD 
approach slower, particularly in the domains in which 
the non-functional properties are the primary concerns. 
 
4. MBD 
 

Modeling and models are strongly associated with 
engineering [7, 12]. They are used for communicating 
information, for analyzing a system, thus providing 
answers to certain questions about a system, and for 
synthesizing a system, e.g. through transformations. 
One traditional definition of a model is: “A model is a 
simplified representation of a system intended to 
enhance our ability to understand, predict and possibly 
control the behavior of the system” [13]. For example, 
consider a body sliding on the ground and affected by 
an external force F. Based on Newtonian laws and 
certain assumptions we can obtain a behavioral model 
in the form of a differential equation: d2x/dt2=F-kdx/dt. 
The resulting model can be used to predict the body’s 
motion and for synthesizing a feedback control system, 
as long as the assumptions are valid with respect to the 
design tasks at hand.   

MBD has been introduced and evolved in many 
engineering disciplines. For embedded system we find 
an extraordinary amount of modeling languages and 
tools that have been introduced for a wide variety of 
purposes. This fragmentation mirrors the broad 
applicability of embedded systems, but also the 
increased specialization and, possibly, the immaturity 
of the area [14]. It is consequently not surprising to 
find a number of interpretations of what comprises an 
MBD approach. These interpretations are related to the 
usage of models and tools in different industrial 
domains and specialist disciplines. For example, a 



control engineering approach to MBD typically uses 
languages such as Simulink and Modelica, with 
modeling activities related to function design, 
prototyping, implementation and testing. In software 
development, the UML is in frequent usage. Yet other 
approaches use SDL, Statecharts, or hardware 
description languages. It is clear that these efforts 
reflect different design objectives and target different 
stages of the development process. 
 
 4.1. Basic characteristics of MBD 

 
A typical model based development process starts 

in the very early stages, using models with well 
defined syntax and semantics for capturing 
requirements and for designing the functionality. 
These models are then successively refined, 
incorporating more detail and peculiarities of the 
implementation. While formal abstractions are 
important for analysis and synthesis, visual 
representations of models are often important for 
comprehension and communication of designs.  

Figure 2 depicts a model based embedded systems 
development, using abstract descriptions for the 
design, and tools for generation of executable code or 
hardware configurations from these descriptions. The 
figure indicates the trend to synthesize not only 
functionality, but also parts of the (software) platform. 
For embedded systems, code generation constitutes an 
interface between function and implementation 
specialists. With code generation, some of the manual 
implementation steps can be removed, leading to a Y- 
or even a T-cycle, instead of the traditional V-model 
[2]. However, it is important to understand that there is 
much more to MBD than code generation. Models are 
also essential for early design validation and 
verification, for architectural design, for testing and 
integration. In many cases, executable environment 
models also form part of the embedded code, for 

example for diagnostics or estimation purposes. Other 
usages of models include information and process 
modeling. Developed in the right way, models become 
assets that can be reused within and between projects.  

MBD provides possibilities to develop and use a 
multitude of models for different system aspects (i.e. 
product properties and constraints) such as failure 
modes of components and their propagation, required 
timing behavior of a real-time implementation, power 
consumption, and the behavior of the expected 
environment. As discussed previously, some models, 
e.g. describing the intended behavior of a product, can 
also be the basis for direct synthesis of the 
implementation, whereas others instead implicitly 
affect the resulting product structure/behavior by 
providing one basis for design decisions. 

Cornerstones for the successful adoption of an 
MBD approach include theoretical foundations – as a 
basis for modeling languages, analysis and synthesis, 
tool support – to assist in complexity management by 
automating design tasks, and modeling methodology – 
providing guidelines for how to model and how to 
choose an appropriate level of abstraction. 

The use of models and supporting tools must 
always - as the use of any tool - be evaluated within 
the given context. Increasingly complex products with 
tough requirements require more powerful tools – thus 
increasing the need for an MBD approach. The 
handling of complexity causes the resulting need to 
strive for abstract descriptions, formal methods and 
tools which support information management, reuse, 
automated analysis and automated/ assisted synthesis. 
With respect to reuse, MBD approaches in principle 
enable reuse of earlier developed models and of 
tooling efforts. 

 
4.2 Challenges and CBD related efforts 
 

A challenge for MBD is that of handling the 
increasing gap to reality and the availability of suitable 
tools. Methodology and techniques for model 
validation and verification are therefore essential. 

The introduction of MBD is strongly related to and 
affected by organizational, process and technology 
constraints. For example, the personnel of the 
organization needs to be prepared and/or trained to use 
a certain modeling methodology (their tradition may 
make it difficult to use a certain approach). The 
process needs to recognize and take the use of models 
supporting the development into account. It is 
important to assess the maturity of the available 
supporting technology to avoid mismatches between 
needs and support tools [14]. Figure 2. One illustration of MBD. 
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The increasing exploitation of MBD highlights two 
important challenges, the integration of multiple 
models, and the management and reuse of models.  

MBD tools today only support the handling of a 
limited number of aspects (or views), consequently 
model and tool integration is today an intense research 
area. A complete development chain typically involves 
a multitude of tools and pieces of information that are 
loosely integrated. Some efforts try to develop ‘all-
encompassing’ languages to cover as many aspects as 
possible. Examples in this direction include the EAST-
ADL, the AADL and the UML. The former two are 
specialized for vehicular embedded systems 
development and provide constructs and properties 
required for analysis of safety, reliability and timing, 
as well as explicit models of software components [15, 
16]. While the UML was initially intended for general 
purpose software systems, work is being undertaken to 
provide more capabilities for non-functional aspects by 
defining UML profiles [2]. Other OMG related efforts 
focus on establishing the Model Driven Architecture 
for which a key ingredient is research on the 
systematization of transformations between models.  

Yet other efforts in different ways strive for 
integration platforms that allow models and tool 
services to be combined – thus still allowing existing 
tools and modeling languages to be used, see e.g. [18]. 
The need to describe multiple aspects is also strongly 
relevant for CBD and software systems in general. 
Here it should be of interest to further evaluate and 
compare model integration approaches with aspect-
oriented approaches in software. It does at least seem 
that the techniques can be equally well applicable to 
models [19].  

The model management problem becomes apparent 
with an increasing usage of MBD. Working with MBD 
tools has, in fact, many similarities to CBD. A designer 
will work by composing model components from 
libraries. Newly developed models or just components 
thereof can be stored there as components, for reuse. 
However, models appear in many versions and 
variants, are used by many persons, and associated 
with even more information such as parameters, 
verification status etc. Reuse of model components and 
models (component assemblies) faces a reuse problem 
not far from that in CBD. That is, a pure textual 
description and interface definitions are not sufficient. 
Additional contextual information is also required. 
Keeping track of all model information requires 
explicit consideration, and tool support for larger 
systems. Proper configuration management thus has to 
be in place. This is a rather new problem for MBD in 
embedded systems, however less so for the more 
mature area of mechanical engineering [20, 21]. 

A key challenge for MBD in embedded systems is 
to combine such best practices with the emerging 
results in embedded systems MBD. 

Several efforts today address model management 
and techniques similar to those used or advocated in 
CBD, see for example [22-24]. Within the European 
project NFCCPP [25], a system reference model has 
been developed for future generation of automotive 
fuel cell systems. The model defines standardized 
system components and sub-systems in terms of well-
modularized functional simulation model blocks (e.g., 
air compressor). To promote continuous system 
evolution and a component market, the cross-
enterprise exchange and integration of functional 
solutions are supported, covering issues such as 
independent evaluation of individual components, 
protection of proprietary information and prevention of 
unauthorized component usage, as well as 
configuration management.  
 
5. Comparison 
 

Table 2 compares CBD with MBD, based on the 
comparison approach established in Section 2.  

The differences in emphasis are clearly seen. The 
two approaches have originated to address different 
needs with different technology assumptions. While 
CBD tries to combine a bottom-up and a top-down 

 CBD MBD 

Drivers 
Emphases on reuse across 
products, time-to market, and 
component market  

Support for design and evaluation; 
emphasis on complexity control.  

Ontology 

Targeting software programs,  
interactions, design- and run-time 
composition. Structure emphasis. 

Targeting entire system including 
functional solutions and 
implementation, as well as their 
run-time relationships. Structure 
and behavior emphasis. 

Organiza-
tion 

Assuming separated component  
development processes from 
system development process 

Assuming multiple teams normally 
in the same organization. 

Technology 
Relying on component technologies 
for component specification, 
integration, management, and code 
generation. 

Relying on modeling techniques 
and tools for specification, 
analysis,  realization and 
information management. 

Discipline& 
domain 

Software engineering  

Lifecycle Targeting software  design, 
implementation and maintenance. 

Targeting a broad spectrum of 
stages in system development.  

Product 
qualities 

Mainly concerning the functionality 
related effects of reuse (e.g., 
composability).  

Providing description and 
formalization support for many 
types of analysis, and of many 
qualities - . 

Complexity-
control 

Increasing composition granularity, 
encapsulating and hiding details, 
and standardizing system 
components. 

Abstracting, separating concerns 
in views, standardizing in 
languages, tool automation. 

Traceability Supporting standardization and 
versions/variants management.  

Forming a basis for documentation 
and information management.  

Reuse 
Component specifications, 
components, integration 
architecture/infrastructure   

Providing global context of 
solutions hence forming a basis of 
reuse. 

Process 
effective-
ness 

Bottom-up integration, distribution 
of work, quality assurance from 
reuse.  

Early V&V!, risk reduction,  
automation, including techniques 
such as executable requirements, 
rapid prototyping, and auto-coding 

Process 
maturity 

Well-established in engineering of 
general purpose software systems 

Application domain dependent 
(e.g., automotive vs. avionics).  

 The precise scope is defined by the MBD domain/ approach as discussed in section 4.

Table 2. CBD vs. MBD 



approach, where the “run-time thinking is strong”, 
MBD constitutes a top-down approach where 
knowledge about the systems under development is a 
critical aspect. While MBD adopts code generation, 
CBD relies on the reuse of already existing code. 

The focus of MBD is traditionally on the early life-
cycle stages where the forthcoming product is 
modeled, evaluated and optimized with respect to the 
intended functionality and quality attributes. In 
contrast, CBD emphasizes the creation, integration and 
maintenance of reusable software solutions, where the 
functionality related effects of reuse traditionally have 
been in focus. Formal techniques play an increasingly 
important role for both approaches to increase their 
capability for analysis. In MBD, it is assumed that the 
design teams have a much more complete access to 
system information. For CBD, however, the 
applicability of using formal techniques depends on 
the completeness of the provided and derivable 
information from components.  

Both approaches adopt many concepts found in 
systems engineering and utilize some fundamental 
software engineering concepts and technologies.  

The architecture concept appears in both 
approaches, relating to the design of the overall system 
structures. Although differing in scopes (i.e., software 
or entire system), architectures in both approaches 
constitute the basis for solution integration, change 
control, concurrent engineering and outsourcing. The 
component concept exists in many modeling efforts at 
different levels. As a generic term for “system 
constituent units”, components can have different 
interpretations. A CBD component, most often refers 
to binary code (e.g., COM-components) and a concrete 
execution platform. In MBD, components exist in the 
form of for example “function blocks”. However, these 
may, or may not have direct relationships with the final 
implementation. For example, a block may represent 
an environment model, defining the context rather than 
the target system itself. A block may also only be a 
visual representation, grouping several primitive 
blocks together. In contrast, in some modeling 
languages like Rapide and AADL/MetaH, components 
have a direct link to the coding structure. 

Both approaches address complexity control using 
general principles like information-hiding, separation-
of-concern, and standardization. The main difference is 
that these principles are applied at different levels. 
Using such measures in CBD is directly related to 
changing the product itself (e.g., changes in product 
decomposition structure). However, in MBD there is 
the additional degree of freedom to use these principles 
for other purposes such as usability and for analyzing 
different aspects. 

While reuse in CBD targets a complete solution in 
terms of a run-time executable (e.g., .dll), reuse in 
MBD is not restricted to a certain level and can hence 
be applied to various partial solutions such as 
algorithms, structuring styles, etc.  

A further connection point, from MBD to CBD is 
that of code generation. For example, code generation 
from models can be used to generate code 
corresponding to component-internal functionality, 
where CBD provides the mechanisms for gluing 
components together, see e.g. [2].  

Typically, MBD approaches provide quite a lot of 
flexibility, with options to generate only pieces of 
code, or even complete systems. This flexibility also 
allows incorporating and reusing legacy code. Some 
CBD efforts, on the other hand, provide the possibility 
to configure a system and generate glue code. 
 
6. Discussion 
 

To summarize many of the topics previously 
discussed, consider Fig. 3, which depicts system 
development in terms of a number of conceptual levels 
(or design stages), each treating a particular level of 
abstraction. As indicated, the product and its 
constituents are, at each design level, typically 
represented by a multitude of models representing 
different aspects, concerns or views. design models are 
successively refined and mapped (e.g. one to one, or 
many to one), with varying precision and concreteness.  
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Figure 3. A conceptual view of CBD and MBD. 
 
Each level can be seen to be composed of 

components and one or more platforms. It is however 
important to note as discussed previously that a model 
component is a much more general notion compared to 
a CBD component. At higher levels, platforms can 
correspond to a simulation environment and other 
analysis facilities, together with a database for storing 
the models. At the bottom level (the product), the 



platform corresponds to hardware and system software 
such as an operating system, and executable software 
components. Each platform provides its own services 
to its components. 

MBD is related to all higher levels. Since multiple 
models are used a key challenge becomes the 
correlation and integration between the different 
models. CBD corresponds to the bottom – product 
level – and to (at least) one higher level, the 
description of the component models. As discussed in 
section 3, we can say that there is a trend of CBD to 
treat higher design levels to ensure reuse and 
composability. As a consequence, the boarder-line 
between CBD and MBD is becoming fuzzy.  

The differences between CBD and MBD are related 
to the mappings between the levels. One assumption in 
MBD is that, under given constraints and formally 
specified conditions, a transformation from a higher 
level to the lower level can be achieved more or less 
automatically. The properties of the lower level are the 
results of a synthesis from models on the higher level. 
CBD assumes that the automatic transformation is not 
the most efficient way of reuse; rather all levels should 
be reused in its entirety. There is no need to regenerate 
the lower level; it is more efficient to reuse it directly. 
However, problems occur when certain conditions 
change, functionality is to be extended or requirements 
change. A related problem is that of keeping 
documentation and code consistent. The strength of 
MBD is then the ability to reuse, but at a higher level. 
However, for this purpose, MBD is strongly relying on 
tool support compared to CBD. CBD has to handle 
changes by component adaptation or by developing 
new components. 

The MDB approach is obviously more efficient in 
domains in which the transformations are feasible and 
well defined. Examples of such domains are control 
and signal processing. The CBD approach is more 
efficient for applications which are more difficult to 
formalize, such as Human-Machine Interfaces. 

There are a number of ongoing efforts that 
investigate the integration of CBD and MBD. Such 
efforts indicate the potential and feasibility of such 
integration, see for example [16, 18], where a strong 
point is the ability to utilize and combine the 
component based approach of “systems architecting” 
together with the MBD approach of analyzing different 
aspects and synthesizing different parts of the system, 
thus promoting complexity management. 

CBD addresses issues such as component and 
architecture specifications, reuse and product 
evolution. These techniques from CBD can be applied 
in MBD on different levels and are important to 
support complexity management at the model level. 

However, it must be realized that CBD techniques are 
currently mainly delimited to functionality aspects at 
the implementation level. For the organization of a 
particular structure, component identification and 
specification is important. The techniques in CBD for 
component specifications can be adopted – in 
particular the ability of using strong (e.g. including 
application specific protocols) and contract-based 
interfaces. In addition, CBD highlights the needs for 
rigorous specifications at the lower levels. 

From the above discussion, it is clear that there are 
many efforts within CBD, striving to develop 
specifications (models) of components, their 
interactions, etc. to support configuration and 
composability. There are obviously many issues here 
where MBD can play an important role for CBD. 
Composability is a key issue for CBD. Many modeling 
techniques support compositional analysis for example 
dealing with logical, performance, timing, reliability 
etc. properties of composed systems. This relates back 
to the possibility with MBD to describe different views 
of a system. An MBD approach is also required to 
ensure reuse by providing context models, model-
based verification and model-based testing. 
 
7. Conclusions 
 

While CBD traditionally is concerned with handling 
binary software units, their integration and reuse, 
MBD uses the concept of formalized descriptions for 
the purposes of supporting communication, analysis 
and synthesis during the product development. From 
the analysis, it is clear that the approaches complement 
each-other, and that they to some extent overlap. 

It is concluded that concepts from MBD and CBD 
can reinforce one and another, and that both concepts 
are required for the development of complex systems. 
A remaining central challenge is the full integration of 
the two, taking multiple aspects into account. 
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