
FACS’05 Preliminary Version

SaveCCM: An Analysable Component
Model for Real-Time Systems

Jan Carlson a, John H̊akansson b and Paul Pettersson b

a Mälardalen University
Department of Computer Science and Electronics

P.O. Box 883, SE-721 23, Väster̊as, Sweden
b Uppsala University

Department of Information Technology
P.O. Box 337, SE-751 05, Uppsala, Sweden

Abstract

Component based development is a promising approach for embedded systems.
Typical for embedded software is the presence of resource constraints in multi-
ple dimensions. An essential dimension is time, since many embedded systems have
real-time requirements. We define a formal semantics of a component language for
embedded systems, SaveCCM, a language designed with vehicle applications and
safety concerns in focus. The semantics is defined by a transformation into timed
automata with tasks, a formalism that explicitly models timing and real-time task
scheduling. A simple SaveCCM system with a PI controller is used as a case study.
Temporal properties of the PI controller have been successfully verified using the
timed automata model checker Uppaal.

Key words: Components, Real-time or embedded components,
Component specification, Formal methods, Case study.

1 Introduction

In the last few years, a number of models supporting components based de-
velopment (CBD) of real-time and embedded systems have been proposed
[9,14,15]. Like other component models, these models support specification of
systems or applications built from (possibly adapted) existing components, as
opposed to building a system from scratch. In addition, models for CBD of
real-time and embedded systems must also support development of systems
in which tight constraints on resource usage, real-time, and interactions with
the environment must be satisfied.

To succeed with CBD, it is important that the component modelling lan-
guage has a well-defined (informal or formal) semantics, allowing for reasoning

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Carlson, Håkansson and Pettersson

and analysis of a design model already in the early phases of a CBD project.
For real-time systems a promising approach to provide analysis of models is
to formally specify systems in a modelling language such as timed automata
[2], and use an existing model-checking tool, e.g. Uppaal [12] or Kronos [16],
to validate the model by simulation, or to model-check if formally specified
correctness properties of the system are satisfied or not. These tools and
techniques are now powerful enough to specify and analyse some industrial
systems [5,6,10,13]. However, their modelling languages do not provide much
support for CBD.

In this paper we study the SaveComp component technology developed
within the SAVE project 1 , and its corresponding component modelling lan-
guage called SaveComp Component Model or SaveCCM for short [1,8]. The
SaveCCM language defines a graphical syntax and a run-time framework for
SaveCCM systems, which has been used to illustrate different aspects of Save-

Comp and component-based architectures for real-time and embedded sys-
tems. However, a formal semantics of the SaveCCM language is still missing.

This shortcoming of SaveComp is the main focus of this paper. We con-
tribute by defining a formal syntax and semantics for the modelling language
SaveCCM. We first identify a small set of elements, called the core part of the
language, which is such that all elements of the full SaveCCM can be defined
by simple transformation steps into elements of the core part. For the ele-
ments of the core language, the syntax is defined and the semantics is given
as models of timed automata (possibly with tasks [3]). For the full SaveCCM

language, we show how its modelling elements can be defined in terms of the
core language. This is often rather straight-forward, but some elements such
as the so-called switches, used for dynamic addressing of data values, requires
a little more attention.

The timed automata semantics of SaveCCM suggests that it should be pos-
sible to analyse SaveCCM models with a model-checking tool such as Kronos
or Uppaal. We test this approach in an experiment were the Uppaal tool is
applied to analyse a SaveCCM model of a simple PI-controller. We show how
a SaveCCM model of the controller can be translated into timed automata,
and that non-trivial properties about the controller model can be analysed.
In particular we show that in a given environment, the controller design is
schedulable, deadlock-free, and guaranteed to stabilise to ±10% within one
second.

The paper is organised as follows: The syntax and semantics of the core
language are presented in Sections 2 and 3 respectively. In Section 4 we present
the full SaveCCM language and how it can be derived using constructs in the
core language. A case-study is presented in Section 5, and we conclude the
paper in Section 6.

1 SAVE is a project supported by Swedish Foundation for Strategic Research. See
http://www.mrtc.mdh.se/SAVE/ for more information.

2

Carlson, Håkansson and Pettersson

Related work: Cadena [9] is a framework for modelling and analysis of com-
ponent based embedded systems, supporting static analysis and model check-
ing. Cadena uses the CORBA Component Model, and describes a discrete
time semantics over the messages queued by middleware services. Unlinke
CORBA, SaveCCM restricts when and how components communicate — for
example the data communicated between components is not queued.

Reo [4] is a coordination model for component composition. It defines a
very flexible semantics of connectors, where component instances and connec-
tion endpoints can migrate during run-time. We assume that the behaviour
of a connection can be described by a timed automaton.

Giotto [11] is a time-triggered language for programming embedded sys-
tem. The language has well specified semantics, and support for dynamic
mode switches. Like SaveCCM components, Giotto tasks interface to their en-
vironment through ports. The tasks follow a static schedule, while SaveCCM

components can use other scheduling strategies.

An important property of composition is incrementality, meaning that the
behaviour of a system is independent of the order of its integration. In [7] a lay-
ered approach is used to achieve an associative and commutative composition
operator, thus ensuring incrementality. The SaveCCM execution model in [8]
describes a component as either waiting, reading from input ports, performing
internal computation, or writing to output ports. An assembly is associative
and commutative, it does however not behave as a component. We therefore
introduce the composite component as a composition that exhibit this compo-
nent behaviour. As a consequence the composition is not associative, however
its dependence on the order of integration is made explicit by the component
borders separating external and internal ports.

2 SaveCCM Core Syntax

We define a minimal component language, SaveCCM Core, from which we
can derive the constructs of the SaveComp Component Model. This simplifies
the definition of semantics, and makes it more flexible as new constructs can
easily be derived. The core syntax consists of three modelling elements: basic
components, composite components, and conditional connections. Using these
we can describe all constructs in the SaveCCM language.

Each modelling element has a set of ports, through which it can interact.
Each port is either an input port or an output port, as well as either a data
port or a trigger port. A data port has a type associated with it. An input
data port of a component is associated with a variable of the same type as
the port holding the latest value written to the port. An input trigger port is
associated with a boolean variable determining if the trigger port is active.

Common for basic components and composite components is that they
have exactly one external output trigger port. For a component C we will
write trigger out(C) when referring to this port.

3

Carlson, Håkansson and Pettersson

C1

p1

p2

p3

p4

p5

1

exit

T

u!

p T _done

u!p
1

u! 2T

1

R(T): T _done := true1

R(T): T _done := true2

1

2

1

(a) (b)

Fig. 1. (a) A basic component C1 with three input ports and two output ports.
(b) Timed automaton with tasks, describing the behaviour of component C1.

2.1 Basic Component

An example of the graphical syntax for basic components is shown in Fig. 1 (a).
The component C1 has three input ports and two output ports. Trigger ports
are annotated with a small triangle, as for example port p3. When the port p3

becomes active the component is triggered, since p3 is the only input trigger
port. For the component C1 we have the output trigger port trigger out(C1) =
p5. In addition to its ports a component is characterized by its behaviour,
describing the internal computation of the component.

We will model the internal behaviour of a basic component using a timed
automaton with tasks [3]. For a simple component this could be a single task
released when the component is triggered. A more complex component can
have several tasks, possibly with intricate dependencies between them. The
automaton has a special exit location with no outgoing edges. When this
location is reached, and all released task instances have finished executing,
the component becomes idle again. Locations can be labelled with tasks,
and when such a location is reached the corresponding task is released for
scheduling. Each task Ti is associated with a computation time C(Ti), a
deadline D(Ti), and a sequence of assignments R(Ti). The assignment R(Ti)
will update data variables when the task computation has completed. We
will write behaviour(C) when referring to the automata modelling the internal
behaviour of a component C.

The automaton in Fig. 1 (b) describes the behaviour of the component C1.
Two of the locations are labelled with tasks T1 and T2, the third is the exit
location. In our example, the task T2 depends on data computed by T1. The
task assignments R(T1) and R(T2) update the variables T1 done and T2 done

so they can be used to test for task completion. The input data port p1 is used
to determine if task T2 should be executed. The type of port p1 is boolean.
When the component is triggered, the task T1 is released. The assignment
R(T1) updates the variable T1 done to true when task T1 completes. If the
value at port p1 is true the task T2 is released after T1 completes, and before
the exit location is reached.

4

Carlson, Håkansson and Pettersson

C4

C2

p1

p2

p3

p5
p1

p2

p3

'

'

'

p4'

C3

p4
p6p5'

p7

Fig. 2. A composite component composed of two internal components. The dashed
lines illustrate that the internal components are not directly connected to the ex-
ternal ports of the composite component.

2.2 Composite Component

A composite component is a component with its internal behaviour defined
by a composition of internal components. The component C4 seen in Fig. 2
has seven external ports p1 through p7, and five internal ports p′1 through p′5.
When the trigger ports p3 and p4 become active, C4 is triggered and becomes
executing.

The connections between external and internal ports is provided by a com-
ponent framework, to enforce a behaviour similar to that of a basic component.
The contents of external input data ports are copied to internal output data
ports when the composite component is triggered, and internal input data
ports are copied to external output data ports when the composite compo-
nent becomes idle again. There is a single internal output trigger port, which
becomes active when the composite component is triggered. The external out-
put trigger port becomes active when the composite component becomes idle
again.

A composite component consists of external ports, internal ports, internal
connections and internal components. For each external data port, there is a
corresponding internal data port of the same type. For a composite component
C we will write trigger in(C) and trigger out(C) when referring to the unique
internal and external trigger output port, respectively.

2.3 Conditional Connection

The conditional connection is a connection with an activating condition, in-
troduced to enable dynamic configuration of a model in such a way that it
will become a static configuration when its parameters are fixed.

The graphical syntax of conditional connections is shown i Fig. 3, where (a)
connects data ports and (b) connects trigger ports. It is a connection from
port p1 to port p2 that is active when the expression p3 ∧ p4 holds. The
ports p3 and p4 are the setports of the connection, containing data used in

5

Carlson, Håkansson and Pettersson

p3 p4

p1 p2

p3 p4

p3 p4

p1 p2

p3 p4

(a) (b)

Fig. 3. A conditional connection with two setports, the connection is active when
both setports are true. (a) connects two data ports, (b) connects two trigger ports.

the expression. The setports of a conditional connection are not trigger ports.
The connections in Fig. 2 have no conditions, and are drawn as lines. The lines
are special cases of conditional connections, with no setports and a condition
that is always true.

For a conditional connection x, from(x) is the sending port, to(x) is the
receiving port, setports(x) are the setports of the connection and expr(x) is a
boolean expression over the setports. The ports from(x) and to(x) must be of
the same type.

3 SaveCCM Core Semantics

We define the semantics of SaveCCM Core by describing a translation to net-
works of timed automata [2] extended with tasks [3]. We extend this further
with operations. An operation is a sequence of statements, such as variable
updates or conditional if-statements. As mentioned above, locations can be
labelled with tasks. When such a location is reached the corresponding task
is released for scheduling.

In order to model a transition which is taken as soon as its guard becomes
satisfied, we introduce an urgent channel u which is always available for syn-
chronization. For a component C we introduce the variable idleC , and for
its ports p variables extp, intp and activep. For a conditional connection we
introduce extp for its setports.

The variable extp represent the observable data value at an input data port
or setport. The boolean variable activep is true when the input trigger port
p has been activated. Basic components use intp to keep an internal working
copy of port data. The boolean variable idleC is true when component C is
idle, and false otherwise. It is used for composite components to determine
when all its internal components are idle.

3.1 Basic Component

The full SaveCCM language imposes some restrictions on the component be-
haviour that should be addressed in the core language as well. For example,
the so-called read–execute–write semantics specifies that input ports may only
be accessed at the very start of each invocation, and output ports are only

6

Carlson, Håkansson and Pettersson

IDLE 1

exit

T

u!

active := false,
idle := true,
write()

active
u!
read()

u!

u!int

u!

C1

p3

p3

p1

2T

int T _donep1 1

T _done T _done1 2

Fig. 4. Semantics of component C1 in Fig. 1.

written to at the end.

The automaton behaviour(C) describes the response of a component be-
ing triggered. To define its reactive behaviour we augment this automaton
with a location idle and two edges, one from idle to the initial location of
behaviour(C), and one from the exit location of behaviour(C) to idle. We
also replace all port references p with references to the corresponding internal
variable intp.

A component remains in idle until all its input trigger ports are active.
On the transition from idle, internal port variables are updated from the
corresponding input ports. When the exit location is reached, and all released
task instances have finished executing, the component becomes idle again. On
the transition from exit to idle, input trigger ports are deactivated, and output
ports are forwarded by the component framework.

Fig. 4 shows the semantics of the component C1 in Fig. 1. When the port
p3 becomes active, the component is triggered and the urgent transition from
idle is enabled. The read() operation invoked by this transition updates the
internal port variables intp1

and intp2
from external port variables extp1

and
extp2

, respectively. The variable intp1
is used in a guard to determine if task

T2 should be released after T1 has completed. The transition from exit to
idle is enabled when the tasks T1 and T2 have completed. The transition will
deactivate port p3, set idleC1

to true, and invoke the write() operation.

The write() operation is considered a part of the component framework.
It is invoked by the internals of a component, and implements the behaviour
of external connections. The operation is a sequence of invocations writex()
for each connection x from an output of the component, as described in Sec-
tion 3.3. The order in which the writex() operations are invoked can effect
which connections are active, since one connection can update a setport of
another. Therefore, we introduce a dependency relation between connections
c1 and c2 leading from the same component,

before(c1, c2) iff to(c1) ∈ setports(c2)

and require that the writex operations are ordered in accordance with these
dependencies. For cyclic dependencies, any ordering is considered correct.

7

Carlson, Håkansson and Pettersson

EXECUTINGIDLE

all_idle()
u!
clear(), write()

triggered()
u!
read()

Fig. 5. Semantics of a composite component.

3.2 Composite Component

The role of this construct is to enforce that the combined behaviour of the in-
ternal components conforms to the component semantics imposed by SaveCCM.
In particular, the component as a whole should be triggered when all input
trigger ports are active, and the input and output ports are only available at
the start and end of execution, respectively.

The automaton in Fig. 5 describe the semantics of composite components.
The guard triggered() enables the transition from idle when all input trig-
ger ports are active. Data is transferred to internal ports by read(), which
also activates the internal output trigger port trigger in(C) of the composite
component C. As internal components are triggered, they start executing.
The guard all idle() enables the transition back to idle when idleC′ is true for
all internal components C ′. Input trigger ports are deactivated by clear(),
which also updates idleC to true for the composite component C. The write()
operation works similarly to that of a basic component.

For the component C1 in Fig. 2, triggered() holds when both p3 and p4 are
active. The read() operation performs writex() operations to update the input
ports of the internal components C2 and C3, which also updates idleC2

and
idleC3

to false by the trigger connections. When idleC2
and idleC3

become true,
all idle() holds and C1 becomes idle. On the transition to idle, p3 and p4 are
deactivated by clear(), which also updates idleC1

to true. The write() operation
forwards values at ports p′5 and p′6 in a sequence of writex() operations for
connections x from ports p5 and p6.

3.3 Conditional Connection

The semantics of a conditional connection x is described by a writex() oper-
ation. The operation will update the input port to(x) from an output port
from(x) only if expr(x) holds. For a data connection, the external port vari-
able of to(x) is updated with the internal port variable of from(x). For a
trigger connection, the port to(x) is activated and if all input trigger ports of
a component C become active the variable idleC is updated to false.

For the conditional connection in Fig. 3, where p2 and p5 are the input
trigger ports of a component C, we define writex() as in Fig. 6. If the condition
p3 ∧ p4 holds, port p2 is updated from port p1. For the data connection in (a),

8

Carlson, Håkansson and Pettersson

if extp3
∧ extp4

then
extp2

:= intp1

end if

if extp3
∧ extp4

then
activep2

:= true

if activep5
then idleC := false

end if
(a) (b)

Fig. 6. The writex operation for the conditional connections in Fig. 3 (a) and (b).

the external port variable of the input port p2 is updated from the internal
port data of the output port p1. For the trigger connection in (b), the input
trigger port p2 is activated. If port p5 is also active the component C is no
longer idle.

4 SaveCCM Semantics

The SaveCCM modelling language is built around the same concepts of ports,
components and connections as the core language, but there are some differ-
ences. SaveCCM components can have any number of output trigger ports,
and there is a port type that combines data and triggering. The full language
also contains assembly and switch constructs, which are not in the core lan-
guage. The constructs of SaveCCM are described below, and we show how
they can be expressed in the core language.

The PI controller depicted in Fig. 7 will be used as an example when
describing the syntax and semantics of SaveCCM constructs. PID controllers
are common for continuous control of for example fuel injection in vehicles.
We have restricted the example to PI control to reduce the level of detail in
the example.

As in the core language, connections define how data and control can be
transferred between components, but SaveCCM connections have a very weak
semantics compared to the connections in the core language. In general, noth-
ing is said about the time it takes to migrate data over a connection, if data
can be lost in the process, the order in which it arrives, etc. This loose concept
of connection is useful in early stages of system design, e.g., before deploying
components to the different nodes of a distributed system. For detailed analy-
sis of the system, quality attributes such as maximum delay can be provided.
In order to define a detailed semantics for connections that are specified in
detail, while still allowing loosely specified connections, we categorise connec-
tions as either immediate or complex. The former represent loss-less, atomic
migration of data or triggering from one port to another, as would typically
be the case between components residing on the same node. Any other type of
connection is categorised as complex. Immediate connections have direct for-
mal semantics, whereas complex connections are handled indirectly by explicit
modelling of the connection behaviour.

In addition to basic and composite components, there are two more compo-
nent types in the full SaveCCM language. Switches are lightweight components

9

Carlson, Håkansson and Pettersson

PI Controller
<<Assembly>>

<<Switch>>

Mode

<<SaveComp>>

Calculate
Output

<<SaveComp>>

Update
State

State

Intergration
Enabled

Setpoint

Value

Feeback
Out

Feedback In

Control

New State

Fig. 7. An example assembly for a PI controller.

used to change the component interconnection structure, either statically for
pre-runtime static configuration, or dynamically, e.g., to implement modes and
mode switches. The switch specifies a number of connection patterns, i.e., par-
tial mappings from input to output ports. Each connection pattern is guarded
by a logical expression over the data available at the input ports of the switch,
defining the condition under which that pattern is used. Switches perform no
computation other than the evaluation of connection pattern guards.

The switch Mode in the PI controller has two configurations, depending
on the boolean value of the setport Integration Enabled. When the setport is
true the port Feedback In is connected to Update State, otherwise Feedback In

is connected to Feedback Out. The purpose of Mode is to bypass the Update

State component when integration is disabled.

Assemblies are encapsulated subsystems, just like composite components.
The internal interconnections and components are hidden from the rest of the
system, and can be accessed only through the ports of the assembly. They dif-
fer from compositions in that they provide syntactic abstraction only, meaning
that an assembly does not necessarily behave like a basic component.

The PI controller is an example of how an assembly can violate the read–

execute–write semantics that is expected from basic components and compo-
sitions. This is because in a cascaded control loop, constructed as a chain
of PI controllers, several Calculate Output instances will compute the control
signal, and after the actuator has been updated the Update State instances
will compute the next control state. The two trigger ports trigger separate
parts of the PI controller, and control is passed on differently afterwards.

If, instead, the PI controller was designed as a composite component, it
would remain idle until triggered by both Value and Feedback In. Then, the
internal components would be invoked, and once both had finished, data and
control would be passed on to both Control and Feedback out.

10

Carlson, Håkansson and Pettersson

C

p'1
p1

p'2
p2

exit
x > min_delay
p' := p'12

x < max_delay

x := 0

u!

(a) (b)

Fig. 8. (a) Translation of a delayed connection from p1 to p2. (b) The behaviour
automata of C.

4.1 Translating SaveCCM into SaveCCM Core

Basic components and compositions have direct core language counterparts.
The differences regarding output trigger ports and ports with combined data
and triggering, are handled as part of the connection translation described be-
low. A basic SaveCCM component corresponds to a basic core component with
a behaviour automaton that captures the behaviour of the associated code.
Each composite component results in a corresponding composite core com-
ponent, with the same (but transformed) contents. Assemblies and switches
are not represented directly by any core construct, but they influence the
translation of connections.

In dealing with connections, our aim has been to provide a detailed and
intuitive semantics for immediate connections. Each complex connection is
translated into two immediate connections with a component in between that
models the behaviour of the connection. For example, the translation of a
connection with a specified maximum and minimum delay is depicted in Fig. 8.

In the full SaveCCM language, components can be connected by a chain of
connections leading through several assembly ports and switches. Such chains
must be collapsed into immediate, end-to-end conditional connections in the
core language. Also, we should get rid of multiple output trigger ports, and
combined data- and trigger ports.

Let top in denote the set of input ports at the top system level, i.e., those
that should be visible to the surrounding environment, and let top out denote
the set of top level output ports. Let p → p′ denote an immediate connection
from port p to port p′. For each output port p1 of a core component C and
for each p1 ∈ top in, we consider all connection chains

p1 → p′1, p2 → p′2, . . . , pn → p′n

such that p′n is an input port of a core component C ′ or p′n ∈ top out, and for
each 1 ≤ x < n we either have

a) p′x = px+1 (which is the case when p′x is an assembly port), or

b) p′x is connected to px+1 within a switch connection pattern, guarded by
the condition exprx.

Each such chain results in a conditional connection from p1 to p′n, with an
expression equal to the conjunction of all switch guards in the chain (denoted
exprx above).

11

Carlson, Håkansson and Pettersson

PI Controller
<<Assembly>>

Intergration

Enabled

Setpoint

Value

Feeback

Out

Feedback

In

Control

<<SaveComp>>

Simulator

Calculate
Output

Update
State

Simulator

s

s

s

s

s

(a) (b)

Fig. 9. A SaveCCM system (a) and the corresponding SaveCCM Core system (b).

If p1 is a combined data and triggering port, or if p′n is a component
generated by a complex connection, then an input trigger port should be
added to C ′ and connected to the output trigger port of C by a conditional
connection with the same expression as the connection from p1 to p′n described
above.

5 Case Study: A PI Controller

To illustrate the transformation described in Section 4, we show how the
SaveCCM system in Fig. 9 (a) is transformed into the core system in (b).
The system consists of the PI Controller shown in Fig. 7, and a component
Simulator that simulates a 10cm high tank, with a constant flow of 10cm/s
from the tank, and a variable flow into the tank. The input flow is actuated
by the PI controller, and is limited to 15cm/s. In Fig. 9 (b) we use s as an
alias for the setport Integration Enabled.

The Calculate Output, Update State and Simulator components are trans-
lated into basic core components. Ports with combined data and triggering
are split into separate data and trigger ports.

We now consider the connection from Simulator to the port Feedback In

of the PI controller. This connection is forwarded within the assembly to
the switch Mode. From Mode, depending on its setport there is either a
connection to Update State or to Feedback Out. We thus have two chains of
connections, one from Simulator to Update State, and one from Simulator to the
port Feedback Out. Since these chains connect ports that combine data and
triggering, each of them is translated into two conditional connections, one for
triggering and one for data. The conditions associated with these conditional
connections are s for the two connections to Update State, and ¬s for the other
two. Other connection chains do not pass through a switch, so the condition
is true for their conditional connections.

If we were to introduce a delay in the connection from PI Controller to
Simulator, a basic component would be inserted into Fig. 9 (b) between the
components Calculate Output and Simulator. If we introduce delay in the

12

Carlson, Håkansson and Pettersson

reverse direction, from Simulator to PI Controller as well, this would result in
another basic component positioned between Simulator and the conditions.

5.1 Analysing the PI Controller

Before we analyse the PI Controller, we need to setup an environment provid-
ing data and triggering. We use the feedback ports so that the simulator can
provide sensor data to the port Value. A timed automaton is used to period-
ically copy sensor data along with triggering every 10ms. The ports Setpoint

and Integration Enabled are set to 5cm and true, respectively.

We analyse the system in Uppaal which does not support floating point
data, so we use a fixed point representation with two decimal places. Time is
measured in ms. Verifying that after one second the controlled value becomes
stable within 10% of the setpoint took 2.3s and 20Mb on a 1.66GHz Intel
Celeron. This stability property is expressed as:

A2(now ≥ 1.0s ⇒ 0.9 ≤ Value/Setpoint ≤ 1.1)

The clock now measures time elapsed since the initial state, while the
variables Value and Setpoint represent the current sensor value and desired
value, respectively. The PI controller was setup with a proportional constant
K = 1.66, and an integration time Ti = 0.15s.

Other properties such as deadlock freedom and schedulability where veri-
fied using less resources. The stability property requires more resources since
it introduces a clock constraint with the constant 1.0s, represented as integer
100,000. The algorithm for model checking timed automata depends on the
largest constant used in a clock constraint.

6 Conclusions

We have defined a formal semantics of SaveCCM by providing a translation
to an intermediate core language, and by mapping constructions of the core
language to timed automata with tasks. The formal semantics is such that
the switch construction has the same semantics when replaced with immediate
connections for a static configuration. This was a goal since the switch was
intended to be used for both static (configured before run-time) and dynamic
(run-time) configuration. We have also shown how a simple PI controller
can be translated to the core language, and that non-trivial properties of the
resulting model can be analysed using Uppaal 2 .

Times 3 is a tool for modelling, simulation, and analysis of timed automata
extended with tasks. The Times tool has extensive support for schedulability
analysis, however the current version has no support for operations. A new
version is planned with support for the same C-like syntax as used in the de-

2 Uppaal is available from www.uppaal.com
3 The Times tool is available from www.timestool.com

13

Carlson, Håkansson and Pettersson

velopment versions of Uppaal (3.5.x). Using this tool it might be possible to
perform schedulability analysis of more detailed SaveCCM models. Another
direction for future work is to take advantage of the read–execute–write seman-
tics of components during analysis, and use partial order reduction techniques
to reduce the size of the state-space analysed by a model-checker.

References

[1] Åkerholm, M., A. Möller, H. Hansson and M. Nolin, Towards a dependable
component technology for embedded system applications, in: 10th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 2005) (2005).

[2] Alur, R. and D. L. Dill, A theory of timed automata, Theoretical Computer
Science 126 (1994), pp. 183–235.

[3] Amnell, T., E. Fersman, L. Mokrushin, P. Pettersson and W. Yi, Times: a
Tool for schedulability analysis and code generation of real-time systems, in:
Proc. of 1st International Workshop on Formal Modeling and Analysis of Timed
Systems, LNCS (2003).

[4] Arbab, F., Reo: a channel-based coordination model for component composition,
Mathematical. Structures in Comp. Sci. 14 (2004), pp. 329–366.

[5] Bengtsson, J., W. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson and W. Yi, Verification of an Audio Protocol with Bus Collision
Using Uppaal, in: Proceedings of CAV’96, LNCS (1996), pp. 244–256.

[6] David, A. and W. Yi, Modelling and analysis of a commercial field bus protocol,
in: Proceedings of the 12th Euromicro Conference on Real Time Systems (2000),
pp. 165–172.

[7] Gössler, G. and J. Sifakis, Composition for component-based modeling, in:
F. de Boer, M. Bonsangue, S. Graf and W.-P. de Roever, editors, Proceedings
of the 1st Symposium on Formal Methods for Components and Objects (FMCO
2002), LNCS 2852 (2003), pp. 70–98.

[8] Hansson, H., M. Åkerholm, I. Crnkovic and M. Törngren, SaveCCM - A
component model for safety-critical real-time systems, in: Proc. of Euromicro
Workshop on Component Models for Dependable Systems (2004).

[9] Hatcliff, J., W. Deng, M. Dwyer, G. Jung and V. Prasad, Cadena: An
integrated development, analysis, and verification environment for component-
based systems, in: Proceedings of the 25th International Conference on Software
Engineering, 2003.

[10] Havelund, K., A. Skou, K. G. Larsen and K. Lund, Formal modelling and
analysis of an audio/video protocol: An industrial case study using uppaal, in:
Proceedings of the 18th IEEE Real-Time Systems Symposium, 1997, pp. 2–13.

14

Carlson, Håkansson and Pettersson

[11] Henzinger, T. A., B. Horowitz and C. M. Kirsch, Giotto: A time-triggered
language for embedded programming, LNCS 2211 (2001), pp. 166–184.

[12] Larsen, K. G., P. Pettersson and W. Yi, Uppaal in a Nutshell, Int. Journal on
Software Tools for Technology Transfer 1 (1997), pp. 134–152.

[13] Lindahl, M., P. Pettersson and W. Yi, Formal Design and Analysis of a Gearbox
Controller, Int. Journal on Software Tools for Technology Transfer 3 (2001),
pp. 353–368.

[14] Stankovic, J. A., VEST - A toolset for constructing and analyzing
component based embedded systems, in: EMSOFT ’01: Proceedings of the First
International Workshop on Embedded Software (2001), pp. 390–402.

[15] van Ommering, R., F. van der Linden, J. Kramer and J. Magee, The Koala
component model for consumer electronics software, IEEE Computer (2000),
pp. 78–85.

[16] Yovine, S., KRONOS: A verification tool for real-time systems., Int. Journal on
Software Tools for Technology Transfer 1 (1997), pp. 123–133.

15

	Introduction
	SaveCCM Core Syntax
	Basic Component
	Composite Component
	Conditional Connection

	SaveCCM Core Semantics
	Basic Component
	Composite Component
	Conditional Connection

	SaveCCM Semantics
	Translating SaveCCM into SaveCCM Core

	Case Study: A PI Controller
	Analysing the PI Controller

	Conclusions
	References

