
Mälardalen University Press Licentiate Theses

No. 51

IMPROVING SOFTWARE PRODUCT INTEGRATION

Stig Larsson

2005

Department of Computer Science and Engineering

Mälardalen University

ii

Copyright © Stig Larsson, 2005

ISSN 1651-9256

ISBN 91-88834-65-4

Printed by Arkitektkopia, Västerås, Sweden

Distribution: Mälardalen University Press

iii

ABSTRACT

The idea with product integration is that separate components are combined into a
working system. However, this process of assembling parts into bigger units,
products and systems is not well performed in industry, especially not when a
substantial part of the product functionality is implemented in software. Many faults
that are introduced in early phases are found as late as in the product integration
phase, or even worse, in the verification or validation of the final delivery, or after
delivery of the product or system. This leads to high costs for error correction and
additional efforts for re-testing. There is consequently a need to further investigate
the area of product integration to understand how the performance can be improved.
Different practices have been described in standards and models, but the area is still
under development. No widely agreed upon body-of-knowledge has so far been
defined for product integration.

A large part of the development of products containing software for industrial use is
conducted in small or medium sized teams. This requires that any data collection
methods used to acquire reliable information regarding performance in a project or
organization minimize the intrusion. A facilitating approach was needed to
understand how units with distinct characteristics should be approached. Based on
several years of interaction with different types of organization, the presented
research includes an analysis of various methods for data collection. The result is a
proposed method for selecting different sizes of investigations based on the openness
and maturity of the organization.

The main purpose of this research is to understand which factors influence the
integration process and what can be done to improve the execution of it. It includes
investigations to understand if the described best practices are appropriate, and if
there are other means to achieve successful product integration. The research
combines investigations of existing compilations of best practices with case studies in
industry.

Our conclusion is that the type of organization that we have investigated can reduce
problems in the product integration process by following the basic practices
described in standards and reference models. Problems found in product integration
can in most cases be related to the fact that the organization does not follow the
proposed practices. The investigations have revealed that the practices are not used
in a sufficient way, that additional efforts must be put into fulfilling the requirements
in standards and models, and that it is difficult to implement the practices. We have
also found indications that specific technology, component based software, may
assist in executing the practices. Finally, we conclude that not all standards and
models include support to avoid all types of problems in product integration. This is
an indication that the on-going development of the area is necessary and that an
increased agreement on what can be considered to be best practices is needed.

iv

v

ACKNOWLEDGMENTS

I would first like to thank my supervisor professor Ivica Crnkovic for all the
enthusiasm, guidance and help throughout the work with the present thesis. From
the very beginning, I have received very valuable support and encouragement.

Thanks goes also to my assistant supervisors Fredrik Ekdahl, for always being there
to challenge and discuss my ideas, and Johan Schubert, for support and guidance in
how to understand what research is and how it differs from work in industry. I am
truly grateful for all discussions and advice.

The work would not have been possible without the support from ABB Corporate
Research providing me with resources for my research, and challenges every day.

Thanks to all my present and past colleagues at ABB and at Mälardalen University,
especially Magnus Larsson and Rikard Land for inspiration and feedback, and to
everyone taking part in the case studies that form the basis for this thesis.

Thanks to all my friends and relatives for being patient with me when time is too
short.

Special thanks to my sister and mother for all support over the years, and to my
father, who passed away too early, for inspiration.

Finally, I would like to express all my love and gratefulness to my wife AnnKi and
my daughter Camilla.

Stig Larsson
Västerås, May, 2005

vi

vii

LIST OF PUBLICATIONS

The following peer-reviewed papers have been published at international

conferences and are included in this thesis;

A. Are limited Non-intrusive CMMI-based Appraisals Enough?
In Proceedings of the ESEIW 2003 Workshop on Empirical Studies in Software
Engineering WSESE 2003, Rome, Italy, September 2003
Authors: Stig Larsson, Fredrik Ekdahl

B. Selecting CMMI Appraisal Classes Based on Maturity and Openness
In PROFES 2004 Conference, Kansai Science City, Japan, April 2004
Authors: Stig Larsson, Fredrik Ekdahl

C. On the Expected Synergies between Component-Based Software Engineering
and Best Practices in Product Integration
In Euromicro Conference, Rennes, France, August 2004
Authors: Stig Larsson, Ivica Crnkovic, Fredrik Ekdahl

D. Case Study: Software Product Integration Practices
Accepted to PROFES 2005 Conference, Oulu, Finland, June 2005
Authors: Stig Larsson, Ivica Crnkovic

E. Expected Influence of Ethics on Product Development Processes
Technical report, accepted in a shorter version to ECAP-2005 Conference,
Västerås, Sweden, June 2005
Author: Stig Larsson

viii

 The author has also co-authored the following peer-reviewed articles and papers

that have been published at international conferences and in journals;

F. Workshop on Component-based Software Engineering: Composing Systems
from Components
In ECBS 2002 Proceedings, Lund, Sweden, 2002, IEEE, ACM
Authors: Ivica Crnkovic, Stig Larsson, Judith Stafford

G. Combining Models for Business Decisions and Software Development
In Euromicro Conference, Dortmund, Germany, September 2002
Authors: Christina Wallin, Fredrik Ekdahl, Stig Larsson

H. Integrating Business and Software Development Models
IEEE Software, 19(6):28-33, November 2002, IEEE Computer Society
Authors: Christina Wallin, Fredrik Ekdahl, Stig Larsson

I. Towards and efficient and Effective Process for Integration of Components-
Based Software Systems
In SERPS’03, Proceedings of the 3rd Conference on Software Engineering
Research and Practice in Sweden, Lund, Sweden, 2003
Author: Stig Larsson

J. Concretizing the Vision of a Future Integrated System – Experiences from
Industry
Accepted to ITI 2005 Conference, Dubrovnik, Croatia, June 2005
Authors: Rikard Land, Ivica Crnkovic, Stig Larsson

K. Component-based Development Process and Component Lifecycle
Accepted to ITI 2005 Conference, Dubrovnik, Croatia, June 2005
Authors: Ivica Crnkovic, Michel Chaudron, Stig Larsson

L. Processes Used during Software Integration – Experiences from Industry
Accepted to Euromicro Conference, Porto, Portugal, September, 2005
Authors: Rikard Land, Ivica Crnkovic, Stig Larsson

The author has also co-authored the following presentations;

M. Using selected level 3 process areas to maintain level 2 focus
Presented at European SEPG, London, June, 2004
Authors: Stig Larsson, Fredrik Ekdahl

N. Driving improvement using CMMI Class B and C appraisals - some
experiences and lessons learnt
To be presented at European SEPG, London, June, 2005
Authors: Fredrik Ekdahl, Stig Larsson

ix

TABLE OF CONTENTS

1 BACKGROUND AND MOTIVATION ... 1

2 RESEARCH STRATEGY... 5

2.1 RESEARCH STRATEGIES IN SOFTWARE ENGINEERING .. 5

2.2 CASE STUDY METHODOLOGY .. 7

2.3 SELECTED RESEARCH STRATEGY .. 8

2.4 RESEARCH QUESTIONS ... 10

3 RESEARCH RESULTS AND CONTRIBUTIONS.. 12

3.1 SUMMARY OF INCLUDED PAPERS ... 12

3.2 CONTRIBUTION... 15

3.3 VALIDITY DISCUSSION .. 16

4 PRACTICES FOR SOFTWARE PRODUCT INTEGRATION 18

4.1 PRACTICES IN STANDARDS AND MODELS .. 18

4.2 COMPARISON BETWEEN PRACTICES IN DIFFERENT STANDARDS AND MODELS 26

5 CONCLUSION.. 28

PAPER A:
ARE LIMITED, NON-INTRUSIVE CMMI-BASED APPRAISALS ENOUGH? 33

PAPER B:
SELECTING CMMI APPRAISAL CLASSES BASED ON MATURITY AND OPENNESS.................... 45

PAPER C:
ON THE EXPECTED SYNERGIES BETWEEN COMPONENT-BASED SOFTWARE ENGINEERING AND

BEST PRACTICES IN PRODUCT INTEGRATION ... 63

PAPER D:
CASE STUDY: SOFTWARE PRODUCT INTEGRATION PRACTICES... 77

PAPER E:
EXPECTED INFLUENCE OF ETHICS ON PRODUCT DEVELOPMENT PROCESSES 95

x

xi

1

1 BACKGROUND AND MOTIVATION

“Oh, I’m on my way I know I am, but times there were when I thought not”

Cat Stevens

In the Trial Version 1.0 of the “Guide to the Software Engineering Body of
Knowledge, SWEBOK” [1] from May 2001, integration of components was put in
appendix D. The committee was in disagreement about the existence of a generally
accepted body of knowledge on the topic of Component Integration. In the 2004
version [2], the topic has been integrated as a part of the “Software Construction”
chapter, where the whole text about integration reads

“A key activity during construction is the integration of separately
constructed routines, classes, components, and subsystems. In addition, a
particular software system may need to be integrated with other software
or hardware systems.

Concerns related to construction integration include planning the
sequence in which components will be integrated, creating scaffolding to
support interim versions of the software, determining the degree of testing
and quality work performed on components before they are integrated
and determining points in the project at which interim versions of the
software are tested.“

The recommended reading is limited to three references. One conclusion may be that
the area of product integration is rather new, and that the research community has
paid little attention to the area. The reason for this may be that the area has been
included in development or verification research. One example where this is the case
is in the area of component-based software engineering [3-5]. On the other hand,
descriptions of different strategies for integration of software can be found in
textbooks such as “The Art of Software Testing” by G.J. Myers from 1979 [6], so there
should be extensive knowledge about integration among software developers. The
product integration area is no doubt only marginally examined as a research topic in
itself.

Throughout my career as a software developer, project manager and line manager as
well as a process advisor, I have seen a great deal of problems in product integration;
builds crash, tests are delayed, performance of systems turns out to be a fraction of
the anticipated, and stakeholders are annoyed at each other. The focus among the
engineers and testers is on correcting errors and investigating problems rather than
confirming the proper operation of the product or system. The relevance of these
observations is confirmed by different investigations [7,8] and is a basis for this
research.

2

Product Integration does mean different things to different readers. In this thesis,
Product Integration represents the process that is performed when parts are
combined into more complex parts and finally to complete products. Critical
elements in product integration include descriptions and management of interfaces,
the sequence in which components are integrated, and communication between
different stakeholders [9]. There is also a question of overall system requirements
and properties. These cannot be specified and tested on a component level, but must
be handled on system level. Even if all interfaces are correct such properties may not
be met.

When investigating the efficiency and effectiveness of product development both
process, product, technology, environment and people aspects need to be considered
[10]. All factors influence each other and in an industrial environment, it is difficult
to single out any one of them as being more important than the others. Also, in the
effort of improving one area of product development the solution may come from a
combination of any of these aspects. The research in this thesis is focused on the
process aspect, but also the technical and people aspects are taken into account, while
the product and environment has been selected as boundary conditions.

One important observation was made early in the work leading up to this thesis.
When integration is discussed with engineers, the association they make is very often
the integration performed when deciding on the technical solution for a product [11].
This architectural integration takes place when the design of the overall system is
made. This aspect of integration is not covered in this thesis.

During the work that forms the basis for a thesis, the decision on scope is probably
the hardest. To cover enough to make the work interesting from a generic and
theoretical perspective at the same time as being focused and concrete enough is a
challenge as the direction changes from time to time. Help comes from the education
in the graduate program. After many years in industry, it is a challenge to start to
look at the world in new ways, with new tools such as research methods and
strategies. It is rewarding, however, as the understanding of many observed
phenomena increases as the perspective changes.

Product integration is the process that enables an organization or a project to finally
observe all important attributes that a product will have; functionality, quality and
performance. This is especially true for software systems as the integration is the first
occasion where the final result can be observed. Consequently, the integration phase
represents a highly critical part of the product development process. Descriptions of
good practices for product integration are available [9,12-15], but my own experience
as well as several other research results [7,8] show that these are not always used.
The reason may be that they sometimes are not fully understood or that they are
perceived as not applicable. The inability to follow good practices leads to problems
as the result of the integration process is a product that accumulates all positive and
negative contributions from earlier phases. Product integration is the last phase

3

where new functionality is created. In addition, the challenge is enhanced as
requirements and designs give a more abstract definition of a software product than
for a hardware product. In summary, there is a need to further investigate the area of
product integration to understand if the practices described in models and standards
are appropriate, and to examine if other means to reach the goal of successful
product integration are available.

The product integration process is directly related to many other activities executed
in product development. Figure 1 shows some of the related process areas as
described by the CMMI [9].

Figure 1. Processes related to product integration (based on [9]).

The activities performed in the technical solution processes result in parts or product
components. Also, the necessary information about each part that is used in the
product integration process is developed in parallel to the product component. Both
the technical solution and the product integration processes rely on the verification
processes to ensure that product components meet specified requirements. The
validation process is intended to confirm that the expectations of the customer are
fulfilled. Software product integration is typically performed according to a defined
plan, either in one stage or incrementally. As the process of integrating products
involves many different engineering disciplines such as development, architectures
and testing, communication between stakeholders is vital. Successful communication
depends on the ability to define and adhere to definitions and rules regarding the

Validation

Product

Integration

Technical

Solution

Verification

Customer
Product

Product components

Work products

Integrated product

Reports

Reports

ValidationValidation

Product

Integration

Product

Integration

Technical

Solution

Technical

Solution

VerificationVerification

Customer
Product

Product components

Work products

Integrated product

Product components

Work products

Integrated product

Reports

Reports

4

concerned interactions. Standards and other reference models have described
different practices [12-15], but in reality, friction between engineers performing the
tasks of development, integration, verification and validation have been observed
[7,8]. This indicates that additional knowledge about product integration and
support for the interactions between different stakeholders are needed to achieve
efficiency and effectiveness.

Integration is also easier to achieve if the parts that are to be integrated are well
defined. If clear and precise technical definitions are missing, this leads to more
complicated inspections at integration time, requiring more knowledge and
information about each component. This includes safeguarding that the right
interfaces are used and that the environment is suitable for the component. The lack
of well defined interfaces and components also makes it harder to automate the
different checks and tests.

By improving the product integration process, there are great advantages both for
process steps that precedes the integration and the steps that follow. Clearer
requirements and expectations will allow accurate deliveries to integration while a
well working integration process will increase the probability for high quality
products and timely deliveries to verification and validation activities.

The compilation of a thesis is in a way a type of product integration. The different
conference contributions and articles need to fit together and become one product.
New parts that tie the existing pieces together and put them into perspective should
be created. Enough information must be included to help the readers understand the
context and, if necessary, be able to find background information and further details.
On the other hand, the amount of information should be limited to the necessary,
leaving out speculations and irrelevant information. If this integration is successful, it
should provide the reader with a tool to achieve a deeper understanding of different
aspects that affect product integration. It should also be possible to use it as a basis
for improving an organization’s product integration process or as a starting point for
further research.

The structure of this thesis is as follows. The first part of the thesis, chapter 1 through
5, contains the background and results of the research. Chapter 1 provides a
background and motivation of the research. Chapter 2 includes an overview of
different strategies for research in software engineering, the research strategy used
for this thesis and a description of the research methods used. Chapter 3 summarizes
the included papers and describes the contribution. It also contains a discussion on
the validity of the research results. Chapter 4 provides an overview of state-of-the-art
for product integration as well as a comparison between standards, models and the
case studies performed. Chapter 5 formulates the conclusions as well as directions
for future work. The second part of the thesis consists of the included five research
papers.

5

2 RESEARCH STRATEGY

"Insight, untested and unsupported, is an insufficient guarantee of truth."

Bertrand Russell

This chapter contains an overview of the challenges in Software Engineering research
as well as research strategies and methods used in the study of software engineering
with focus on case studies related to our research. It also contains a description of the
strategy for the research described in this thesis. Finally the research questions and
the approach taken to investigate each of them are described.

2.1 Research strategies in Software Engineering

Research in software engineering has matured over a number of years, but still no
clear guidelines are available and the discussion is progressing in different
conferences and workshops, such as [16]. The needs for a classification and
characterization have been described in various publications [17-19].

Software Engineering is an engineering discipline and research in the area is
primarily directed towards study of tools and methods for producing quality
software products and solutions to encountered problems. This has been expressed
as finding practical solutions in the real world to practical problems found in the real
world [20]. As the real world is difficult to investigate, we sometimes need to
investigate the problem in a research setting, and find solutions to this idealized
problem. Once a suggested solution exists, two validation tasks emerge as illustrated
in figure 2. The first task is to validate that the solution solves the idealized problem
in the research setting. If this is the case, there is also a need to validate the solution
in a real world environment and ensure that the solution also is applicable to the real
world practical problem.

6

Figure 2. Development of research results (based on [20])

The use of empirical studies in software engineering research has been discussed
since the mid-eighties [21], and different research strategies as well as ways to
classify them have been the subject of study [22-24]. For studies of software
engineering in an industrial setting, methods similar to the ones used in research in
social sciences can be utilized. The reason for this is the similar context; the large
number of factors influencing the studied systems which lead to difficulties to have
full control, the fact that human beings are important parts of the processes one tries
to investigate, and that the studied processes are complex. In [25], five different
strategies for conducting research in social sciences are listed: experiments, surveys,
archival analysis, history and case studies. Of these, the experiments, surveys and
case studies are mentioned in [22] and [26] as strategies suitable for software
engineering research. Experiments are done in a controlled environment, a
laboratory, where a single or a few changes are inserted by the researcher. The need
to control the environment limits the size of the investigation. Surveys are used to
collect data from a large number of study objects, normally through sampling. This
makes it possible to collect data that can show correlation between different factors
without introducing changes into the environment. Case studies are observational
and do not separate the object studied from its environment. This complicates the
possibilities to relate the observations to the problem that is investigated.

Problems encountered
in the real world

Idealized problem
in a research setting

Solution to problems
in the real world

Solution to the
idealized problem

Research results

Do the results solve
the idealized problem?

Do the results solve
the real world problems?

Problems encountered
in the real world

Idealized problem
in a research setting

Solution to problems
in the real world

Solution to the
idealized problem

Research results

Do the results solve
the idealized problem?

Do the results solve
the real world problems?

7

When selecting a research strategy among these three, the main things to consider
are what type of research question is investigated and how much control is required
or can be obtained over the investigated phenomenon [25]. Experiments require a
high degree of control which enables the researcher to insert a variation in only one
or a few variables in the environment, often to make it possible to determine the
effects of a change with statistical significance. The types of questions that can be
answered with experiments are “how?” and “why?” as thorough knowledge about
the correlation between the manipulated variables and the results are likely to be the
result.

Surveys are used to sample a population to give qualitative or quantitative data to
investigate a research question and are normally looking at a large number of teams,
projects or organizations. Surveys are used to give response to research questions
such as “who”, “what”, “where”, “how many” or “how much”.

Case studies are in general used to look at a single or a limited number of projects or
organizations, which are considered as typical, to respond to question like “how”
and “why”, i.e. the same type of questions as for experiments. The results from case
studies are harder to interpret as the control over the environment in which the study
is conducted is very small. It is thus important to plan a case study carefully to make
it possible to generalize the results.

Another way to distinguish between different types of results from research is based
on the type of research that has lead to them. This has been expressed for human
computer interaction by Brooks [27] and adapted for software engineering by Shaw
[18]. The need for this clarification is due to the tension between research results that
are limited in scope but backed up by experiments showing statistical basis for
conclusions and broader results that are based on observations that are more difficult
to validate. The proposed classification of research results includes findings,
observations and rules-of-thumb. Findings are the results from soundly-designed
research, and with clear declaration of the domain for which a generalization is valid.
Observations report on actual phenomena that are interesting, but may be from
under-controlled environments and/or observations from limited samples. Finally
Rules-of-Thumb are generalizations where this is done over a domain that is larger
than the tested one. All three types of results should be judged for freshness, and it
should be clear for all reports to what type the results belong. There is also a need for
all three types; Observations and Rules-of-Thumb will give guidance to practitioners
and help generate basis for further research that eventually could lead to Findings.

2.2 Case Study Methodology

The use of case studies requires careful planning and execution. This section
describes a structured way of performing case studies in software engineering
research. As our knowledge regarding how to conduct a proper case study has
evolved throughout this research, parts of the methodological thinking described

8

here are missing or are less formal in the included research papers. It is thus
necessary to ensure that future case studies are carried out with great care and
methodology awareness.

To successfully perform a case study, several steps are needed as described in [25].
The first step is to prepare a case study design. Based on the design, the data
collection is planned, the evidence collected and analyzed. Finally, the result from
the case study is reported.

A case study design must include enough information to provide guidance for the
execution. It can be compared to a project plan and need to include a study question,
a proposition, a description of the unit of analysis, a description of how to link the
collected data to the proposition and criteria for how to interpret the data. The
definition of the study question is important as it guides and directs the research. Both
the substance (what is the study about) and the form (the type of question) are
important. The proposition describes a possible answer to the question and is
sometimes formulated as a hypothesis. The unit of analysis describes the case, i.e.
what should be studied. The possibility to select a proper unit of analysis depends
highly on the selected proposition. A well formulated proposition makes it easier to
focus on the right object for the study. To simplify the analysis of data collected in a
case study, the process for how the data is to be linked to the proposition should be
described when designing the study. It is closely related to the definition of criteria for
interpreting the data. As the case study is designed it is advisable to ensure that
different types of threats to the validity of the results are addressed. This is
preferably done in a review of the case study design and documented in a plan.

When the case study has been designed, it is possible to plan for the data collection.
The plan should contain the needed skills for the researchers involved, training and
preparation for the data collection, development of a case study protocol, screening
of case study candidates and testing the preparation in a case study pilot.

The data can be collected in several ways including document reviews, interviews
and observations. The methods complement each other and can also be used to
corroborate findings, i.e. ensure that observations are consistent and validated
through the occurrence of several sources.

After the data has been collected it should be analyzed using the methods described
in the case study plan. Using the criteria for data interpretation, conclusions
regarding the proposition are drawn. Finally the data is reported, either for a specific
case study or a collection of studies.

2.3 Selected Research Strategy

The purpose of this research is to produce findings responding to why some
companies are able to perform product integration without encountering problems
while others fail. The aim is also to understand how they achieve success or failure.

9

This makes it necessary to carefully select an appropriate strategy, i.e. one that can
provide results from which valid generalizations can be made. Since the research is
performed in an industrial setting, experiments are difficult to perform as the
environment cannot be controlled. This resulted in a decision to base the research
primarily on case studies.

The overall research strategy selected for this thesis consists of three steps that have
been repeated in a number of iterations. First, a number of questions were
formulated based on existing methods, models and theories. These questions are
related to methodologies for collecting relevant information regarding processes in
product development organizations and to the efficiency and effectiveness of
product integration. The questions concerning information collection have been
focused on how to collect reliable data from an organization. The questions
regarding the product integration process are related to practices described in
standards and reference models and the use of technology as means to reduce
problems and increase performance.

Second, the questions were used to decide what investigations should be made on
the data collection experiences available from earlier research (paper A and B) and
what should be the focus in the case studies. Case studies were needed to further
understand the different factors contributing to successful product integration (paper
C and D). Third, the results from the investigations, case studies and additional
analyses have lead to conclusions supporting or refuting existing theories or models,
and helped to further elaborate the research questions.

The description of the approach is idealistic and in reality, the process was iterative.
The initial questions were vague and had to be expanded as well as clarified through
early findings. Also, there were ideas about the expected findings and conclusions
from the start.

The case studies have been directed towards process and technology. To get
coverage of the different sides of product development, also the people aspect needs
to be investigated. The chosen approach was to analyze the effect of the application
of different ethical theories on the actions performed in product development. This
facilitates the understanding of one additional type of influence on the results in
product development, with specific focus on product integration.

The advantages, but also the difficulties in this research lie in the fact that it is based
in an industrial setting. Doing research in industry enables us to work with research
questions originating in reality. The drawback is the complexity in doing
generalizations and in distinguishing the influence from the structures investigated
from other factors. Using reasoning, theoretical replication and rival theories [25], an
attempt is made to isolate the aspects under study. The details of the methods used
in each case can be found in each paper.

10

2.4 Research Questions

The key question for this research is how to increase the efficiency and effectiveness
when putting software pieces together into something of expected quality in time. In
this context efficiency means that the activities conducted with an optimal effort in
the right way. Effectiveness means that efforts are concentrated on the activities that
give the right output from the process. Indications from investigations performed in
industry have shown that the use of component-based technologies can be assumed
to help in increasing the efficiency and effectiveness when integrating software
products [4]. This leads to the main question for this thesis:

Q: To what degree will the use of component-based technology assist in increasing the

efficiency and effectiveness of the product integration process for software products?

To be able to respond to this question, a number of steps need to be taken and
investigated. The first step is related to the collection of data. A clear understanding
of how data can be collected from an industrial setting is crucial. Organizations are
sometimes sensitive for investigations interfering with the development projects. To
ensure that proper information about processes from product development
organizations is collected, there is a need to understand what type of investigation
can be made. The first question to be investigated is hence:

Q1: What are the possibilities to use non-intrusive methods for investigations of product
development processes?

The proposition in response to this question is that it may be possible to perform a
number of smaller investigations to achieve results that are reliable and valid enough
to base improvement plans on. To investigate this further, it is necessary to
understand when it is appropriate to use different types of evaluations. This leads to
the next question:

Q2: What are the characteristics of an organization that can guide the selection of an

appropriate evaluation method?

The proposition is that openness (i.e. the willingness to embrace external assistance
in improving internal processes) and maturity are two important characteristics and
through the analysis of the improvement work in five development units, it is
concluded that a scheme based on these two attributes can help in selecting the right
type of evaluation model.

The next question is directly derived from the main research question:

Q3: How well can the practices described in a specific standard be expected to reduce

problems encountered in the integration of products?

Our investigations give at hand that the types of observed problems in product
integration can be reduced through following the practices described. It was also
noted that the practices described in standards and models very often are collected

11

from lessons learned, and not validated through research, i.e. the practices can be
described as rules-of-thumb. Indications that component based technology assist in
reducing the problems were also observed, and this leads to Q4.

Q4: To what degree can synergies between the use of a specific technology and the best
practices in product integration be expected?

The case studies support the idea that the problems experienced in a product
development organization map to the practices described in a reference model. It
was also concluded that there are indications that a specific technology, component-
based technology, can help an organization to follow the model and through that
achieve improvements in the performance of product integration.

There are also other factors influencing the effectiveness and efficiency in the product
integration process [10]. Among these are the decisions on what ethical principles
should be followed in an organization or selected by the individual engineers.

Q5: How will the selection (explicit or implicit) of different ethical principles affect the
efficiency and effectiveness of the product integration process?

It is proposed that the selection of ethical principles will have an effect on the
development results and through a theoretical analysis the consequences for
different moral frameworks are suggested.

We have concluded that through following the available good practices from
standards and models, development organization can avoid problems in the product
integration process. The use of component-based technology and how this can
reduce the problems has been explored. In addition we propose that the moral
framework selected by an individual influences the development processes. This also
implies that support from technology to follow good practices would be beneficial.
However, as a consequence of the increased understanding of the integration process
and the influence from using component based technology we arrive with a new
major research question which is an elaboration of the original question:

Q (Derived): To what degree can component based technology assist organizations and
individuals in following validated good practices in product integration?

The main focus in the research presented in this thesis has been on Question 3 and
Question 4, with the intention to find factors that can be investigated to find
improvement potential in the product integration process.

12

3 RESEARCH RESULTS AND CONTRIBUTIONS

"Nothing shocks me. I'm a scientist."

 Indiana Jones

This chapter describes the research results, the contribution and a discussion about
validity. Section 3.1 organizes the results per paper, while section 3.2 summarizes the
contribution.

3.1 Summary of Included Papers

The papers include in this thesis cover three different areas; methods for collecting
data from a product development organization, descriptions of different case studies
regarding product integration and reasoning about the influence of different ethical
directions on product development.

Paper A: Are limited Non-intrusive CMMI-based Appraisals Enough?

Abstract. An integral part of the strategy for performance improvement
within the product development at ABB is the use of CMMI-based
appraisals. Each appraisal represents an investment by the organization to
lay the best possible foundation for improvements. The challenge is to
balance the investment, the intrusiveness and the benefits. Depending on
different organizational characteristics, different kinds of appraisals
should be used. All appraisals are driven by data collection and
consequently the quality of an appraisal depends on the data collection
methods used. In this paper we outline strategies used in ABB for
selection of appropriate CMMI appraisals and data collection methods.
Early results indicate that the use of a series of appraisals can be a way to
overcome the resistance in an organization. We also claim that a
discussion is needed on the reliability and validity of the appraisal
methodologies and on the feasibility to base decisions regarding process
improvement strategies on appraisal results.

In Proceedings of the ESEIW 2003 Workshop on Empirical Studies in Software
Engineering WSESE 2003, Rome, Italy, September, 2003

Authors: Stig Larsson, Fredrik Ekdahl

The present author’s contribution was in the description of good practices in product
integration, related work, the case study, as well as parts of the analysis and
conclusions.

Paper B: Selecting CMMI Appraisal Classes Based on Maturity and Openness

Abstract. Over the last eight years, different approaches have been used to
diagnose the performance in ABB organizations developing software. The

13

efforts build to a large degree on methods from the Software Engineering
Institute (SEI). In this paper we examine the experiences from five
organizations through a description of the pathways that we have
observed in the maturity development. We also propose a way to classify
organizations based on two organizational characteristics, maturity and
openness. Based on this classification, a simple method for the selection of
how to collect performance data from the organizations is described.

In PROFES 2004 – 5th International Conference on Product Focused Software Process
Improvement, Kansai Science City, Japan, April, 2004

Authors: Stig Larsson, Fredrik Ekdahl

The present author’s contribution was in the description of good practices in product
integration as well as parts of the case study, analysis, and conclusions.

Paper C: On the Expected Synergies between Component-Based Software
Engineering and Best Practices in Product Integration

Abstract. The expectations for a well working integration process are
described in the Capability Maturity Model Integration (CMMI). Often
during the integration process, weaknesses of the entire development
process become visible. This is usually too late and too costly. Particular
development processes and use of particular technologies may help to
improve the performance of the integration process by providing proper
input to it. For example, by the use of a component-based approach, the
development process changes. Some of these changes may help in
performing according to the process expectations. In this paper, examples
of problems that have been observed in the integration process are
described. Through a case study we describe a number of practical
problems in current development projects. Based on this case study, we
analyze how a component-based approach could help and lead to a more
effective integration process.

In Euromicro Conference, Rennes, France, August, 2004

Authors: Stig Larsson, Ivica Crnkovic, Fredrik Ekdahl

The present author’s contribution was in the description of good practices in product
integration, methodology, the case study, as well as parts of the analysis and
conclusions.

Paper D: Case Study: Software Product Integration Practices

Abstract. Organizations often encounter problems in the Product
Integration process. The difficulties include finding errors at integration
related to mismatch between the different components and problems in
other parts of the system than the one that was changed. The question is if

14

these problems can be decreased if the awareness of the integration
process is increased in other activities. To get better understanding of this
problem we have analyzed the integration process in two product
development organizations. One of the organizations has two different
groups with slightly different integration routines while the other is
basing the development on well defined components. The obstacles found
in product integration are highlighted and related to best practices as
described in the interim standard EIA-713.1. Our conclusion from this
study is that the current descriptions for best practices in product
integration are available in standards and models, but are insufficiently
used and can be supported by technology to be accepted and utilized by
the product developers.

Accepted to PROFES 2005, Oulu, Finland, June, 2005

Authors: Stig Larsson, Ivica Crnkovic

The present author’s contribution was in the description of good practices in product
integration, methodology, the case study, as well as parts of the analysis and
conclusions.

Paper E: Expected Influence of Ethics on Product Development Processes

Abstract. Product development efficiency and effectiveness is depending
on a process being well executed. The actions of individuals included in
the processes are influenced by the ethical and moral orientations that
have been selected by each individual, whether this selection is conscious
or not. This paper describes different ethical choices and the expected
effect they may have on the development process exemplified by the
product integration process for software products. The different
frameworks analyzed are utilitarianism, rights ethics, duty ethics, virtue
ethics and ethical egoism. Our conclusion is that the adherence to specific
moral frameworks simplifies the alignment of actions to the practices
described in product development models and standards and supports
through this a more successful execution of product development projects.
This conclusion is also confirmed through a comparison between the
different directions and several codes of ethics for engineers issued by
organizations such as IEEE as these combine features from several of the
ethical directions.

Technical report, a shorter version has been accepted to ECAP-2005, Västerås,
Sweden, June, 2005.

Author: Stig Larsson

15

3.2 Contribution

The main contributions in the thesis are the following:

• Investigation and analysis of the possibilities to use non-intrusive evaluation methods to
determine the need for process improvement.

Paper A describes different effects and consequences of the use of different types of

evaluation methods, concentrating on investigation techniques that are non-
intrusive. This relates to Q1, and proposes on how companies can set up a strategy
using lightweight evaluation methods as a basis for identifying improvement areas.

• Analysis of the effects of maturity and openness in process improvement diagnostics and a
proposed model for selection of appraisal class.

The proposed model for selecting investigation method described in paper B is based

on observations of how improvement work has been performed in several different
development organizations over a number of years. The proposed model is a
response to Q2, and also includes a proposed scale for classifying the openness of an
organization.

• Assessment of practices described in standards and models and the practices used in
industry resulting in a description of what specific practices help in reducing problems in
product integration.

An analysis of the three development groups from two different organizations
described in paper D provides evidence supporting that the adherence to the best
practices as described in a standard can help in reducing problems in product
integration. This in combination with the similar results from paper C validates in
part the statement that the basic practices described in the investigated models and
standards are increasing the effectiveness and efficiency of product integration. Also,
in both papers we document the indications that the use of a specific technology,
component based software, help the organizations to follow the described practices is
described. These contributions connect to Q3 and Q4.

• Further understanding of the process of product integration and the possibilities to use
component-based technologies to assist in improving the integration processes.

Additional understanding of the product integration process has been documented
in papers C, D and E. In these we provide evidence that support that the efficiency
and effectiveness of the product integration process depend on several factors such
as maturity, technology used and morale in the organization. From the case and
literature studies it is clear that the three factors we have chosen, process, technology
and people, all influence the performance of product integration in the development
organization. Also the interaction between these three aspects can be observed in the
investigations. This relates to Q3, Q4 and Q5.

16

To conclude: Our main research questions are to what degree the use of component-
based technology can contribute to increased efficiency and effectiveness in product
integration for software products, and how this also can help in following best
practices. Our research demonstrates that following the best practices described in
standards and models increases the possibility of successful product integration, and
that the use of component-based technology helps in achieving this. However,
additional research is needed to be able to generalize these findings.

3.3 Validity discussion

There is in all research a need to understand if adequate validity is achieved. The
validity must be related to the extent of the generalization that is the target of the
research. The scope of our research covers the development of industrial systems
with substantial part software. The teams are fairly small in all organizations,
between 5 and 50 development engineers working in each project. In addition, the
investigations cover only small geographical area, Sweden. All the organizations are
part of large global companies which leads to a target of the generalization to be
small and medium-sized projects located in Sweden developing industrial software
in global companies. Different measures have been taken to reduce the threats to
validity, both in the individual case studies and in the overall research design. This
section summarizes the actions, and details can be found in each of the papers.

Four types of validity threats have been considered in this research [25]. Construct
validity relates to the data collected and how this data represent the investigated
phenomenon. Internal validity concerns the connection between the observed
behavior and the proposed explanation for this behavior. The possibilities to
generalize the results from a study are dealt with through looking at the external
validity. Finally, the reliability covers the possibilities to reach the same conclusions
if the study was repeated by another researcher.

The construct validity is dealt with through the investigations regarding data
collection methods and through multiple sources for the data in the case studies. The
investigations of data collection methods were made to ensure that also non-
intrusive assessment methods give reliable results, The sources for data in the case
studies where interviews of people having different roles such as developer, project
manager, integration responsible, and line manager as well as project
documentation and quality system documentation. In addition, the researchers
experience in software product development provided a basis for relevant focus of
the investigations and interviews.

The internal validity has been handled through explanation building and
observations over several years for data collection methods. The connection between
the observations of what practices are performed and the effect of the performance in
the case studies has been made through matching collected data with theoretically
predicted events. The collected data includes empirically observed events

17

documented in interviews and document reviews. The theoretically predicted events
in the case studies are for example problems that are expected to appear in the
projects if practices are not followed.

The external validity is dealt with through the use and description of several case
studies covering different development organizations performing different practices.
The cases have been selected from the same application area; software for industrial
use, and from the same type of organizations, small and medium-sized projects in
global companies operating in Sweden. This leads to the possibility to observe an
analytical replication [25]. One organization performing specific tasks in a process
has no problems in that process while another organization, not performing the
tasks, has problems. Further studies with an expanded set of development
organizations from other application areas and from other geographical areas would
increase the external validity as this would eliminate additional factors as possible
causes for the findings. The external validity can never be proven, but its accuracy
can be increased by observing the same patterns in these additional cases, or by
reaching the same conclusions using different research methods.

The reliability of the study has been handled through description of data collection
methods and the creation of a research data base including background material,
case study preparation material and data collected in the case studies. The
description of data collection methods and case study preparation material will
enable similar investigations to be made to increase the possibilities to make a wider
generalization. The collected data includes notes from interviews and from
document reviews as well as material collected from quality system and project
presentations. This will enable other researchers to investigate the material to ensure
that proper analysis has been made and that valid conclusions have been drawn.

One additional aspect related to validity is to what extent the conclusions are useful
and complete. Our main conclusion that best practices help in reducing the problems
in product integration is an answer to our main research question. However, this
answer has limitations. One example is the question of emerging system properties.
The best practices in standards and models only cover this area implicitly, and the
relationship with the explicit descriptions of what to do for successful product
integration is complex. The requirements on system properties need to be transferred
to component requirements, but are difficult or impossible to verify on the
component level. These types of questions are not sufficiently addressed by best
practices although they are important for the final results. Consequently, our
conclusion is limited as it only states that it is useful, neither that it is sufficient nor
even necessary to follow best practices to be successful in product integration. Still
the results have a research value; they belong to classes of improvements by building
experiences of best practices, a known method important when other methods are
not feasible.

18

4 PRACTICES FOR SOFTWARE PRODUCT INTEGRATION

“If you can't describe what you are doing as a process, you don't know what you're doing.“

W. Edwards Deming

This chapter includes a short description of a selection of standards and models that
are used in industry today. It also includes a comparison between the practices and
the observations from the case studies in paper C and D.

4.1 Practices in Standards and Models

Both standards and models, two different types of reference material, have been
considered in this section. The included standards and models are typically used by
product development organizations to obtain a common language, to ensure that the
development performed covers necessary activities, to guide improvement activities
and to show compliance. The selection of standards and models in this section is
based on available information from standardization organizations such as ISO [28],
and IEEE [29] and references from organizations such as SEI [30] and SCCI [31]. Two
additional selection criteria have been used in the choice of standards and models.
The first was that the standard or model should be relevant to product development
of products that include software. The second criterion was that the standard or
model should include requirements on product integration, implicitly or explicitly.
The descriptions include the purpose and intention of the standards and models and
details regarding the product and software integration processes included. It should
be noted that efforts are made to harmonize several of these standards and models
such as IEEE Std 1220-1998 [32], EIA-632 [13] and ISO/IEC 15288 [15]. It remains to
be seen what format the description of product integration will have in the
harmonized material.

For each standard and model, a table summarizes the described product integration
practices and the adherence to the tasks as observed in the cases described in paper C
and D. The actions and tasks are summarized as practices even if the specific
standard or model uses a different terminology. Note that these summaries are for
information purposes only, and that the original text in the standards and models
should be used for any implementation. The four columns describing the results
from the case studies include: an indication for each case if the practice has been
observed (+), not observed (-), not investigated (?) or too generic to be determined
(G), and if there are indications of problems connected to the practice (*).

Two issues limit the value of this analysis. The first is that all the indications have
been based on the material available from the case studies. As no explicit coverage of
all the practices described in each standard and model was made in the cases,
practices may be performed even if no evidence can be found in the material. The
second issue is that problems may exist in the organization without indications in the

19

table, again based on the fact that not all practices where explicitly covered in the
case studies.

Based on an analysis of the case study data and the practices, two observations have
been made. The first is that problems encountered in the case studies can in all cases
except one be related to practices described in standards and models, but not
performed by the organization or project. The second observation is that not all
standards and models have practices to which the problems can be related. This can
be seen as an indication that there is further development needed before an
established body-of-knowledge is available for the product integration area.

4.1.1 ISO/IEC 12207, Information technology – Software life cycle process

The purpose of ISO/IEC 12207 is to provide the software industry with a well-
defined terminology for software life cycle processes [12]. It contains the different
processes, activities and tasks that make up a software life cycle, and applies to the
development, operation and maintenance of software products as well as to
acquisition and supply of software products, systems and services.

ISO/IEC 12207 includes two parts related to product integration. The first is covering
the integration of software units or components into software items that can be
integrated into a system. The tasks described are: to develop and document an
integration plan for each software item that has been identified in the system
architectural design, to integrate and test the aggregates as described in the plan, to
update the user documentation and to develop and document a set of tests for each
requirement of the software items. The standard also lists a number of criteria that
should be used for evaluation of each work product developed in the software
integration process as well as a requirement to conduct joint reviews.

The second part describes the system integration tasks. These are: to integrate the
software into the system and to test the requirement of the system. There is also a list
of criteria for evaluation of the integrated system.

The practice to which we can relate some of the problems found in the case studies is
to ensure that the integrated software is ready for verification. This standard has no
requirements on the handling of interfaces, which represents the cause of many of
the problems found in the case studies. Our conclusion is that the standard does not
fully cover the needs for effective product integration. The requirement that the user
documentation should be updated has not been investigated in the case studies.

20

Table 1. ISO/IEC 12207:1995 compared to cases

Adapted description of practice in
ISO/IEC 12207:1995

Paper 3,
Case 1

Paper 4,
Case 1

Paper 4,
Case 2

Paper 4,
Case 3

Develop and document an integration
plan for each software item

+ - + -

Integrate and test the aggregates as
described in the plan

+ - + -

Update the user documentation ? ? ? ?

Develop and document a set of tests
for each requirement of the software
items

+ + + +

Ensure that the integrated software
item is ready for verification

- * - * - * +

Integrate the software item into the
system

+ + + +

Test the requirement of the system + + + +

4.1.2 IEEE Std 1220-1998, Application and Management of the Systems Engineering
Process

IEEE Std 1220-1998 [32] provides guidelines for product development organizations
to ensure that the products resulting from development activities are properly
designed to be affordable to produce, own, operate, maintain and dispose of with
appropriate consideration for the health and environmental risks.

Product integration is described in section 5.4.1, “System integration and test”.
Assembling and integration of subcomponents are to be done progressively into
complete components, components into assemblies, assemblies into subsystems and
subsystems into products. Also the combination of products, processes and services
into a system is described. At each level of assembly and integration, it is expected
that sufficient testing is performed to ensure operational effectiveness, usability,
trainability, interface conformance, conformance with specified requirements,
producibility, and supportability.

In our analysis, we have found the descriptions in IEEE 1220-1998 to be of
insufficient detail to allow verification that each step in the process is performed. The
steps and actions described in other standards and models are not visible in this
standard, except in an implicit way.

21

Table 2. IEEE 1220-1998 compared to cases

Adapted description of practice in
IEEE Std 1220-1998

Paper 3,
Case 1

Paper 4,
Case 1

Paper 4,
Case 2

Paper 4,
Case 3

Ensure that combining lower-level
elements results in a functioning and
unified higher-level element

G G G G

Satisfy logical and design interfaces G G G G

4.1.3 EIA-632

The purpose of the EIA-632 standard [13] is to provide developers with fundamental
processes that assist in engineering a system. In this context, a developer can be an
enterprise or an organization. The use of the standard should help developers to
develop requirements that enable delivery of system solutions in a cost-effective
way, delivering within cost, schedule and risk constraints and to provide a system
that satisfies the different stakeholders over the life-cycle of the products that make
up the system.

The integration of parts into products is included in the requirement for
implementation. The implementation practices include expectations, that the
developers should plan for and execute tasks such as validating the subsystems
received for assembling and assembling validated subsystem products into the test
items or end products to be verified.

The requirements in EIA-632 are concrete, but do not include requirements in all the
areas where we have found problems in the case studies. Specifically, the handling of
interfaces is not explicitly mentioned.

Table 3. EIA-632 compared to cases

Adapted description of practices in
EIA-632

Paper 3,
Case 1

Paper 4,
Case 1

Paper 4,
Case 2

Paper 4,
Case 3

Plan for validation of subsystems and
assembling of subsystems

+ - + -

Validate subsystems to be assembled - * - * - * +

Assemble the validated subsystems + + + +

22

4.1.4 Capability Maturity Model Integration (CMMI), Version 1.1

The Capability Maturity Model Integration, CMMI, from the Software Engineering
Institute describes what is considered as best practices for product and systems
engineering [9]. The model includes process areas covering the full product life cycle
for the development and maintenance of products and services. The purpose of the
model is to provide a basis for process improvement, and includes guidelines for
how to select improvement areas.

For each of the process areas described in CMMI, a purpose is described. For Product
Integration it is “to assemble the product from the product components, ensure that
the product, as integrated, functions properly, and deliver the product”. It is detailed
in three goals which are supported by a total of nine practices that are specific for
product integration. The goals are: Prepare for product integration, Ensure interface
compatibility and Assemble product components and deliver the product.

All problems encountered in the case studies regarding product integration can be
related to practices that are described in the CMMI. However, there are also a few
practices that have not been performed by the units without causing problems. This
leads to the conclusion that there needs to be further investigations and validations
to ensure that requirements in the model are not only sufficient, but also necessary.
One example is that in two cases presented in paper D, no integration sequence
determined, but no problem could be related to this.

Table 4. CMMI compared to cases

Adapted description of practice in
CMMI

Paper 3,
Case 1

Paper 4,
Case 1

Paper 4,
Case 2

Paper 4,
Case 3

Determine integration sequence + - + -

Establish the product integration
environment

+ + + +

Establish product integration
procedures and criteria

- * - * + -

Review interface descriptions for
completeness

- * - - -

Manage interfaces - * - - -

Confirm readiness of product
components for integration

- * - * - * +

Assemble product components + + + +

Evaluate assembled product
components

+ + + +

Package and deliver the product or
product component

+ + + +

23

4.1.5 EAI-731.1

The purpose of the interim standard EIA-731.1 is to support the development and
improvement of systems engineering capability [14]. The standard is structured to
support different activities performed to improve the performance in a development
organization such as appraisals, process improvement, and process design.

Product integration is described in the section Integrate System which describes
practices connected to product integration strategy, interface coordination,
integration preparation and system element integration.

As with CMMI, all problems found in the case studies can be related to practices in
EIA-731.1. There are also practices in the standards that are not performed, but we
have not been able to identify any relations between these and the observed
problems.

Table 5. EIA-731.1 compared to cases

Adapted description of practice in
EIA-731.1

Paper 3,
Case 1

Paper 4,
Case 1

Paper 4,
Case 2

Paper 4,
Case 3

Develop an integration strategy ? + * + +

Document the strategy as a part of an
integration plan, and develop an
integration plan early in the program

+ - + -

Coordinate interface definition, design
and changes between affected groups

- * - * - +

Review interface data and ensure
complete coverage

- * - - -

Verify receipt of components in
accordance with architecture

- * - * - * +

Verify that the interfaces comply with
the interface documentation prior to
assembly

- * - * + +

Coordinate the receipt of system
elements for system integration
according to the planned integration
strategy

- - + -

Assemble aggregates of system
elements in accordance with the
integration plan

+ + + +

Checkout assembled aggregates of
system elements

+ + + +

24

4.1.6 ISO/IEC 15288, Systems engineering – system life cycle processes

ISO/IEC 15288:2002 is intended to describe the life cycle of systems [15]. The
standard is to be applied to the full life cycle of systems from inception,
development, production, utilization, and support to retirement of the system. It is
noted in the standard that the implementation typically involves a selection of a set
of processes applicable for the project or organization.

Product integration is described in the section Integration Process. The purpose with
this process is to assemble a system that is consistent with the architectural design.
System elements should be combined to form partial or complete products. The
activities includes definition of a strategy for integration, identification of design
constraints based on the strategy, preparation of facilities that enable the integration,
reception of validated system elements in accordance with a schedule and the actual
integration. In addition, there is a requirement to store information about the
integration into an appropriate database.

ISO/IEC 15288:2002 introduces a requirement that the constraints from the
integration strategy on design should be identified. This requirement is not
represented in any of the other standards, and is not investigated in the case studies.
However, we believe this is an important area that needs to be further investigated as
it is closely related to the requirements on how interfaces are handled.

The standard covers most of the problems found in the case studies, but are only
implicitly covering parts of the interface handling. All problems found in the case
studies can therefore not be related to a specific practice in this standard.

25

Table 6. ISO/IEC 15288:2002 compared to cases

Adapted description of practice in
ISO/IEC 15288:2002

Paper 3,
Case 1

Paper 4,
Case 1

Paper 4,
Case 2

Paper 4,
Case 3

Define an assembly sequence and
strategy that minimizes the system
integration risks

+ + + +

Identify the constraints on the design
arising from the integration strategy

? ? ? ?

Obtain integration enabling systems
and specified materials according to the
defined integration process

+ + + +

Obtain system elements in accordance
with agreed schedules

- * ? ? ?

Assure that the system elements have
been verified against acceptance criteria
specified in an agreement

- * - * + +

Integrate system elements in
accordance with applicable interface
control descriptions and defined
assembly procedures, using the
specified integration facilities

+ + + +

Record the integration information in
an appropriate database

- - - -

4.1.7 ISO 9000, Quality management systems

The ISO 9000 family of international quality management standards and guidelines is
often used as a basis for establishing quality management systems [33]. It builds on
eight principles; customer focus, leadership, involvement of people, process
approach, system approach to management, continual improvement, factual
approach to decision making, and mutually beneficial supplier relationships. All
these principles are important for product integration.

The requirements on a quality management system are specified in the ISO 9001:2000
standard. Section 7.3 in the standard describes the requirements on design and
development, and the general requirements such as planning, input, output, review,
verification, validation and control of design and development changes are all
applicable to product integration. However, as the expectations on the product
integration process are limited and not mentioned explicitly, this standard has not
been further analyzed.

26

4.2 Comparison between Practices in Different Standards and Models

Table 7 summarizes the product integration process as described in different
standards and models and provides a basis for comparison. The descriptions of
practices have been made generic and form a combination of the practices described
in each standard and model and can be used as a guideline for the definition of a
product integration process. However, if the purpose is to implement a standard or a
model, the original texts should be used. The three different types of indications in
the table are if the practice is explicitly described in the standard (E), implicitly
described (I) or not described (-). The implicit description may be through a generic
statement that the type of activity should be performed, or that it can be interpreted
as being included in another requirement.

This comparison shows that the content in the standards and models is expanding;
additional practices are added and already existing practices are made more precise.
The expectations on the preparation for integration and the handling of interfaces
have been made more explicit over time. The conclusion is that there is an on-going
development of the area and an increased agreement on what can be considered to
be best practices. Additional investigations and comparisons are in progress to
understand how the area evolves, what factors are determining what is added to the
standards and models and if there are specific considerations that should be made
for different types of products and systems. There is also a need to validate the
changes that are made through case studies in different types of product
development organizations.

27

Table 7. Product integration process in selected standards and models

 IS
O
/
IE
C

 1
22
07

IE
E
E
 S
td

 1
22
0-
19
98

E
IA

-6
32

C
M
M
I

E
IA

-7
31
.1

IS
O
/
IE
C

 1
52
88

Publication date

Generic description of activity

Aug
1995

Dec
1998

Jan
1999

Mar
2002

Aug
2002

Nov
2002

Define an integration strategy - I I I E E

Develop an integration plan based on
the strategy

E I E E E E

Define and establish an environment
for integration

- I I E - E

Define criteria for delivery of
components

I I I E I E

Define interfaces - I I E E I

Review interface descriptions for
completeness

- I I E E E

Ensure coordination of interface
changes

- I I E E I

Review adherence to defined
interfaces

- I I E E E

Develop and document a set of tests
for each requirement of the assembled
components

E I E I - I

Verify completeness of components
obtained for integration through
checking criteria for delivery

E I E E E E

Deliver/obtain components as agreed
in the schedule

E I I I E E

Integrate/assemble components as
planned

E I E E E E

Evaluate/test the assembled
components

E E E E E E

Record the integration information in
an appropriate repository

- - - - - E

Package and deliver the product or
product component

I - I E - -

Update the user documentation E - - - -

28

5 CONCLUSION

“‘It seems very pretty,’ she said when she had finished it, ‘but it’s rather hard to

understand!’”

Lewis Carroll

Investigations in industry indicate that the integration of products with significant
part software needs to be improved. The research presented in this thesis supports
these indications for products developed for industrial applications. The research
demonstrates also that the existing descriptions of practices for product integration
in standards and models help in achieving successful integration if applied, and that
the use of component-based software can simplify this. We have also seen that there
is a continued development of the description of best practices in the product
integration process area. The results from this research can be generalized to small
and medium projects in global organization developing software in Sweden for
industrial applications. A broader generalization requires additional case studies in
other environments and a deeper comparison of different case studies and
complementary approaches such as surveys and theoretical model building. The
challenge for the future is to continue the development towards an agreed body-of-
knowledge for the product integration area. There is a need to further investigate the
reasons for the lack of use of proven good practices, and to understand why the
implementation of product integration practices sometimes fails.

Several different additional directions for future research have been identified in this
thesis. We have seen indications that the selection of a specific technology increases
the ability to do efficient and effective product integration. Additional organizations
using different technologies should be investigated and compared to clarify the
dependencies. A related direction is to look at the influence architectural decisions
have on product integration.

Methods for how to determine the best improvement proposals for product
integration for different types of organizations should be investigated, enhanced and
possibly developed. This probably requires an agreed body-of-knowledge for
product integration that supports different types of organizations, and the use of
different development models. The standards and models investigated in this thesis
do not prescribe specific development models, but the selection is likely to influence
the ability to follow the practices and to be successful in the product integration.

The research described in this thesis has helped the author to an increased
understanding of how case studies need to be executed to give reliable results. The
need for careful planning, concise research questions, well formulated propositions;
and an understanding of how to increase the validity through alert selection of
investigation methods and appropriate case will augment future research
accomplishments.

29

REFERENCES

[1] IEEE, Guide to the Software Engineering Body of Knowledge,
2001,http://www.swebok.org, (link valid April 2005).

[2] IEEE, Guide to the Software Engineering Body of Knowledge,
2004,http://www.swebok.org, (link valid April 2005).

[3] Zeidler, C., Componentware Glory and Crux for early industrial adopters, Object
Oriented Programming conference OOP 2000, Munich, Germany, 2000.

[4] Winter, M., C. Zeidler and C. Stich, "The PECOS Software Process", Workshop on
Components-based Software Development Processes, ICSR 7, Austin, TX USA, 2002.

[5] Stallinger, F., B. Henderson-Sellers and J. Torgensson, ”The OOSPICE Assessment
Component: Customizing Process Assessment to CBD”, in Business Component-Based
Software Engineering, edited by F. Barbier, Kluwer Academic Publishers, Boston, USA,
2002.

[6] Myers, G.J., The Art of Software Testing, John Wiley, New York, 1979.
[7] “The Economic Impacts of Inadequate Infrastructure for Software Testing”, RTI,

National Institute of Standards and Technology, Gaithersburg, MD, USA, May 2002
[8] Campanella, J., editor, Principles of Quality Costs: Principles, Implementation, and Use, 3rd

edition, ASQ Press, ISBN 0-87389-443-X, Milwaukee, WN, USA, 1999.
[9] Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-Wesley, Boston, MA, 2003.
[10] Kellner, M.I., J.W. Over, “A Software Quality Improvement Framework,” Proceedings

from Software Engineering Forum, Olivetti Information Services, Milan, Italy, 1992.
[11] Land, R., I. Crnkovic, “Existing Approaches to Software Integration - and a Challenge

for the Future”, Fourth Conference on Software Engineering Research and Practice in
Sweden, Linköping, Sweden, October, 2004

[12] ISO/IEC 12207:1995, “Information technology – Software life cycle processes”,
ISO/IEC 1995.

[13] ANSI/EIA-632-1999, “Processes for Engineering a System”, Government Electronic and
Information Technology Association, Electronic Industries Alliance, 1999.

[14] EIA-731.1, “Systems Engineering Capability Model”, Electronic Industries Alliance,
2002.

[15] ISO/IEC 15288:2002, International Standard, “Systems engineering – Systems life cycle
processes”, ISO/IEC 2002.

[16] http://evidence.cs.keele.ac.uk/rebse.html, Link to information about Workshop on
Realising Evidence-Based Software Engineering (REBSE), affiliated with the 27th Int'l
Conf on Software Engineering, 2005. (Link valid April 2005.)

[17] Zelkowitz M. V., D. Wallace, “Experimental validation in software engineering”,
Information and Software Technology, 39, Elsevier, 1997.

[18] Shaw, M., “What makes good research in software engineering?,” International Journal
of Software Tools for Technology Transfer”, vol. l4., no.1, 2002.

[19] Oivo, M., P. Kuvaja, P. Pulli, J. Similä,”Software Engineering Research Strategy:
Combining Experimental and Explorative Research”, Proceedings of the 5th
International Conference, PROFES 2004, Kansai Science City, Japan, LNCS 3009,
Springer 2004.

30

[20] Shaw, M., “The coming-of-age of software architecture research,” Proceedings of the
23rd International Conference on Software Engineering, IEEE Computer Society, 2001.

[21] Basili, V. R., R. W. Selby, D. H. Hutchens, “Experimentation in Software Engineering”,
IEEE Transactions on Software Engineering, Vol. SE-12, No. 7, 1986

[22] Kitchenham B. ; Pickard L. ; Pfleeger S.L, “Case studies for method and tool
evaluation”, IEEE Software, Vol: 12, Issue: 4, 1995

[23] Zelkowitz, M. V., D. Wallace, “Validating the Benefit of New Software Technology”,
Software Quality Practitioner 1.1, 1998

[24] Tichy, W. F., P. Lukowicz, L. Prechelt, E. A. Heinz, “Experimental evaluation in
computer science: A quantitative study”, The Journal of Systems and Software, 1995.

[25] Yin R. K., Case Study Research: Design and Methods (3rd edition), ISBN 0-7619-2553-8,
Sage Publications, 2003

[26] Wohlin, C., P- Runesson, M. Höst, M. C. Ohlsson, B- Regnell, A. Wesslén,
Experimentation in Software Engineering, An Introduction, ISBN 0-7923-8682-5, Kluwer
Academic Publishers, 2000

[27] Brooks, F. P., “Grasping Reality Through Illusion – Interactive Graphics Serving
Science”, Proceedings of the SIGCHI conference on Human factors in computing
systems, Washington D.C. United States, 1988

[28] ISO, International Standardization Organization, http://www.iso.org/. (Link valid
April 2005.)

[29] IEEE, The Institute of Electrical and Electronics Engineers, http://www.ieee.org/.
(Link valid April 2005.)

[30] SEI, Software Engineering Institute, http://www.sei.cmu.edu/. (Link valid April
2005.)

[31] SCCI, Systems and Software Consortium, http://www.software.org/ssci/. (Link valid
April 2005.)

[32] IEEE Std 1220-1998, “IEEE Standard for Application and Management of the Systems
Engineering Process”, IEEE 1998.

[33] ISO 9001:2000, International Standard, “Quality management system – Requirements”,
ISO 2002.

31

32

33

PAPER A:

ARE LIMITED, NON-INTRUSIVE CMMI-BASED APPRAISALS

ENOUGH?

Stig Larsson and Fredrik Ekdahl
In Proceedings of the ESEIW 2003 Workshop on Empirical Studies in Software

Engineering WSESE 2003, Rome, Italy, September 2003

Abstract

An integral part of the strategy for performance improvement within the product
development at ABB is the use of CMMI-based appraisals. Each appraisal represents
an investment by the organization to lay the best possible foundation for
improvements. The challenge is to balance the investment, the intrusiveness and the
benefits. Depending on different organizational characteristics, different kinds of
appraisals should be used. All appraisals are driven by data collection and
consequently the quality of an appraisal depends on the data collection methods
used. In this paper we outline strategies used in ABB for selection of appropriate
CMMI appraisals and data collection methods. Early results indicate that the use of a
series of appraisals can be a way to overcome the resistance in an organization. We
also claim that a discussion is needed on the reliability and validity of the appraisal
methodologies and on the feasibility to base decisions regarding process
improvement strategies on appraisal results.

1 Introduction

ABB, a global operator in power and automation technologies, has been developing
industrial software products for more than 30 years. Today, steps are taken to
transform ABB into an organization recognized for its software product development
excellence. Key to this transformation is the use of the CMMI (Capability Maturity
Model Integration) [1][2] and its companion IDEALSM model [3] for organizational
improvement, both developed by the Software Engineering Institute (SEI).

In this paper, the challenges facing an organization using the CMMI to diagnose
performance will be highlighted. The aim is to fuel the discussion on the reliability
and validity of CMMI appraisals and how they can be improved.

In the second section of this paper, the relationships between maturity, capability
and performance are discussed and the connection to CMMI established. Section
three and four describe the models and data collection methods used within ABB to
manage performance improvement in product development organizations. In section

34

five, we discuss how to choose the right appraisal class. Section six describes the
results so far from ABB. Finally, section seven describes the topics for discussion.

2 Maturity, Capability and Performance

Maturity represents an organization’s ability to consistently follow and improve its
processes. An increase in maturity is driven by improved process capability. In turn,
process capability can be best described as the variability of the expected results from
a process. Improved process capability gives greater predictability and increased
performance of the process. Finally, performance represents the result that is actually
achieved by the process.

The CMMI was developed to answer the need for structured improvement of
software product development organizations, and the model itself is derived from
extensive empirical data. The CMMI is based on five maturity levels, each
representing an evolutionary stage that organizations pass through as they increase
in maturity. Each maturity level consists of a set of carefully selected Process Areas of
relevance to the specific evolutionary stage. In this way, the levels provide an
implicit prioritization of which processes to address during each evolutionary stage.

Figure 1 illustrates a few of the Process Areas in the CMMI and their
interconnections. Each Process Area consists of a set of Goals and a set of
corresponding Practices. The Technical Solution Process Area develops the product
components and the necessary product component data that is later used by the
Product Integration Process Area to integrate the final product that is delivered to the
customer. Both the Technical Solution and the Product Integration Process Areas rely
on the Verification and the Validation Process Areas to continuously ensure that
product components meet specified requirements and fulfill the expectations of the
customer.

35

Fig. 1. Sample Illustration of Process Areas from the CMMI

3 The ABB IDEAL Model

The ABB IDEAL Model has been developed to serve as the recommended work
model for initiating, planning, executing, reviewing and evaluating performance
improvement activities in product development. It is reminiscent of the IDEAL
Model developed by the SEI [3], which in turn is based on the Plan-, Do-, Check-, and
Act Cycle [4][5].

The ABB IDEAL, shown in Figure 2, consists of five phases; Initiate, Diagnose,
Establish, Act and Leverage. Each of the phases serves a specific purpose in an
improvement effort, but here attention will only be given to the Diagnose phase.

Validation

Product
Integration

Technical
Solution

Verification

Customer
Product

Product
components

Product components
Work products
Reports Validation

Product
Integration

Technical
Solution

Verification

Customer
Product

Product
components

Product components
Work products
Reports

36

Fig. 2. Phases of the ABB IDEAL Model

The purpose of the Diagnose Phase is to baseline current level of performance against
a selected reference model, such as the CMMI, and to identify the most important
areas for improvement. This includes planning, execution and follow-up of
appropriate appraisal activities. Findings from the appraisal activities are used as a
basis for identifying appropriate improvement actions that are then the focus of the
Establish, Act and Leverage phases.

The Appraisal Requirements for CMMI (ARC 1.1) [6] defines three classes of
appraisals (Class A, B and C). All three classes are used in ABB and they all display
different strengths and weaknesses [7]. The three classes of appraisals can roughly be
categorized according to cost, i.e. the investment made by the organization to
conduct the appraisal and intrusiveness, i.e. how great an interference with ordinary
operations the appraisal represents.

As appraisal findings are fundamental to the subsequent activities it is of utmost
importance that they show high reliability and validity. Consequently reliability and
validity represents and additional way to categorize appraisals. Here, reliability
represents the ability to produce findings that are relevant irrespective of variations

Diagnose

EstablishAct

Leverage

Initiate

Diagnose

EstablishAct

Leverage

Initiate

37

in sources of data and validity represents the ability to pinpoint the most relevant
findings.

Class A appraisals are the most comprehensive, but require substantial resources and
may be considered very intrusive by the organization being appraised. For example,
a Class A requires an authorized lead assessor and at least three different data
collection methods, including onsite interviews.

Class B appraisals are less comprehensive and consequently less intrusive, but still
require considerable resources. A Class B does not require an authorized lead
assessor and only requires two different data collection methods. However, onsite
interviews are still required.

Finally, Class C appraisals are the least comprehensive, but again require fewer
resources and are less intrusive. A Class C can be done remotely, as onsite interviews
are not required. Also, only one data collection method is required.

The comprehensiveness of the appraisals of course influences the reliability and
validity of the appraisal results. Table 1 summarizes the characteristics of the
different classes of appraisals.

Table 1. Characteristics of different appraisal classes

Class of appraisal A B C

Cost High Medium Low

Intrusiveness High Medium Low

Validity High High Low

Reliability High Medium Low

4 Data Collection Methodology

One of the primary driving forces of reliability and validity of an appraisal is the data
collection methodology used. In ABB, four data collection methods are used in the
appraisals; process mapping, questionnaires, document reviews and interviews. The
choice of data collection methods depends on the appraisal class chosen.

To illustrate the four different methods for data collection and the kind of data that is
obtained, we will use the Product Integration process area as an example. As shown
in Figure 1, Product Integration relates to several other process areas and requires
communication and documentation in the project to be of high quality to ensure
effective execution. (Refer to [1] for a detailed description of the Product Integration
process area.)

38

The purpose of process mapping is to graphically capture the current state of the
product development process in the appraised organization. It covers all process
areas involved from requirement capturing to delivery to customer. The mapping is
done in cooperation between the appraisal team and a representative of the
organization, and typically happens during the planning phase of the appraisal, as
the map will greatly facilitate any additional data collection. Process mapping gives a
good overview and allows identification of weak or missing practices as well as
unnecessary complex process flows. However, as the number of individuals involved
is small, the result may be biased. For the Product Integration process area, the
mapping reveals what interfaces exist towards activities in other process areas and
the absence of activities expected in the process.

The second method for data collection is questionnaires. The questionnaires consist
of a set of standard questions for each of the process areas in scope. Questionnaires
allow large organizational coverage, i.e. a large number of respondents, which
provides for a good estimate of the level of understanding of the process in the
organization. However, even if the possibility to add comments is a part of the
questionnaire, the questions are seldom open ended and there is really no possibility
for follow-up questions, which could give additional data.

The third method for data collection is document reviews during which documents
and other work products resulting from process execution are analyzed. Document
reviews allow the appraisal team to review evidence of the claims, about the
existence, content and quality of documents, made in questionnaires and in
interviews.

Document review for the Product Integration process area would normally include
integration plans that typically show the integration steps and strategies for
integration testing, and also the requirements on other parts of the project through
expected delivery dates and functionality. Also, interface lists showing how well the
project has defined connections between different parts of the product, integration
acceptance records, product integration reports and delivery documents displaying
the state of the handover between different parts of the project and the organization
are likely to be reviewed. According to the CMMI, all these documents, or the fact
that they do not exist, indicate how well the Product Integration process is
performed.

The fourth and final data collection method is interviews. Interviews are conducted
with members of the organization selected based on their anticipated knowledge of
how the process is actually performed. Although the interviews are highly
structured, i.e. follow a predetermined format, it is important that they are perceived
as quite informal by the interviewees. This requires careful planning and well-trained
interviewers. Much as the questionnaires, the interviews are based on a standard set
of questions, but now there is more room to explore follow-up questions and give the
interviewees greater possibility to describe the process in their own words. Of

39

course, interview sessions can only reveal the individual perception of the
interviewees on process execution and organizational adherence.

For the Product Integration process area, highest priority should be given to
individuals responsible for the execution of the product integration. This group can
provide information on how the process is performed and on how different
development groups deliver components for integration. They are also likely to
provide proposals for how the process can be improved. Also, individual developers
in the component development groups, technical writers etc., and the receivers of the
result (product verification, validation, production groups) are high priority
interviewees to get a complete view of the process. These groups can describe what
requirements come from the product integration function. Additional candidates for
interviews include project and line managers, configuration managers and
requirement managers.

5 Choosing an Appraisal Class

The selection of a specific appraisal class largely determines what type of data
collection methods can be used. In a Class C appraisal, it is not required to use more
than one data collection method. This means that the data might be incomplete. For
example, when using only questionnaires to investigate the Product Integration
process area, there might be activities, such as checking for interface compatibility
with interface specifications, which are performed but not documented as expected
in the way the questions are written. This could result in the erroneous observation.

Class B appraisals always include interviews and at least one more data collection
method. Through the interviews, findings in the other data collection method can be
confirmed and additional information be found that better reflects the activities
performed. In the Product Integration example, the interface compatibility check
would be found in the discussions with the product integration responsible and
corroborated through interviews with the component development groups.

To secure reliability and validity of the results from the appraisal, a Class A must be
used. In a Class A, at least three data collection methods are required. This will
enable crosschecking between different groups, but also to verify the findings
through other sources such as protocols from interface compatibility reviews.

There are two main reasons for not always selecting Class A appraisals; the openness
and maturity of the organization. Openness represents the willingness of an
organization to accept the costs of an appraisal, to accept the inconvenience of
external examination and to make a genuine effort to improve. The maturity of an
organization influences the possibilities to conduct more thorough appraisals. That
is, mature organizations are more likely to appreciate and benefit from the results
from an appraisal.

40

The openness and maturity of an organization can thus guide the organization to the
appropriate class of appraisal.

Fig. 3. Selection of appraisal class based on organization characteristics

Figure 3 illustrates what class of appraisal should, in our experience, be selected for
an organization with specific characteristics. Organizations with low maturity need
experience in process improvement before exhaustive appraisals give the expected
benefits. Organizations that are sensitive to intrusive appraisal methods need
confirmation that external assistance in finding improvement opportunities is useful.

For organizations with low maturity that are sensitive to external appraisals, very
basic processes may have to be put in place before any appraisal is helpful. As the
organization develops process knowledge and the first appraisal is conducted, the
unit will get an understanding of what the result of an appraisal can be and start to
appreciate the external view. For these organizations, class C appraisals are
appropriate.

If an immature organization is open to external assistance in finding improvement
opportunities the appraisal can be extended to cover a larger part of the organization.
By increasing scope and through using additional data collection methods, more
reliable results will be available. A class B appraisal supports this.

Also mature organizations may need results to accept comprehensive appraisals.
Reviews and audits made by external organizations are very often considered as an
inspection or a test that needs to be passed by the unit that is examined. Frequent
reviews can have the side effect that the organizations become sensitive to external
interference in the process improvement work. This means that for less open

Maturity

Openness

-/C

C/B B/A

B

Maturity

Openness

-/C

C/B B/A

B

41

organizations, less intrusive appraisal methods should be selected to build
confidence. It may be necessary to start with Class C appraisals or to use a class B
appraisal on a limited set of process areas in a limited part of the organization.

Also for the open and mature organization, the use of Class A appraisals can be
enhanced with more frequent class B appraisals to verify the direction of the
performance improvements in the organization.

6 Early Results and conclusion

The approach used by ABB is to classify the organization with respect to maturity
and openness and select an appropriate roadmap. A common solution for the initial
work is to perform several Class C appraisals to capture urgent issues followed by a
Class B appraisal to secure the quality of improvement progress. Class C appraisals
cover a limited number of process areas in each appraisal. The appraisals are scoped
so that a broad coverage of process areas is obtained over time. Class B appraisals, on
the other hand, are scoped to achieve complete coverage of a set of process areas.

The concept of combining Class B and C appraisals is attractive also to less mature
organizations, as the intrusiveness is relatively small, but still allows continuous
observation. The results from the combined series of appraisals provide a
longitudinal perspective enabling continuous control of the process improvement
activities. The use of a series of appraisals can be a way to overcome the resistance in
an organization. Although initial results from using this approach are promising,
further study is needed to validate its feasibility for broad application.

7 Topics for Discussion

ABB has chosen to use CMMI appraisals as the tool to study the progress of process
improvement activities. Consequently it is vital for achieving our targets that this
tool meets our purpose to produce reliable and valid findings in a cost effective and
less intrusive way. Therefore, a discussion is needed on the reliability and validity of
appraisal methodologies and on how they can be further improved.

In addition, a discussion is desirable on the feasibility of our approach as a basis for
decision-making regarding process improvement roadmaps. Are limited, non-
intrusive CMMI appraisals really enough?

42

References

[1] CMMI® Product Development Team, “CMMI for Systems Engineering, Software
Engineering, Integrated Product and Process Development, and Supplier Sourcing
Version 1.1 (CMMI-SE/SW/IPPD/SS, V1.1), Staged Representation”, Technical Report
CMU/SEI-2002-TR-012, Pittsburgh, PA (2002)

[2] CMMI® Product Development Team, “CMMI for Systems Engineering, Software
Engineering, Integrated Product and Process Development, and Supplier Sourcing
Version 1.1 (CMMI-SE/SW/IPPD/SS, V1.1), Continuous Representation“, Technical
Report CMU/SEI-2002-TR-011, Pittsburgh, PA (2002)

[3] McFeeley, R., “IDEALSM. A User’s Guide for Software Process Improvement”,
Handbook, CMU/SEI-96-HB-001, Pittsburgh, PA (1996)

[4] Deming, W. E., Out of the Crisis, Cambridge University Press, Cambridge, MA (1986)
[5] Deming, W. E., The New Economics - For Industry, Government, Education, Massachusetts

Institute of Technology Cambridge, MA (1993)
[6] CMMI® Product Development Team, “ARC, V1.1; Appraisal Requirements for CMMI,

Version 1.1”, Technical Report CMU/SEI-2001-TR-034, Pittsburgh, PA (2001)
[7] Minnich, I., “CMMI Appraisal Methodologies: Choosing What Is Right for You”,

Crosstalk, Feb 2002, http://www.stsc.hill.af.mil/crosstalk/2002/02/minnich.html
(link valid April 2005).

43

44

45

PAPER B:

SELECTING CMMI APPRAISAL CLASSES BASED ON MATURITY

AND OPENNESS

Stig Larsson, Fredrik Ekdahl
In PROFES 2004 Conference, Kansai Science City, Japan, April 2004

Abstract.

Over the last eight years, different approaches have been used to diagnose the
performance in ABB organizations developing software. The efforts build to a large
degree on methods from the Software Engineering Institute (SEI). In this paper we
examine the experiences from five organizations through a description of the
pathways that we have observed in the maturity development. We also propose a
way to classify organizations based on two organizational characteristics, maturity
and openness. Based on this classification, a simple method for the selection of how
to collect performance data from the organizations is described.

1 Introduction

Considerable effort has been put into transforming ABB into an organization
recognized for its software development excellence. This is in line with a strategic
redirection of operations towards primarily the software intensive process
automation market. Since the mid-nineties, several performance improvement
initiatives have been run on a national level. Tangible results are evident in many of
the participating organizations. Today, there is a global program for performance
improvement in product development that coordinates improvement activities
throughout ABB.

Using structured process improvement methods is a well-documented path towards
increased maturity in product development organizations. In this paper, we adhere
to the Software Engineering Institute’s [1] definition of maturity as an organization’s
ability to consistently follow and improve its processes. In ABB, we have over the last
eight years tried a number of approaches in different parts of the organization. Our
focus has been on software development units, primarily developing software
intensive products. Due to organizational dynamics and management short-term
focus, some of the initiatives have been disrupted or slowed down. Also, the
expected development towards higher maturity and accompanying results in quality
and development speed has not been received. As organizations probably will
continue to be dynamic and the focus on short-term results occasionally will re-
appear, we need to better understand how performance improvement can be
achieved in spite of these and similar circumstances.

46

Based on our experiences in ABB we introduce the concept of evolutionary paths in
maturity and use five short case studies from organizations within ABB to illustrate
how organizations develop over time in terms of maturity. As a structure for the
illustration of how these organizations have evolved, we use a simple model that
allows a longitudinal perspective. The model defines four different types of
organizations, each exhibiting a few unique characteristics. Based on our experiences
within ABB, we also propose strategies for approaching each of the four types of
organizations. Future work will include more comprehensive evaluations of different
approaches for the different organizational types. This will eventually lead to the
possibility to provide strong guidance for all types of organizations relative to
diagnostic strategies and to improve the maturity in software product development.

In ABB, the Capability Maturity Model Integration (CMMI, [1][2]) is used as the
preferred process reference model and that is reflected in this paper. However, we
would like to point out that the proposed classification and the corresponding
strategies are valid independently of the reference model used.

The CMMI (and its predecessor the Software Capability Maturity Model, SW-CMM)
was developed to answer the need for more structured and long lasting
improvement of software product development organizations. Both the SW-CMM
and the CMMI are derived from extensive industry experience.

The CMMI consists of five maturity levels, each representing an evolutionary stage
that organizations pass through as they increase in maturity. Each maturity level
consists of a set of carefully selected Process Areas of relevance to the specific
evolutionary stage. This way, the levels provide an implicit prioritization of which
processes to address during each evolutionary stage. Each Process Area consists of a
set of Goals and a set of corresponding Practices.

The CMMI is a process reference model and it does not contain any explicit support
for how to actually achieve improvement. Therefore the SEI developed the IDEAL
model [3], which in detail describes how to use the CMMI (or in fact the SW-CMM)
to professionally improve the maturity of an organization.

The IDEAL Model consists of five phases; Initiate, Diagnose, Establish, Act and
Leverage, each serving a specific purpose in an ongoing improvement effort.

The purpose of the Diagnose phase is to baseline current level of maturity against a
selected reference model, such as the CMMI. This includes planning, execution and
follow-up of appropriate appraisal activities. For other reference models the terms
audits or assessments are often used, which corresponds to the term appraisal used
here. Findings from the appraisal activities are used as a basis for identifying
appropriate improvement actions that are then the focus of the Establish, Act and
Leverage phases.

The remainder of this paper is organized as follows. Section two describes how
improvements in product development maturity can be based on appraisals. We also

47

define the characteristics selected for classification of organizations. Section three
contains the five case studies that illustrate the evolutionary pathways that we then
use as a basis for the different diagnostic strategies detailed in section four. The
paper ends with some conclusions and a brief look into possibilities for future work.

 2 Appraisal-Driven Improvement

There is strong support in the literature that conducting diagnostics activities, i.e.
systematically identifying strengths and weaknesses in an organization, contributes
to the advancement of organizational excellence [5]. Diagnostic activities come in
different forms, including for example appraisals, audits, assessments and reviews.
Common to all are that the results can be used as the foundation for future
improvement activities.

In ABB, the preferred diagnostics methodology is CMMI appraisals. An appraisal is
an examination of one or more processes that an organization does to and for itself
for the purposes of process improvement. It is conducted by a trained team of
professionals using an appraisal reference model as the basis for determining
strengths and weaknesses [1]. The Appraisal Requirements for CMMI (ARC 1.1) [4]
defines three classes of appraisals (Class A, B and C). All three classes are used in
ABB and they all display different strengths and weaknesses [6]. Class A appraisals
are the most comprehensive, but require substantial resources and may be
considered very intrusive by the organization being appraised. Class B appraisals are
less comprehensive and consequently less intrusive, but still require considerable
resources. Finally, Class C appraisals are the least comprehensive, but again require
fewer resources and are less intrusive. The comprehensiveness of the appraisals of
course influences the reliability and validity of the appraisal results. Table 1
summarizes the characteristics of the different classes of appraisals.

Table 1. Appraisal class characteristics

Class of appraisal A B C

Size of appraisal team 8-10 3-4 1-2

Appraisal time 10 days 3-4 days 1-2 days

Minimum # of data collection methods 3 2 1

On-site interview required Yes Yes No

Cost High Medium Low

Intrusiveness High Medium Low

Validity High High Low

Reliability High Medium Low

48

As appraisal findings are fundamental to the subsequent activities it is of utmost
importance that they show high reliability and validity. In this context, reliability
represents the ability to produce findings that are relevant irrespective of variations
in sources of data and validity represents the ability to pinpoint the most relevant
findings.

There are several organizational characteristics that improve the chances of
successful improvement activities. [7] provides an overview of characteristics of
particular importance for software process improvement based on case studies and
experience reports from 56 different organizations.

Similarly, there are several organizational characteristics that contribute to truly
effective appraisal activities. [8] contains a good overview of what is needed from an
organization to fully benefit from an appraisal. Among the more important can be
mentioned:

Strong management commitment: Improvement does not happen overnight. It is
important the senior management is willing and patient enough to visibly stand
behind a genuine improvement effort based on the appraisal results. This also
includes allowing and withstanding the scrutiny that appraisal activities entail.

Resources for Performance Improvement: Financial as well as human resources are
necessary to cover the appraisal costs and of course also to fund subsequent
improvement activities.

Improvement Infrastructure: In order to effectively make use of appraisal results, a
certain degree of organizational structure must be available. It is for example
common to establish an engineering process group that is responsible for
coordinating the improvement activities. Also a process champion that reports
directly to the management team on improvement progress is very valuable.

Organizational characteristics such as these are fairly easily identified when
observing an organization from the outside. Consequently, they can be used as
indicators of the readiness of an organization to work effectively with appraisal-
driven and professional improvement.

In our contacts with development units within ABB we have identified two
characteristics that distinguish the organizations from each other relative to the
effectiveness of different classes of appraisals. The first characteristic is Maturity, i.e.
the ability of an organization to follow and improve its processes. We have found
that the maturity of an organization influences the possibilities to conduct appraisals
effectively, as well as the ability to appreciate and benefit from the results from an
appraisal. The concept of maturity according to the SEI’s definition can be considered
fairly objective as there are established techniques and considerable experience in the
field of maturity evaluation.

49

The second characteristic is Openness, which basically captures the inclination of an
organization to embrace external help. In this paper, openness is an aggregate that
represents the willingness of an organization to accept the costs of an appraisal, to
accept the inconvenience of external examination and to make a genuine effort to
improve. This definition of openness is influenced by the list of organizational
characteristics identified in [8]. A proposed scale, ranging from 1 to 5, for the
openness of an organization:

5. Management and organization are openly requesting assistance in performance
improvement, including appraisals, improvement planning and subject matter
expertise.

4. Management and organization accept assistance in performance improvement,
including appraisals and improvement planning.

3. Management accepts assistance in conducting appraisals.
2. Management accepts discussing performance improvement.
1. No access to management or organization.

We acknowledge the dangers of using a characteristic with such obvious subjectivity.
However, we still argue its relevance for guiding appraisal activities, as will be
illustrated in the case studies and in our recommendations.

There are of course many organizational characteristics beside maturity and
openness that also influence the potential benefit and success of appraisal activities.
For example, the size or complexity of he organization, the current lifecycle phase of
key projects, or current financial status. We do not claim to be in any way exhaustive
in our search for suitable organizational characteristics. Instead, we have settled with
a set of characteristics that appears good enough for our purposes.

3 Case Studies

The case studies include five different ABB organizations. The size of the
organizations, in number of software developers, range from 60 to 120 and all five
organizations develop software that is used in industrial environments. We have
refrained from revealing actual maturity levels in the case studies, primarily because
they add no value to the discussion or the conclusions of this paper, but also as they
are considered confidential and proprietary to the individual organizations. Note
that the overall goal of the case organizations is not to achieve a certain maturity
level, but to improve performance.

3.1 Research Method

Each organization has been examined over a period of several years with different
data collection methods. Appraisal and assessments have been made using the SW-
CMM or the CMMI as a reference model. Typically, class B appraisals or equivalent
assessments have been made. Support work ranges from leading workshops and
providing training to assisting the organizations in developing and institutionalizing

50

new processes. Through moderating peer reviews where software development
managers meet to review each other’s improvement activities, additional information
has been collected. Finally, networks of software development managers have been
organized. Both authors of this paper have been directly involved in all of the above
activities. This allows us to estimate maturity and openness. Maturity estimates have
been based on data available from appraisals, assessments and audits. Openness has
been estimated based on the scale presented above.

The long-term observations have given us the possibility to describe a maturity
development path for each organization. The extended time for the observations as
well as the use of the diversity of the data collection methods should increases the
reliability of the collected data.

Through the methods used in this study, we conclude that this is a hermeneutic
research endeavor. Thus, we need to acknowledge the influence of our research on
the units and the results. We claim that although we influence the different
pathways, this influence does not change the validity of the observations or the
conclusions regarding the classification of the different organizations.

We acknowledge the relatively unstructured data collection method used when
determining the openness. This is also true for some of the maturity observations.
The data collection is thus partly subjective. As a result, the possibility to replicate
this particular study is small. However, we consider our observations as a good
starting point for conducting a more stringent investigation.

In addition, through the long-term observations and extensive experience from the
organizations, we still claim that the observations are reliable enough to qualitatively
determine the openness and maturity for the organizations. In addition to this, the
use of external observers doing peer review of our research adds validity.

3.2 Organization A

Organization A develops real time control systems and tools for adaptation of the
system for different applications. The unit has developed software for almost 30
years, but has been exposed to repeated changes in the organizational structure over
the last 15 years.

Figure 1 shows the development of the maturity and openness over the last eight
years.

51

Fig. 1. Organization A maturity pathway

The following development has been observed:

1. Use of CMM to improve performance. The decision to base the improvement
efforts on SW-CMM was firmly committed with the management. During this
period, the performance improved as well as the maturity. Also, the need to
involve external experts for specific areas was acknowledged.

2. Major change in commitment. Due to acquisitions and new development
management, the commitment to increase maturity as a means to further
increase performance was lost. Consequently, the openness diminished.

3. Organizational changes. As a result of the insufficient results, clarification of
global responsibilities where made, again giving the responsibility to the local
management to drive improvement.

4. High pressure to deliver. Improvement efforts were in this period not prioritized.
However, the openness increased as a result of local management commitment
to improvement efforts.

5. Initial results from process improvement activities. Through the commitment and
openness, we can now observe initial results in maturity.

3.3 Organization B

With the experience of software development spanning over more than 20 years, this
organization has established the basic routines for product development. The real
time part of the system is primarily operating as an independent product, but is more
and more connected to a larger system. The unit is also expanding the software
development to PC based products. This expansion has partly been made through
acquisitions.

Maturity

Openness

5
1

2

3

4

Maturity

Openness

5
1

2

3

4

52

Fig. 2. Organization B maturity pathway

The development for the last five years for organization B is shown in figure 2:

1. Yearly improvement plans introduced. The efforts to improve were based on
targets for the organizations. However, no diagnostic activity was performed.

2. Increased pressure to improve timeliness and quality. The pressure lead to increased
acceptance to involve external resources in finding improvement areas.

3. Introduction of CMMI. Recently the organization has decided to use CMMI as a
tool for identifying weakness and initiating improvements in projects.

3.4 Organization C

Through several reorganizations and mergers, this organization has managed to
maintain focus on the products that are entirely software based. The product
development is primarily directed towards the evolution of the product platform.
The organization is also cooperating with similar units around the world. However,
there is currently no requirement that the products from different units should be
integrated.

Fig. 3. Organization C maturity pathway

Maturity

Openness

1
2

3

Maturity

Openness

1
2

3

Maturity

Openness

1

2

3
4

Maturity

Openness

1

2

3
4

53

The pathway shown in figure 3 describes the development for the last three years:

1. Strategic decision to use SW-CMM. The decision was a response to market
requirements and included the intention to use SW-CMM as a diagnostic tool as
well as a roadmap for improvements. External expertise was requested from
start.

2. Initial results achieved. As results where observed, the organization started to
work more in isolation.

3. Acceptance that external assistance is beneficial. As the pace of the improvements
slowed down, a more open attitude could be observed.

4. Preparation for class A appraisal in progress. The current status is that a class A
appraisal is planned.

3.5 Organization D

The organization develops products with a tight integration of hardware and
software. The real time requirements on the system are tough and also one
discriminating factor in the marketplace. The development of software has gradually
grown over the last 15 years.

 As shown in figure 4, the organization has developed in the last five years as
follows:

1. SW-CMM used for improvement. Through a Class A type of assessment, the

organization started an improvement effort.
2. Internal improvements. As the organization was maturing, the strategy was to

decrease external involvement in the efforts to diagnose and improve
performance.

3. Organizational changes. The organization was transferred to belong to a different
part of ABB. This resulted in a change in senior management with less interest
for improvement efforts.

4. Change agent changes. In addition to organizational changes, the unit has had
several changes in the staff responsible for processes and improvement efforts.

Fig. 4. Organization D maturity pathway

Maturity

Openness

1

2

3

4

Maturity

Openness

1

2

3

4

54

3.6 Organization E

The organization develops real time products with a tight integration of hardware
and software. The reliability requirements on the products are high. The dependence
on the software part of the product has steadily grown over the last 25 years.

Figure 5 shows how the organization has developed over the last eight years:

1. Increased demands on performance. As the products started to include more and
more software, the structure and complexity grew. This led to the needs to
improve. The organization started to gradually improve through internal
projects.

2. External support. As the organization matured, an appreciation of external
assistance started to grow.

Fig. 5. Organization E maturity pathway

3.7 Longitudinal Perspective

The development of maturity over time may also add to the understanding of how to
choose a diagnostic strategy. Figure 6 shows this development for the development
organizations in the case studies.

We draw three additional conclusions from our experiences; to build up maturity
takes considerable time, to build up the confidence for external support also takes
time and finally, both maturity and confidence can easily and quickly be lost.

Maturity

Openness

1

2

Maturity

Openness

1

2

55

Fig. 6. Longitudinal maturity development for organizations A through E

4 Diagnostic Strategies

Diagnostic activities are key to the overall success of an improvement activity.
Consequently, choosing an appropriate diagnostic strategy largely determines how
effective an improvement effort will be. In an attempt to capture the experiences we
have made in ABB and to allow some amount of generalization we propose
classifying organizations based on their openness and maturity. In addition we
propose a primary diagnostics strategy for each type of organizations.

4.1 Organizational Classification

From the observed case studies, we have identified four types of organizations as
shown in Figure 7. Type 1 organizations are immature organizations that are
unwilling to let external experts help in improvements. Typically these organizations
think they are more mature than is the case.

Maturity

Time

A

B

C
D

E

Maturity

Time

A

B

C
D

E

56

Fig. 7. Organization classification based on openness and maturity

In Type 2 organizations, where openness is found but the maturity is low, an
acceptance that the organization is immature is often found. There is often awareness
in this type of organization that external assistance is needed.

Type 3 organizations very often have a tradition of internal process improvement
that has led to a mature status. The lack of openness in these organizations can have
several different reasons, but as it may slow down or even stop the improvement
activities, efforts should be made to overcome it.

Finally, Type 4 organizations take full advantage of the external expertise and use
that to maintain their maturity.

4.2 Recommended Diagnostic Activities

Organizational openness and maturity are both relatively easy to observe. They are
also highly indicative of the kind of external support and organization is ready for.
Consequently, the openness and maturity of an organization can be used to guide
decision making in the development of an improvement strategy. This is especially
true when choosing appropriate diagnostic activities.

Figure 8 illustrates the recommended diagnostic methods, expressed in different
classes of CMMI appraisals, for each of the four types of organizations. Our
recommendation is based on a combination of the observations made in the case
studies and other organizations within ABB and externally.

Maturity

Openness

Type 1 Type 2

Type 3 Type 4

Maturity

Openness

Type 1 Type 2

Type 3 Type 4

57

Fig. 8. Selection of CMMI Appraisal Class (A through C) based on organization
characteristics

The basic observation is that organizations with low maturity need experience in
process improvement before exhaustive appraisals give the expected benefits. In
addition, organizations that are sensitive to intrusive appraisal methods need
confirmation that external assistance in finding improvement opportunities is useful.

For organizations with low maturity that are sensitive to external appraisals (type 1
organizations), very basic processes may have to be put in place before any appraisal
is helpful. As the organization is immature, the area to improve should be easy to
find through initial discussions with the organization. It is very important that the
efforts give quick payback, as this will encourage the organization to continue the
efforts. As the organization gains experience and the first appraisal is conducted, the
unit will get an understanding of what the result of process improvement activities
can be. The organization will also start to appreciate the view from external sources.
This type of organizations typically selects Class C appraisals. Since a class C
appraisal only covers a part of the organization, the selection of projects is important.
Our experience is that central projects should be selected. Based on the status of these
projects, the process areas to be examined are decided.

If an immature organization is open to external assistance in finding improvement
opportunities (type 2 organizations) the appraisal can be extended to cover a larger
part of the organization. By increasing scope and through using additional data
collection methods, more reliable results will be available. A Class B appraisal
supports this.

Also mature organizations may need results to accept comprehensive appraisals
(type 3 organizations). Reviews and audits made by external organizations are very
often considered as an inspection or a test that needs to be passed. Frequent reviews
can have the side effect that the organizations become sensitive to external
interference in the process improvement work. This means that for less open

Maturity

Openness

-/C C/B

C/B B/A

Maturity

Openness

-/C C/B

C/B B/A

58

organizations, less intrusive appraisal methods should be selected to build
confidence. It may be necessary to start with Class C appraisals or to use a Class B
appraisal on a limited set of process areas in a limited part of the organization.

When an organization is both open and mature (type 4 organizations), the use of
Class A appraisals can be enhanced with frequent Class B appraisals to verify the
direction of the performance improvements in the organization.

As the organizations move along a pathway, the strategy for the performance
improvement needs to be adapted. We propose that the method described increases
the probability for long term sustainable improvements, and can assist management
in determining the appropriate level of activity in each moment.

5 SUMMARY AND CONCLUSIONS

Through the use of different diagnostic methods, we have captured and described
the evolutionary paths of four organizations. To describe the development we use a
mapping based on two organizational characteristics, maturity and openness. These
have been selected as our experience indicates that both affect the possibilities to
effectively use the results from appraisals. We acknowledge that there are several
other organizational characteristics that are of equal importance for successful
performance improvement. Among these are for example, organizational size,
project pressure, management commitment and economical success. However, the
experiences from the cases show that for the selection of the most appropriate
diagnostic strategy the maturity and openness characteristics are outstanding. Based
on the defined characteristics, we have identified four types of organizations, and
this classification enables us to propose what class of diagnostic method should be
used for a specific organization. The principle is that lower maturity organizations
benefit from less intrusive appraisals, as the benefits of improving the processes need
to be shown to create acceptance for external involvement in diagnostics and
improvement activities. Also, if an organization is not open, the need to confirm that
external assistance is beneficial.

6 FUTURE WORK

Looking into the future there are several ways to further develop the claims and
recommendations made in this paper.

We would want to continue monitoring the evolutionary paths of the organizations
in the case studies to get a better understanding of how organizations evolve over an
extended period of time. This would in the long run enable us to identify patterns of
behavior, and consequently allow prediction in some sense of how an organization is
going to evolve. We would also want to extend the study to include additional
organizations, as this would increase the reliability and validity of our claims.

59

It would also be interesting to make a comparison between the observed patterns of
behavior and what can be called an “ideal” path. Often, reference models, such as the
CMMI, expect and require organizations to evolve along extreme paths that are not
achievable in reality. Whether or not this is detrimental for the way improvement
efforts are planned an executed remains to be investigated. It is reasonable to claim
that having a better understanding for more realistic evolutionary paths will help
improve the way improvement efforts are set up.

It would also be interesting to further investigate the openness characteristic of
organizations. In this paper, we have let openness represents an aggregate of a set of
organizational traits. However, more work is needed to better understand the
organizational aspects that influence the ability to improve professionally. Future
study would allow development and verification of a more complete set of
organizational characteristics. These characteristics could then be used as readiness
indicators, much as openness is used in this paper, when developing an
improvement strategy and before undertaking an improvement effort.

In turn, a more complete set of organizational characteristics, would allow
identification of additional types of organizations, which would add more
perspective to the analysis.

Finally, more work is needed to verify the recommendations made in this paper as to
the choice of diagnostic method for different types of organizations. In the long run,
it will also be possible to extend the recommendations to include not only diagnostic
activities, but also the remaining phases of the IDEAL model. This would entail
developing comprehensive strategies for planning and executing professional
performance activities in organizations based on their unique characteristics.

60

REFERENCES

[1] CMMI® Product Development Team, “CMMI for Systems Engineering, Software
Engineering, Integrated Product and Process Development, and Supplier Sourcing
Version 1.1 (CMMI-SE/SW/IPPD/SS, V1.1), Staged Representation”, Technical Report
CMU/SEI-2002-TR-012, Pittsburgh, PA (2002)

[2] CMMI® Product Development Team, “CMMI for Systems Engineering, Software
Engineering, Integrated Product and Process Development, and Supplier Sourcing
Version 1.1 (CMMI-SE/SW/IPPD/SS, V1.1), Continuous Representation“, Technical
Report CMU/SEI-2002-TR-011, Pittsburgh, PA (2002)

[3] McFeeley, R., “IDEALSM. A User’s Guide for Software Process Improvement”,
Handbook, CMU/SEI-96-HB-001, Pittsburgh, PA (1996)

[4] CMMI® Product Development Team, “ARC, V1.1; Appraisal Requirements for CMMI,
Version 1.1”, Technical Report CMU/SEI-2001-TR-034, Pittsburgh, PA (2001)

[5] Kitson, D. H., and Humphrey, W. S., The Role of Assessment in Software Process
Improvement, Software Engineering Institute, CMU/SEI-89-TR-3, Pittsburgh, PA
(1989).

[6] Minnich, I., “CMMI Appraisal Methodologies: Choosing What Is Right for You”,
Crosstalk, Feb 2002, http://www.stsc.hill.af.mil/crosstalk/2002/02/minnich.html
(link valid April 2005).

[7] Steltzer, D., and Mellis, W., “Success Factors of Organization Change in Software
Process Improvement”, Software Process Improvement and Practice, 4, (1998)

[8] Kasse, T., Action Focused Assessments for Software Process Improvement, Artech House
Inc., Norwood, MA (2002)

61

62

63

PAPER C:

ON THE EXPECTED SYNERGIES BETWEEN COMPONENT-

BASED SOFTWARE ENGINEERING AND BEST PRACTICES IN

PRODUCT INTEGRATION

Stig Larsson, Ivica Crnkovic, Fredrik Ekdahl
In Euromicro Conference, Rennes France August 2004

Abstract

The expectations for a well working integration process are described in the
Capability Maturity Model Integration (CMMI). Often during the integration
process, weaknesses of the entire development process become visible. This is
usually too late and too costly. Particular development processes and use of
particular technologies may help to improve the performance of the integration
process by providing proper input to it. For example, by the use of a component-
based approach, the development process changes. Some of these changes may help
in performing according to the process expectations. In this paper, examples of
problems that have been observed in the integration process are described. Through
a case study we describe a number of practical problems in current development
projects. Based on this case study, we analyze how a component-based approach
could help and lead to a more effective integration process.

1. Introduction

Product integration is a specific activity in the software development process. Very
often this is also the activity where most of problems become visible and when it is
either too late or at least very expensive to solve the problems. This is especially true
for large and complex software products and systems which parts are developed and
tested separately and when different mismatches are invisible until the products are
integrated. The problems of integration usually have roots in previous phases, and
most often in the lack of coordination between these phases. There are several
reasons for this. First, it can be a communication problem and differences in goals
between engineers conducting requirements analysis and specification, development,
integration, testing and delivery of the products. Further there can be differences in
the project goals (personified by project managers) and long-term goals (personified
by system architects and domain experts). Second, a source of the problem is
inadequate preparation of parts for the final integration. While being tested and
verified on a part level, the product parts do not fit together. The reason for this
problem can be inadequate test environments that are sufficient for testing particular

64

functions of each part in isolation, but which do not reflect the impact of a particular
part on the entire product. A third source of problems is inadequate information
provided from parts. Very often there are many unwritten rules and “default”
assumptions known on the part level that are invalid for the whole product. A fourth
type of problems is features added into particular parts that are unknown to other
parts and the entire product. By adding new features (such as improvement of
particular functions or protocols) the architecture of the entire system can degrade or
even break down.

Many of these problems originate from the ambiguity of separations of activities in
the development process. While a separation of the different parts of the
development processes exists in practice, this separation is often not well defined
and formalized.

In component-based software engineering (CBSE), a separation of the development
of components from the product integration is one of the main characteristics [1].
This raises several questions as described in [2]: What is a component, what is
included into a component specification, what are the possibilities of predicting the
product properties from component properties, how does a component interact with
other components and its environment and similar.

So far the research focus for component-based engineering has primarily been on
technical issues, and considerably less on process issues. It is however very
important to know if the development process and CBSE are synergistic; will it be
more efficient and effective or will it meet new challenges and maybe unsolved
problems?

In this paper our aim is to investigate what the opportunities for improvement of the
integration process and the development process in general by introducing a
component-based development. Can the problems described be (at least partially)
solved?

To investigate this possibility our research approach is the following. From a case
study of a development process that has many similarities to a component-based
approach, but still is not explicitly designed so, we highlight to the main challenges
and problems that become visible in the integration phase. Further we analyze these
challenges and discuss the possible changes and improvements in the process by
introduction of a component-based development process.

The definition of a software component used in a product follows in this paper is
broad, and the term is used to describe a part of a software system. However, in the
discussions regarding CBSE, the notion of a component follows to a large extent [1],
i.e. software components are binary units of independent production, acquisition,
and deployment that interact to form a functioning system. We also use the
definition of a product as an application that can be sold and distributed
independently, and has a clear customer value on its own.

65

The remainder of the paper is organized as follows. Section two describes the main
characteristics of the integration phase of a development process, the main
characteristics of a component-based development process, the changes in the
integration process implied by component-based software engineering and related
work. In section three, a case study is presented to show examples of how the
integration process is performed today. Section four analyzes how the use of
component-based software engineering would resolve today’s challenges. Finally
section five contains the conclusion and proposed future work.

2. Product Integration in relation to CBSE

The product integration process for software products addresses the assembly of
software components. The target is to integrate components into a product and to
ensure that the product works appropriately so that it can be delivered to customers.
An integration process that is working well is expected to increase the probability
that a development project delivers quality products in a timely manner.
Component-based software engineering is targeting similar goals; to improve the
productivity through use of high-quality components with predictable behavior. This
section describes these two independent methods for improving the performance in
development projects, and lists possible synergies.

2.1 Product Integration Best Practices

The Capability Maturity Model Integration, CMMI, [3] defines three goals for the
product integration process. These are that (i) the product integration should be
prepared, (ii) interface compatibility should be ensured and that (iii) the product
components should be assembled and delivered.

 The preparation for product integration typically includes preparation of an
integration sequence. Different integration sequences should be examined and also
include test components and equipment. The established sequence should be
periodically reviewed to accommodate changes in the development project. The
preparation also includes the establishment of the environment needed for product
integration. One important decision in the preparation of the integration
environment is if it should be developed in-house or bought from outside. In
practice, the system will include both components that are bought and that are
developed in-house.

A prerequisite for the possibility to ensure the interface compatibility is that the
interface descriptions are complete. The design of the interfaces is important for the
design of the components, but may also affect the design of the verification and
validation environments. The interfaces need also to be managed throughout the
project. Note that this is valid also for interfaces with the environment that the
product is operating in.

66

The actual assembly of components should be done in accordance with the selected
integration sequence. However, before a component is included in the product, the
readiness for integration should be confirmed. The identity of the component needs
to be established and the conformance to the specifications and established criteria
should be confirmed. This confirmation can include a check of the status of the
component, e.g. that the design of the component is reviewed, that the component is
tested and that the interface descriptions are followed. Once assembled, the
components should be evaluated. This is done based on the integration sequence and
the verification specified. Based on the systems created in the product integration
process, the system is verified and validated. When all product components have
been integrated, the product should be delivered to the appropriate customer. This
can be made in an iterative fashion, with part deliveries, internal deliveries and of
course as a final delivery for production.

2.2. Developing systems with CBSE

When developing a system based on components, the focus is on the system
requirements, the overall system functionality and the mapping these requirements
to components. However, the implementation of individual components is not in the
focus of the process. The components used in the solutions are thus considered to be
developed or acquired independently of the development of the system.

The activities performed when developing a system are similar to those for any non-
component-based development; they include requirement analysis, architectural
specification, component selection and evaluation, system design, implementation,
integration, verification and validation. A specific activity here is component
selection, but also other activities have specific parts that are influenced by the
component-based approach. As the dependencies between these activities are strong,
it is important to note that they are usually performed in an iterative fashion, and
that these iterations should be taken into account when planning the system
development.

The requirement analysis is done to transform the collected needs into system
requirements. The task is also to define the scope for the system. Based on the system
requirements, it is possible to define the system architecture and to derive the
component requirements. As the definition of components to be used and the
resulting system properties are investigated, it may be necessary to reexamine the
system requirements and prioritize what is most important. The reasons may, for
example, be that requirements are found to be contradictory, that the selected
solution is too expensive or that the time-to-market requirements cannot be met.

When an initial architecture has been created, a decision how to obtain the needed
components is taken. If the decision is to develop a new component, specific for the
system, the development will be based entirely on component requirements derived
from the system requirements. This decision will also make sure that the component

67

fits to the architecture. Preexisting components developed in-house may be used as-
is, but may also require modifications. As this reduces the possibilities for reuse, it is
more likely that interactions between the components are modified, that adapters are
created, or that the architecture is modified to fit the selected components. This is
also likely when using commercial components, as these normally require a specific
architecture. Both types of pre-existing components may influence the architecture,
especially if a specific component framework is required. To find and select
components based on the component requirements is a challenge. One reason is that
it is difficult to derive these requirements from the system requirements. If the
component is not created specifically for the developed system, it is unlikely that a
component exactly matching the requirements can be found. In addition to fulfilling
the requirements, the components must also coexist in the system, which leads to the
need to investigate compatibility issues between the components and also with the
selected component framework. It is worth to mention that already in the selection
process, integration activities can be performed. Often when validating components
they must be composed with other components and integrated in the system
environment.

The system construction depends on the chosen architecture and on the selected
component technology and framework. The design also depends on what types of
components will be used in the system. More reuse and commercial components will
reduce the freedom to select different design solutions.

The implementation activities should be limited to adaptations of the components
and connections between the components. This should be a minor task, but if the
components are not properly selected, the work may be substantial. Also verification
of the component behavior in the selected environment should be a part of the
implementation. This may lead to additional development of code to handle the
components in- and outputs or changes in the way the component is set up.

To ensure that the quality requirements on the system can be met, the integration of
the system is crucial and should be started as soon as possible in the development
cycle. The activities include determination of integration sequence, verification that
the components adhere to the interface description, and provision of systems
appropriate for verification and validation. Additional tasks are to identify the need
for additional implementation and to monitor the system properties as these emerge
when the system is integrated. The integration will depend on the architectural
solution, as the possibility to build systems is determined by the selected architecture
as well as the component model and framework. The verification that the
requirements are met can start as soon as the first integration has been made, while
the validation that the customer expectations are met can only be made when the
final assembly has been made.

In component-based software systems, components may exist also in runtime. The
result of this is that it is possible to change the system while in operation, or at least

68

without replacing the entire system, by replacing components. This simplifies the
maintenance and error correction and also makes enhancements possible. A well-
designed architecture is however necessary as the dependencies between different
parts and components in the system make such changes dangerous if the
consequences are not well understood. Special care must be taken when a component
is used by several other components.

There are many reasons why component-based approach can improve the
integration process. We list here the most important.

• Component specification. The basic principle in component-based approach is a
separation of component specification from its implementation through its
interface. This separation is stronger than in object-oriented approach since all
interaction is supposed to be performed through interfaces. This principle
drastically decreases the risks for introduction of unknown properties and
architectural mismatches. Though it should be noted that many component
models do not follow this principle, in particular for required interface, which
may cause many unpredictable problems.

• Early integration requirements. For component validation usually a kind of
integration procedure must be made. An early integration process can show
problems that might remain hidden until the final integration.

• Standardized interoperation. Component models define the standards for
interconnection between the components. This eliminates a number of potential
errors due to architectural mismatches.

• Integration tool support. Integration is an inherent part of a basic approach of
CBSE. For this reason the component-based technologies focus on this process
and usually provide powerful integration tools.

2.3. Related work

This section describes some of the work that has been done related to integration in
component based software systems. In the related work, the integration process
partly includes what is often described as the composition process.

The notion that all development phases, including the integration activities, need to
be reconsidered when working with component-based software is pointed out in [4].
It is also mentioned that the current component models do not take enough of the
needs of the system developer into account. A part of the information that is
mentioned as underdeveloped is the specific collaboration rules for interfaces and
component behavior. This influences the ease with which a developer can determine
if the chosen components fulfill the requirements of the system.

The PECOS project [5] [6] describes an approach and a software process to be used
for basing embedded systems on component-based technology. The composition
process is examined and described. It is, however, not compared to the overall
expectations on the integration process.

69

The OOSPICE project [7] was targeted at overcoming the shortcomings experienced
when applying software process improvement approaches to component-based
development. In [8], the observation that component-based development is
integration-centric is elaborated.

In [9], the risks in the composition phase for component-based software development
are listed. Several of the risks are related to the integration process, and a method for
how to deal with these risks is outlined.

3. Case study

The case study was performed at an ABB unit developing industrial control systems.
The system has evolved through several generations, and a new generation of the
system is currently being developed. Compared to the first generation, where the
effort was three man months, the effort for software development in the current
development is estimated to about 100 man years.

In essence, the controller has layered architecture and within layers, component-
based design. The implementation consists of approximately 2500 KLOC of C
language source code divided in 400-500 components, organized in 8 technical
domains. The software platform defines infrastructure that provides basic services
like: a broker for message-based inter-task communication, configuration support,
persistent storage handling and system startup and shutdown.

3.1. Research method for the case study

The methods for the case study include interviews, document reviews and an
observation. The interviews have been based on a set of open questions, and have
been conducted as discussions about the integration process. The document review
was performed on the documentation describing the integration process, the training
material for the organization as well as the files used for and as a result from the
build process. As the purpose of the observation was to identify challenges, it was
designed to obtain as much information as possible, i.e. the decision was to perform
an unstructured observation.

3.2. Product Integration

The development of the system is conducted in different development groups, and
there are separate groups for the integration, verification and validation activities. As
the system has evolved over several years and parts of it have been replaced with
new solutions, the development environment as also been changed. For example two
different configuration management systems are used. Unique tools are used for the
integration group that also handles the build process. Developers have their own set
of tools for building on local systems. Training of the developers is done as part of
the general information about the system given to the staff. The developers also get
hands-on training in the projects.

70

The system evolution is performed in an incremental way. The implementation of a
functionality described in the requirement specification is distributed to different
integration points (IP), as shown in figure 1.

Fig 1. Distribution of functions and error corrections

The changes may occur in a project where the intended functionality for IPn is
redistributed to IPn (1) and to IPn+1 (2). This redistribution is based on the progress
in the project, the priorities for the different functions as determined by product
management and the possibilities to alter the decided integration strategy. Also the
problem reports and the error corrections related to them are assigned to the
different integration points (3 and 4). Product and technology management decides
what errors should be corrected for a specific integration point.

The procedure used when reaching an integration point is shown in figure 2. The
width of the arrows in the figure (4) represents the amount of new functions or error
corrections that are accepted for integration. As an integration point is approached,
the possibility to add new functionality is reduced and increasingly monitored. This
is illustrated by the narrowing towards the point of the arrow (1). As the “beta drop”
is reached, the version is branched to a release track. All release tracks are made
available to the organization for use in testing and further development. Errors that
are found in the verification and validation are considered for correction for the new
integration point (2). After the release “beta drop”, the development groups have the
possibility to add new functionality again (3).

Functions

Problem reports

10-12 weeksIP n IP n+1

��

�

�Functions

Problem reports

10-12 weeksIP n IP n+1

Functions

Problem reports

10-12 weeksIP n IP n+1

��

�

�

71

Fig 2. Integration point activities

An important prerequisite for a working product integration process is an
appropriate build process. It is also in the build process that many of the problems
with the product integration process appear. For our case study system, the current
build process has been in place for four years and is continuously updated and
improved. Each day, the full system is built and generated for several target systems
with a total of more than 15 versions. A separate build machine is used, and each
build takes seven hours. As soon as a build is started, it is possible to start delivering
to the next one. New code to be included in a system build is put on a build queue.
Once put in the queue, the component cannot be deleted from the queue. The two
different software configuration management (SCM) systems used give different
protection against mistakes. One prevents mistakes, as there are no possibilities to
check code directly into the build directories. The other SCM system makes a direct
merge into the release directory without the delivery through the queue.

The build is normally done during night, so the result of the build is known in the
morning. The person responsible for execution of the build process examines the log
files. In case of problems, the responsible persons are notified and asked to correct
the problem. The result of a severe problem is normally that the build will be delayed
one day. However, as the deliveries in the new build queue can be included, the
setback may be different for different parts of the project. Today, no metrics or
statistics are captured how often the problems occur or to see what causes the
problems in the integration process. The error reports from the findings are however
tagged with the build identity to make error correction easier.

The problems identified in the case study relate to three main areas. The first issue is
the delivery of code to the build process. The code may be delivered late, or a
function is not fully delivered. Also, the two different ways to deliver the code for
integration is a concern. One system handles this automatically, while the other
requires manual checking that the right things are included. The second issue is the

�

�

�
�

Ver Val

�

�

�
�

Ver Val

72

low quality, e.g. errors that cause the builds or initial integration tests (“smoke tests”)
to go wrong. This can be due to insufficient tests and system generation by the
developers. They normally test only a few of the possible combinations. The result
may be that the system generated works for the tested configurations but fails in the
others. The final issue relates to components that influence other parts of the system.
It may be that changes in include-files affect other components. This is possible as no
routine or mechanism for how to handle the communication of changes has been
established. This and the second issue may be discovered in the smoke test following
the system generation.

4. Analysis

When we compare the problems discovered in the case study to the product
integration expectations as described in [3], we see several activities that can be put
in place to improve the process. The improvements of course can be made without
the introduction of CBSE. However, our analysis of three main problem areas
supports the idea that a CBSE solution would reduce the difficulties.

A first improvement is related to the checks at integration time and deals with the
first two problems, delivery of incomplete functions and code with low quality. The
rules for including a component at an integration point should be appropriate so that
they can be followed both for major additions of functionality and for minor error
corrections. This means that the rules should be suitable for different types of
changes, but need to be followed for all inclusions at an integration point. To enable
this, additional power must be given to the integration team. The development
groups will through this lose some control but in return less often get unstable
systems or broken builds. The improved check at integration time would be
supported by CBSE as the delivery of code to integration would be done as ready-
made components. This would also reduce the problem of functions delivered before
they are ready. Through the use of CBSE, the poor quality can be reduced, as
components should be tested in all environments they are envisioned to be used in.

The third and maybe most important problem area is the need to handle
dependencies, i.e. interfaces, between different components more strictly. Changes to
interfaces should be controlled and communicated. To achieve this, the interfaces
must be sufficiently documented. Also, any changes to the interfaces must be
controlled at integration time to ensure that they have been approved and
communicated. In CBSE, the separation of the processes for developing components
and for building systems into two separate processes helps in better defining the
interfaces for the components. A component without a clearly defined interface
cannot be used unless the developers of the system have full knowledge about the
component. Introducing a clear separation in this manner would also increase the
clarity in the dependencies between the components. It would also make it possible
to have a more thorough, or strict, procedure for accepting a new version of a

73

component for a specific integration point. Using CBSE, improved descriptions of
interfaces would diminish the influence from one component to another, or at least
make these dependencies visible.

For all three main problems, we predict that CBSE would help in reducing the
problems. The cost is however that the system, processes and organization need to be
changed to accommodate CBSE.

A first step would be the introduction of a complete component model. There are
experiences that by introduction of component models have significantly improved
the development process [2]. Of course introduction of a component model would
require additional efforts. First the existing code and basic architecture should be
reused as much as possible. This implies that widely used components models such
as .NET or EJB are not appropriate. Rather a simple, probably in-house developed
component model should be deployed. This component model could be built
incrementally, starting with basic principles such as interface specification and
automation of integration of components.

A second effort required would be a componentization of the existing code. Since
today many of the dependencies between the components are implicit, their
separation might be a tedious work. However such a work would pay off in the long
run, since errors made today depending on hidden connections between components
would be reduced. Efforts to describe the dependencies explicitly are being made in
the case study system today, with promising results. A continued work in this
direction would result in an architecture that is properly documented and better
cohesiveness of components which are the basic prerequisites for efficient system
development and evolution.

Finally, the organization of projects and departments to clearly divide the work into
development of components and development of the system is needed.

5. Conclusions and future work

A case study has been compared to the generic requirements on a best practice
product integration process [3]. In addition to this, we have analyzed what support
the current process may get from using component-based software engineering. Our
conclusion is that several of the requirements for a well working integration process
can get substantial support through skilled use of well defined components. The
support comes from the fact that components should be well documented, tested in
the environment they are intended for and that any dependencies to other
components (or the environment) should be explicitly highlighted.

Future work should include additional case studies in industry. Both development
units working with components and with traditional software need to be further
examined. These investigations need to include measurements on the problems
caused by an insufficient integration process as well as root cause analysis. The

74

purpose of these investigations would be to confirm or refute the conclusions in this
paper that CBSE helps in providing a platform for efficient and effective software
product integration.

Further additional analysis should be done on a feasibility of full componentization
of the systems. The efforts and return-on-investments for re-architecting and for
development and introduction of a component model should be estimated.

75

6. References

[1] Szyperski, C., Component Software -- Beyond Object-Oriented Programming, Addison-
Wesley, Reading, MA, 1998.

[2] Crnkovic, I., and M Larsson, Building reliable component-based software systems, Artech
House, Boston, 2002.

[3] Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-Wesley, Boston, MA, 2003.
[4] Zeidler, C., “Componentware Glory and Crux for early industrial adopters”, Object

Oriented Programming conference OOP 2000, Munich, Germany, 2000.
[5] Winter, M., C. Zeidler and C. Stich, "The PECOS Software Process", Workshop on

Components-based Software Development Processes, ICSR 7, Austin, TX USA, 2002.
[6] Müller, P., C. Zeidler, C. Stich and A. Stelter, "PECOS — Pervasive Component

Systems", Workshop on ”Open Source Technologie in der Automatisierungstechnik”,
GMA Kongress, Baden-Baden, Germany, 2001.

[7] The OOSPICE project, http://www.oospice.com. (Link valid April 2005.)
[8] Stallinger, F., B. Henderson-Sellers and J. Torgensson, ”The OOSPICE Assessment

Component: Cusomizing Process Assessment to CBD”, in Business Component-Based
Software Engineering, edited by F. Barbier, Kluwer Academic Publishers, Boston, USA,
2002.

[9] Kotonoya, G., A. Rashid, “A strategy for Managing Risk in Component-based Software
Development”, Euromicro 2001 CBSE workshop, Warsaw, Poland, 2001.

76

77

PAPER D:

CASE STUDY:

SOFTWARE PRODUCT INTEGRATION PRACTICES

Stig Larsson, Ivica Crnkovic
In PROFES 2005 Conference, Oulu, Finland, June 2005

Abstract.

Organizations often encounter problems in the Product Integration process. The
difficulties include finding errors at integration related to mismatch between the
different components and problems in other parts of the system than the one that
was changed. The question is if these problems can be decreased if the awareness of
the integration process is increased in other activities. To get better understanding of
this problem we have analyzed the integration process in two product development
organizations. One of the organizations has two different groups with slightly
different integration routines while the other is basing the development on well
defined components. The obstacles found in product integration are highlighted and
related to best practices as described in the interim standard EIA-731.1. Our
conclusion from this study is that the current descriptions for best practices in
product integration are available in standards and models, but are insufficiently used
and can be supported by technology to be accepted and utilized by the product
developers.

1. Introduction

Through investigations of many development organizations developing products
with software as an important part, we have seen that the product integration is one
of the processes where many of the problems in product development become
visible. The origin of the problems is often in other processes performed early in the
development cycle. These problems can be reduced through an increased
understanding of the needs from an integration standpoint. Today, not enough care
is taken to ensure that the system requirements are considered when components
and parts developed. Proper preparation, understanding and performance of the
product integration are believed to resolve part of this problem.

Integration of products that include software is described in several standards and
collections of best practices. These best practices are collected from different
companies and organization and include areas that are considered to be of good use
for the development organizations in different application areas. There is however a
lack of independent research which shows whether the practices described in these

78

collections give the intended result when implemented in different organizations; a
systematic validation of the practices is needed.

There are different perspectives from which the use of descriptions found in
standards and models can be investigated and different questions to be answered.
The first question is how it can be determined that the processes described in the
standards and models are suitable for different types of development and the use of
different life cycle models; are the generic principles of the descriptions valid for all
types of product development? Another question is if an organization may run into
problems even if the principles and descriptions are followed in a proper way. Are
there ways to fulfill the principles described but not achieve the intended results? A
third question is how to determine if the reason for an organization having problems
is the fact that the principles are described as the prescribed working method, but are
still not followed. Our approach to these different perspectives is to look at the
performance of the process in the investigated organizations and compare the
activities with the ones prescribed in the standards and models regardless of the
development model used. We also look at the problems in the organizations and
analyze these with respect to the practices that are not followed by the organization.

We claim that we by investigating a number of organizations and the practices in use
can obtain support for the practices described in standards and models or determine
a need for revisions of the standards and models. This leads to the following research
questions for this paper: (i) How well can the practices described in a specific
standard be expected to reduce problems encountered in the integration of products?
and (ii) What deficiencies or incompleteness can we observe in the proposed
practice?

We have in this paper selected to use the interim standard EIA-731.1 [1] as the
reference model. The rational for this is that the interim standard model has been
used as one of the inputs to CMMI [2], and is specifically intended to be used for
internal process improvement, not for qualification of suppliers. In addition to this,
the development of this interim standard has been carried out in cooperation
between a number of national and international organizations such as EIA[3] and
INCOSE [4] involving a large number of organizations and companies with
substantial experience in software and system product development.

Our proposition in this paper is that the problems encountered in the investigated
units relate to the lack of execution of practices that are described in the interim
standard. We also propose that successful execution of the product integration can be
mapped to specific implementation of practices described in the interim standard.

This case study is a continuation of the work described in [5], where a different case
has been compared to CMMI. The purpose of this paper is to investigate one
additional source for best practices, compare it to current industrial problems and to

79

establish if there are connections between the problems and the lack of execution of
proposed activities.

The remainder of the paper is organized as follows. Section two describes general
structure of the interim standard EIA-731.1 as well as the main characteristics of the
integration processes of a development process. In section three, the case study
design is described with explanations about the data collection method, the analysis
method and the threats of validity of the study. Section four includes a description of
the findings from the case study. Section five analyzes how the findings relate to best
practices. Finally section six contains the conclusion and proposed future work and is
followed by the references list.

2. Product Integration in EIA-731.1

The interim standard EIA-731.1 describes a number of focus areas useful for
organizations developing products and systems. The focus areas described are
organized in three categories; technical, management and environment. For each
focus area, a number of themes describe the suggested activities. All themes include
a description, typical work products and specific practices for the focus area. For
some of the focus areas there are comments that normally contain clarifications or
suggested implementation details. In addition to the specific practices, there are a
number of generic practices applicable for all specific practices with the different
focus areas. The generic practices include tasks such as planning of the activities to
perform the process, monitoring and checking that the activities performed are
according to plan and the execution of corrective measures when these are identified
and needed.

80

Fig. 1. Structure of EIA-731.1

The interim standard includes a possibility to determine the capability level of an
organization in a specific area. This is based on the observation that organizations
typically take observable distinct steps in the effort to improve the performance. In
EIA-731.1 these levels are intended to be used as means to help the organization in
the planning and implementation of the improvement efforts. Six different capability
levels have been defined. Level 0 indicates that the specific practices are not
performed. Level 1 indicates that the specific practices on level one are performed.

Themes

Systems Engineering

Technical Category

Management Category

Environment Category

Four Focus Areas

Eight Focus Areas

(Totally Seven
Focus Areas)

Integrate System

Integration Strategy

Interface Coordination

System Element
Integration

Integration Preparation

Three Specific Practices

Systems Engineering

Technical Category

Management Category

Environment Category

Four Focus Areas

Eight Focus Areas

(Totally Seven
Focus Areas)

Integrate System

Integration Strategy

Interface Coordination

System Element
Integration

Integration Preparation

Three Specific Practices

81

For level 2 to 5 both the specific and generic practices on these levels are performed.
Note that no effort has in this study been made to determine the capability level of
the organizations investigated as the target is to understand if the specific practices
for product integration give the intended result.

The rest of this section summarizes the product integration process as it is described
in EIA-731.1. The standard prescribes a set of specific practices that are considered to
be essential for accomplishing the purpose of the focus area designated Integrate
System (Focus Area 1.5).

The purpose of the Integrate System focus area is to ensure that the product and
system works as a whole based on the components that have been integrated.
Interfaces between components and functions that extend over many components in
the system are in the center of attention. It is also noted that the integration activities
should start early and are typically iteratively performed.

Four themes have been identified for the focus area. An Integration Strategy (1) is
considered to be the basis for the integration process. This theme includes the
development of a strategy that contains an integration sequence and a plan for the
integration tests to be performed. The Interface Coordination (2) is the second theme
and includes handling of the requirements on the interfaces as well as specifications
and detailed descriptions. As a third theme, the Integration Preparation (3) describes
how components are received for integration and the checking that the components
are in accordance with the strategy and interface documentation. The final theme is
the actual integration: System Element Integration (4). The components are
integrated according to the plan and the inter-operations between the components
are checked. It should be noted that the actual verification is described in a different
focus area in the interim standard EIA-731.1, FA 1.6 – Verify System.

The different specific practices on capability level 1, 2 and 3 for all themes can be
found in Table 4. The descriptions in the interim standard are short and need to be
interpreted with the description of the theme as a basis. Some guidance can be found
in EIA-731.2 [6] that describes an appraisal method for EAI-731.1. However, the
sample questions in this guide are also on a high level and require substantial
expertise to be used.

3. Case Study Design

The case study was performed on three different product development groups in
two different organizations. As the development methods are different in all three
groups, the case study has been designed as a multiple-case holistic study as
described by Yin [7]. The units of analysis are the processes for integration as
perceived by members of the development groups in the three different cases. The
focus of the study was on processes used at the time for the investigation, not
described in quality systems or handbooks and not on processes that were under
development.

82

3.1 Research Method

The interviews made with members of the development groups are the main sources
of data in this investigation. Additional information was obtained from descriptions
and examples of how the integration was planned and performed. For each case at
least two persons were interviewed. The selection of subjects for the interview was
based on two criteria. The first was that for each organization, both a manager and a
developer should be interviewed. The second criterion was that the subjects should
have extensive experience spanning over several years from the development in the
investigated group.

The interviews were performed as open-ended discussions and all interviews were
made by the same researcher. The researcher was guided by a discussion guide to
ensure that different aspects of product integration were covered in the discussion.
The guide was developed by two researchers and included questions related to three
different areas; organization, implementation, and effectiveness of the product
integration. The questions included in the discussion guide were not taken from the
standard, but were designed to give an understanding of the used processes
independent from descriptions in standards and models. During the interviews, the
guide was used to ensure that the interesting topics were covered, and the specific
questions asked were depending on how much information was obtained through
the explanations from the interviewees. The use of open-ended questions allowed the
researcher to follow up interesting statements that lead to more information and a
deeper understanding of the used process. Each interview was between one and two
hours. The documentation from the data collection consists of notes taken during the
interviews complemented with information from the written documentation.

The data collected can be divided into two types. The first type was descriptions of
how the integration process was performed for each case and what activities were
carried out. The second was descriptions of the problems that the units perceived in
the integration process.

3.2 Analysis Method

After the interview sessions, the data collected was analyzed in several ways. This
was done as a separate activity and without the involvement of the development
organizations. For each case in the case study, the activities captured during the data
collection were compared and mapped to the practices described in EIA-731.1. The
result from the mapping showed if the development in the different cases were
performed in accordance with the interim standard. As a second step, the problems
identified were mapped to the specific practices in EIA-731.1 that are intended to
ensure that the problems should not occur. Finally, the relations between activities
performed and the problems were investigated. This resulted in Table 4 that
indicates the relation between practices from EIA-731.1, activities performed and
identified problems. A second phase of the analysis was to propose how the practices

83

in EIA-731.1 should possibly solve the encountered problems. The results from this
analysis in found in Table 5. The analysis was made by one researcher and reviewed
by two other researchers.

3.3 Validity

Four types of validity threats are of interest for case studies [7]. In this section, we
discuss these and the preventive measures to reduce them. Construct validity relates
to the data collected and how this data represent the investigated phenomenon.
Internal validity concerns the connection between the observed behavior and the
proposed explanation for this behavior. The possibilities to generalize the results
from a study are dealt with through looking at the external validity. Finally, the
reliability covers the possibilities to reach the same conclusions if the study was
repeated by another researcher.

The construct validity is dealt with through multiple sources for the data through
more than one interview for each case. Additional interviews with other stakeholders
as well as additional document investigations would have increased the construct
validity. However, this would have required more intrusive investigations and
would limit the availability to the organizations. The design of the discussion guide
was based on available standards and methods and involved more than one
researcher to ensure that the questions to be discussed were relevant. The researchers
experience in software product development provided a basis for relevant
discussions under the interview sessions.

The internal validity was secured in three ways. First, the connection between the
behavior and the interim standard was done in several steps to avoid predetermined
connections. Secondly, rival explanations have been listed and examined to exclude
other causes to the findings. Finally, the analysis of the data and the connection to
the interim standard has been reviewed by two additional researchers to avoid
personal bias.

The external validity is dealt with through the use and description of three cases in
two different application domains and through the use of several different standards
and methods when defining the investigation area.

The reliability of the study has been secured through the description of the procedure
used in the study and the documentation of the discussion guide.

4. Case Descriptions

Two product development organizations have been investigated, both developing
systems for monitoring and control of different types of networks, but in different
application domains. The systems operate in industrial settings with real-time
requirements as well as high demands on availability and reliability. One of the units
is developing products for two different environments. This has lead to the use of

84

different processes and in this study they are treated as two cases resulting in a total
of three cases. For each case the following sections contain a brief description of the
product and the product development process. The descriptions also include the
problems that were identified and described in the interviews. The problems are
presented in tables where each problem is labeled with a P, the case number and a
reference character.

4.1 Case One

The product in case one is a stand-alone product that is connected to a real-time data
collection system. The development is done in one group with less than 20
developers and follows a clearly defined process. The product development of a
specific release is based on a definition of the product that contains what should be
included in each release. The first step in the development is the implementation of
requirements on the functions for the release. Based on this, the unit and system
verifications to be performed are defined. Development of the functions is done in
units called components. The Rational Unified Process is used, and a document list
defines the development process. The planning is made so the development is done
in increments. The unit verification is performed by software developers. The
strategy is that tests should not be done by the developer producing the software.
The unit tests are often done through automatic testing. Specifications and protocols
from the tests are reviewed by peers and system integrators. The tests are performed
in the developer’s environment and consist of basic tests. Functional tests are
performed before the system tests.

The product integration is not defined as a separate process, but the product is
integrated by the developers before the system verification. Before a component is
checked in, it should be included in a system build to ensure proper quality. Delivery
to the system test is done of the whole system. The test protocols and error reports
from the unit verifications are reviewed with the system integrator before the system
test. The system tests are performed by a core of system testers and temporary
additional personnel. This strategy builds on well defined and detailed tests. The
tests are focusing on functions and performance and are performed on different
hardware combinations. This includes different variants of the product and different
versions of the operating system. The test period takes approximately 12 weeks, with
new versions of the assembled components received to system test every week.
Although the development builds on increments, no integration plan is used for the
product. The integration plan used is one for the whole system where this product is
included. Typical time for the development of a release is less than one year.

The three most serious problems were captured for case one as described in Table 1.
The routines are mainly followed, but due to tight deadlines, shortcuts may be taken.
Sometimes uncontrolled changes are introduced in the software. This is typically
done when a part of the system is changed due to an existing error that is uncritical

85

and not planned to be corrected. Due to the dependencies in the system, new errors
may appear in parts that have not been changed. Also other connections between
components that are not explicit generate this problem.

Table 1. Problems captured for case one

Label

Problem description

P1-A Functions are not always fully tested when delivered for integration. This
leads to problems in the build process or in integration and system tests

P1-B Errors are corrected that should not be. This results in new errors with
higher influence on functionality and performance

P1-C Errors appear in other components which have not been changed

4.2 Case Two

The second case is a product that includes software close to the hardware. The
development group is small and follows a common development process. This
process includes rules for what should be checked and tested before a component is
integrated. The tests include running the application in simulators and target
systems before the integration. A specification for what should be ready before start
of functional and system test are available. The architect is responsible for
implementation decisions. The target system includes a complex hardware solution
with the application divided on two target systems. Typical time for the
development of a release is 1.5 year. This includes the full development cycle from
defining the requirements to system testing.

Most of the problems appear because of the incapability and version mismatch of the
test system, the final product and the test and final hardware platform (Table 2).
Efforts are now made to go towards incremental development, and to increase the
formalism in the testing. The tests will be made in three stages with basic tests
performed by the designer, functional tests performed by a specific functional tester
and system tests with delivery protocol.

Table 2. Problem captured for case two

Label Problem description

P2-A Problems appear as a consequence that tests for the components are not
run in the same environment as the test system. Different versions of
hardware and test platform are used.

86

4.3 Case Three

The development organization in this case is responsible for the design of a user
interface that acts as a client to a database server. The organization is small, around
15 developers.

The current architecture has been recently improved. The old version of the system
suffered from problems with many common include files. Through global variables
and similar solutions permitted by the selected technology, unintended side-effects
made debugging and error correction tedious. Different attempts to reduce the
problems within the available technology lead to the insight that a design that was
built on isolation of interfaces should be beneficial. The solution was to start building
a new system. Included in this decision was a strategy to design interfaces carefully
and to use technologies that permitted isolated components to be used.

The system is built up of components that primarily implements different parts of
the user interface. Each component handles the communication with the server. This
design was used to allow the development of services that are independent and
dedicated for each component. The component framework defines the required
interface for each component and provides a number of services, such as capturing of
key strokes. The technology used permits the developers to easily isolate problems
and to minimize the uncontrolled interference and dependencies between the
components.

 The development is organized with frequent builds and continuous integration of
new functions. The integration is handled by the integration responsible. However,
the checks before the inclusion of new functions are done by the developers. There
are no specific routines in place for handling the interfaces. Changes are in practice
always checked by the system architect.

The new system design has reduced the implementation time for a function with 2/3.
The turn-around time for a system release has been reduced from six months to
between one and three months. At the same time, a need for maintaining the base
platform has emerged. Also, some of the technical solutions have been questioned
and may increase the need for maintenance (Table 3).

Table 3. Problem captured for case three

Label Problem description

P3-A Scattered architecture on the server side as a result of the decision to
handle communication in each component

87

5. Collected Data and Analysis Results

In these three cases we found may similarities: size of the development groups,
similar concerns, requirements of the products, similar product life cycle. What we
have seen are the differences in the development processes and in used technologies
and approaches. Our intention is to analyze what are the sources of the main
problems and if they could have cause in deviation or absence of the activities
pointed out in the best practices.

This section contains two parts. The first includes a table containing the analyzed
data from the case study, while the second lists the problems found in the cases with
a suggested implementation of the practices that could improve the performance.

5.1 Analyzed Case Study Data

The three steps of the analysis have been summarized and presented in Table 4. The
table includes two parts for each practice. The first two columns show the description
from EIA-731.1 for the specific practices for the focus area Integrate System. The first
number in column one shows what theme the practice belongs to, and the second
number is the capability level (i.e., 1-2 shows that the practice belongs to theme one
and is placed on capability level 2). Finally, if two or more practices exist on a
capability level for a theme, these are distinguished by a character. The following
three columns include data from each of the cases. These columns include two
things: (i) an indication for each case if the practice has been observed as performed
(+) or not observed (-), and (ii) if there are indications of problems connected to the
practice (*). The indicated problems are further described and analyzed in section 5.2.

5.2 Analysis of Observed Problems

In each of the cases, problems encountered in the performed product integration
process were captured and discussed. The problems are in Table 5 cross-referenced
by the researcher to the specific practices for the Integrate System focus area of EIA-
731.1. Each problem has a label composed of a P, the case number and a reference
character as in the tables in section 4. In addition to the description and the reference,
a proposed action based on the specific practice has been included in the table.

Based on the data, we have made two observations regarding the perceived problem
situation. The first is that all the problems for case one and two are related to
capability level 1 specific practices. This may indicate that additional problems may
be observed once all capability level one practices are performed, or it may indicate
that higher capability level practices have less influence on the actual product
integration results. The second observation is that case three had a similar culture for
process adherence as case one, but the developers were forced by the technology to
perform the specific practices.

88

Table 4. Specific practices for Integrate System compared to data from case 1, 2 and 3

Specific
Practice

Description Case 1 Case 2 Case 3

1-1 Develop an integration strategy + * + +

1-2
Document the integration strategy as part
of an integration plan

- + -

1-3a
Develop the integration plan early in the
program

- + -

1-3b

When multiple teams are involved with
system development, establish and follow
a formal procedure for coordinating
integration activities

- - -

2-1a
Coordinate interface definition, design,
and changes between affected groups and
individuals throughout the life cycle

- *
-

+

2-1b Identify interface requirement baselines - * + +

2-2a Review interface data - - -

2-2b Ensure complete coverage of all interfaces - - -

2-3a
Capture all interface designs in a common
interface control format

- - -

2-3b Capture interface design rationale - - - *

2-3c
Store interface data in a commonly
accessible repository

- - -

3-1a

Verify the receipt of each system element
(component) required to assemble the
system in accordance with the physical
architecture

- *

- * +

3-1b
Verify that the system element interfaces
comply with the interface documentation
prior to assembly

- * + +

3-2
Coordinate the receipt of system elements
for system integration according to the
planned integration strategy

- + -

4-1a
Assemble aggregates of system elements
in accordance with the integration plan

+ + +

4-1b
Checkout assembled aggregates of system
elements

+ + +

89

Table 5. Cross-reference between observed problems and relevant specific practices

Label Problem description Relevant specific practices and
proposed actions

P1-A Functions are not always fully
tested when delivered for
integration. This leads to
problems in the build process or
in integration and system tests

3-1a
Ensure a handover to a
dedicated integration
responsible

P1-B Errors are corrected that should
not be. This results that new
errors are introduced, with higher
influence on functionality and
performance

1-1
Ensure that the strategy and
decision are followed through a
handover procedure

P1-C Errors appear in other
components than the changed

2-1a, 2-1b, 3-1b
Specify and enforce interface
descriptions for all
dependencies between the
components

P2-A Problems appear as a
consequence that tests for the
components are not run in the
same environment as the test
system. Different versions of
hardware and test platform are
used.

3-1a
Ensure that the proper test
equipment as described in the
integration strategy is made
available to the developers.
Check that proper tests are
performed through a clear
handover to an integration
responsible

P3-A Scattered architecture on the
server side as a result of the
decision to handle
communication in each
component

2-3b
Ensure that the rationale for
design decisions are
documented and communicated

5.3 Analysis of Propositions

As a summary of the analysis, we conclude that case two is performing the product
integration most in line with the specific practices described in EIA-731.1 It is also
clear that case two and three follow almost all the recommendations from capability
level 1 specific practices. We see that case one has the most problems, and that all
these problems are related to capability level 1 specific practices and we have noticed
that in case three, the technology may help the development team in following the
capability level 1 practices. The results are displayed in Table 6.

90

Table 6. Summary of analysis

of specific practices performed of total number
of problems found

Capability level 1 Capability
level 2

Capability
level 3

Case 1 3 /7
5 problems

0/4
No problem

0/5
No problem

Case 2 5/7
1 problem

2/4
No problem

15
No problem

Case 3 7/7
No problem

0/4
No problem

0/5
1 problem

The first of our two propositions was that the problems encountered in the
investigated units relate to the lack of execution of practices that are described in the
interim standard EIA-731.1. In the analysis of the data and the comparison, we
conclude that the problems found can be mapped to specific practices which support
our proposition. We have also observed that it is primarily the inability to perform
capability level 1 specific practices that have lead to observable problems.

The second proposition was that successful execution of the product integration can
be mapped to specific implementation of practices described in the interim standard.
For many of the practices on capability level 2 and 3, no observations have been
made that they were performed, but only one problem has been reported that could
be related to level 2 or 3 practices. Based on this and the observations regarding
capability level 1 practices, an additional proposition has evolved and should be
tested in future studies. This can be formulated as follows: A successful execution of
the product integration can be mapped to specific implementation of practices
described in the interim standard for capability level 1.

5.4 Rival Explanations

The conclusion regarding the propositions above can be challenged and in this
section we examine rival explanations and analyze the possibility that these give
better reasons to the data found in the study.

The first explanation examined is that there is no real connection between the
performance and the specific practices described and that the data match only is
coincidental. We consider this explanation to be unlikely due to two facts. The first is
that the interim standard build on long industrial experience from companies and
organizations from a wide set of areas and applications. The second fact is that the
pattern shown in this study is clear and builds on three cases from two different
organizations.

The second alternative explanation could be that the organizations due to other
factors succeed in the product integration process. However, if there are other factors

91

involved, these may also help in following the proposed practices. This is also the
situation in case three where the selected technology has imposed a way of working
on the product developers.

6. Conclusions and Future Work

Data regarding the product integration process from two development organizations
have been collected and compared to the requirements described in a standard
description of the product integration process. The problems observed in the case
study have been compared to practices that describe activities that should improve
the performance in the product integration.

We can from the observations conclude that the basic level of practices described in
the interim standard EIA-731.1 includes activities that can help the organizations to
avoid problems which can appear when integrating components to systems. Basic
activities include (i) development and a clear specification of the strategy for the
integration, (ii) keeping well defined interface descriptions up to date throughout the
life cycle, (iii) that the integration of components follow the strategy and (iv) that
the assembly is verified as planned.

We have also observed that there are indications that skilled use of component
technologies as described in [8] facilitates the integration process. The factors
contributing to this support are well described interfaces, the need to test
components before integration and the explicit definition of the environment
required by the components.

Through this investigation, partial answers have been found to our research
questions, but additional research is needed. Future work should include steps to
strengthen and further investigate the propositions made in this paper. They are (i)
improvement of validation of the results by providing the feedback to the case
participants in a form of discussions of accuracy of collected data and the results at a
common workshop, and (ii) additional case studies in industry. Additional
descriptions of practices in standards and models need to be investigated in relation
to industry practices. There is also a need to analyze the similarities and differences
in the different standards and models. One additional research direction has been
indicated with the purpose to confirm or refute the indications in this paper and in
[5] that component technologies assist in the implementation of successful software
product integration. Of specific interest may the integration problems related to
COTS be.

92

References

[1] EIA/IS-731.1, Systems Engineering Capability Model, Electronic Industries Alliance
(Interim Standard), (01 Aug 2002)

[2] Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-Wesley, Boston, MA, (2003).
[3] http://www.eia.org/. (Link valid April 2005.)
[4] http://www.incose.org/. (Link valid April 2005.)
[5] Larsson, S., I. Crnkovic, F. Ekdahl, “On the Expected Synergies between Component

Based Software Engineering and Best Practices in Product Integration”, Euromicro
Conference, France, August 2004, IEEE

[6] EIA/IS 731.2, Systems Engineering Capability Model Appraisal Method, Electronic
Industries Alliance (Interim Standard), (01 Aug 2002)

[7] Yin R. K., Case Study Research: Design and Methods (3rd edition), ISBN 0-7619-2553-8,
Sage Publications, 2003

[8] Szyperski, C. et al, Component Software -- Beyond Object-Oriented Programming, (2nd
edition), ISBN 0-201-74572-0, ACM Press, New York, (2002)

93

94

95

PAPER E:

EXPECTED INFLUENCE OF ETHICS ON PRODUCT

DEVELOPMENT PROCESSES

Stig Larsson
In ECAP Conference, Västerås, Sweden, June 2005

Abstract

Product development efficiency and effectiveness is depending on a process being
well executed. The actions of individuals included in the processes are influenced by
the ethical and moral orientations that have been selected by each individual,
whether this selection is conscious or not. This paper describes different ethical
choices and the expected effects they may have on the development process
exemplified by the product integration process for software products. The different
frameworks analyzed are utilitarianism, rights ethics, duty ethics, virtue ethics and
ethical egoism. The expected effects on the goals for product integration may be
debated. This is a result in it self as it triggers discussions about ethical
considerations and increase the awareness of the influence of moral decisions. Our
conclusion is that the adherence to specific moral frameworks simplifies the
alignment of actions to the practices described in product development models and
standards and through this supports a more successful execution of product
development projects. This conclusion is also confirmed through a comparison
between the different directions and several codes of ethics for engineers issued by
organizations such as IEEE as these combine features from several of the discussed
ethical directions.

1. Introduction

The application of different ethical approaches in product development
organizations is likely to influence the effectiveness and efficiency of product
development [1]. This is based on the assumption that actions performed by
individuals involved in product development depend on the moral values that
generally govern all areas of life. Ethical considerations can be investigated from
different viewpoints; organizational, management, group and individual. The
analysis here is concentrated on the choices made by the individual developer. We
suggest that a conscious decision by the individual to base actions on a specified set
of ethical rules shape how successful interactions with co-workers will be, how well
different tasks are performed and eventually how professional the development is
executed.

96

 Throughout history different ethical theories have been formulated and expressed.
To analyze these, a categorization is needed and in this paper we follow the
classification made in [1]. Five different moral frameworks have been selected and
for each of those one or two different versions are described and analyzed from a
product development perspective. The five frameworks are utilitarianism, rights
ethics, duty ethics, virtue ethics and ethical egoism.

Numerous standards and reference models are available defining the processes
needed to develop a product [2][3][4][5]. We have selected to investigate the Product
Integration Process and concentrate on the case where the product is primarily based
on software. This selection has been made as it highlights communication between
different engineering disciplines and it relies on trust between co-workers.

The rest of the paper is organized as follows. Section two describes a number of
ethical directions. Section three introduces the Product Integration Process which is
used as an example of a part of the product development process. In section four, the
different ethical directions are applied to the actions by individual software
developers in the product integration process, and the consequences are discussed.
Section five contains a comparison between the different moral orientations with the
IEEE Code of Conduct [6]. Section six contains a conclusion as well as proposed
future work in this area.

2. Ethical directions

Ethical theories describe and give a generalized view of moral issues, putting the
concerns into perspective. Ethical concepts are used in different ways. Descriptive
ethics try to describe values and moral without deciding if an action based on these is
right or wrong. Normative ethics go one step further and give more guidance in
moral questions and choices as this approach contains questions regarding the duties
and values. Applied ethics examine the moral choices that are made in specific
situations and areas of interest. One such area is Engineering Ethics which covers the
professional considerations for engineers and product developers. Several Codes of
Conducts are available expressing different professional organizations’ opinions
about and commitment to ethics [6] [7].

2.1 Utilitarianism

The basic idea of utilitarianism is that where there is a choice to be made, the action
that is best is the one that brings the greatest happiness for the greatest number of
people. This means that for each decision, there should be a possibility to calculate
the optimal way to go. It should be noted that the extent for the calculation is the
whole society, which differentiates utilitarianism from pure cost-benefit analysis
which normally has a much narrower scope. In order to be useful, utilitarianism
requires both a set of values that specifies how to measure happiness and the ability
to predict what actions would secure that happiness. These predictions are normally

97

provisional and need to be revised when more facts are known and may also lead to
changes in decisions, if possible. The two versions described here are act-
utilitarianism and rule-utilitarianism differ with regards to the predictions.

The focus for act-utilitarianism is the deeds in each situation. This means that each
specific action is right if it brings the most good for the most people. Both the long-
term and immediate effects should be taken into account, and alternatives considered
when the consequences are predicted and calculated.

Rule-utilitarianism instead focuses on a set of rules that together can bring the best to
most people. This means that the goal would be a set of rules, or a moral code, for the
society that if used by all people would maximize the public good. This version is
thus more indirect and requires actions to be compared to the selected set of rules,
instead of predicting the consequence. This idea is also one of the basis for different
codes of ethics for engineers.

2.2 Rights ethics

Fundamental to rights ethics is the respect for the individuals’ dignity and value.
This is contrasted with the good of the society emphasized in utilitarianism. Two
distinct versions exist, liberty rights with emphasis on the right for the individual to
have the freedom to perform actions without interference from others, and welfare
rights that concentrate on the right to have the possibility to live a decent life for
everyone regardless of capabilities. These complement each other and most rights
ethicists agree that both types exist. The rights described are depending on the
context, and are also connections to the legal rights in the society. This distinction is
however clear. Legal rights are expressed in the laws for each society, while the
human rights are considered to exist even if they are not reflected in the laws.

The liberty rights are based on the notion that we should respect each individual and
that person’s dignity and value as she or he performs actions demonstrating the
liberty. In a professional context, this means that the actions that we take in our
work should not be meddled with as long as we are within the confines of our
jurisdiction, and other people should respect our choices.

Welfare rights depend on the societal context as the possibility to require the
community to assist individual depend on the availability in the community.
Transferred to a product development context, this could include the support for
individuals and project parts that need assistance to be able to fulfill their tasks, but
could also be governing the right to limited working hours without considering the
need to fulfill organizational needs.

2.3 Duty ethics

Duty ethics is connected to the rights ethics, as they complement each other. The
duty for one person can be the right for another person. One example from

98

engineering could be the duty to deliver something when promised with the
corresponding right to receive it when it is needed.

Immanuel Kant (1724-1804) based the discussion of what duties we have on the
fundamental duty we have to respect persons. This gives autonomy to each
individual, but also the duty for each individual to make choices that would be
acceptable if anybody made that choice.

2.4 Virtue Ethics

The emphasis in virtue ethics is on character. This means that rules and rights are
secondary and a result of different desirable features that have been identified. These
include competence, fairness, honesty, and loyalty. In the professional life, the
virtues may be directed towards different scopes. The requirements and virtues for
public, teams, the profession, and self-governance differ and complement each other.

The set of virtues may be easy to decide on, but the judgment of individual actions if
they are virtuous is not easy. Very often, there is a thin line between a virtue and a
vice, like courage and fool-headedness.

Different ethicists emphasize different virtues. Two examples are Florman [8],
putting special emphasis on loyalty to employers, and MacIntyre [9] that stresses the
loyalty to the community.

2.5 Ethical Egoism

The basic idea of ethical egoism is that each individual should endorse self-interest
and maximize the personal well-being. This should not be short-sighted, but look for
a long term situation where the social contract is still honored. This includes
following the laws and other societal agreements that in the long run would benefit
the individual. The result of egoism is thus that the caring of others and compassion
is not of value, and should not be the basis for actions.

One variant of ethical egoism includes a more community-oriented approach. The
self-realization is in center, but should be complemented with the importance of
humans as social beings and the need for communities and relationships with others
to ensure the individual well-being.

3. Example process: Product Integration

The endeavor of developing a product can be described as the execution of a set of
processes. Different standards and reference models describe the requirements on
these processes [2][3][4][5]. Several of these are collections of experiences that form
what is considered to be best practices for the difference processes. In this paper, the
example process is the Product Integration Process. Product integration involves
several different groups of engineers and efficient communication as well as a high
degree of trust is crucial for successful execution.

99

The Product Integration Process for software products represents the activities to
combine software components to a product and to ensure that this product has the
expected functions and qualities. The goal is to deliver a product that fulfills the
expectations of the customer. It is expected that projects that have a Product
Integration Process that follows the practices described in different reference models
will have a higher probability to deliver on time with expected quality.

In this paper, we have selected a reference model from the Software Engineering
Institute, the Capability Maturity Model Integration (CMMI) [2]. CMMI version 1.1
defines 25 process areas, and for each process area there are a number of practices
that, if performed, represents an indication of maturity. It is expected that this also
increases the performance of the development organization.

Three goals are defined for the Product Integration process area: (i) prepare for
product integration, (ii) ensure interface compatibility and (iii) assemble product
components and deliver the product.

The three specific practices for the first goal are connected to each other. The basis is
the integration sequence strategy and the integration sequence that build on this
strategy. Besides the product components, the test components and equipment need
to be included in the integration as the project progresses. This leads to the second
practice which is to establish the environment for the integration. The build-up of
this environment needs to be included in the integration planning based on the
decided integration sequence. The different engineering disciplines such as software
development, integration and test need to have a close cooperation to ensure that the
plans are realistic and that all needed equipment is included in the planning. This
cooperation is also needed for the third practice which is to establish the procedures
and criteria for product integration.

The second goal describes the need to ensure that the different parts fit together. This
can be achieved through two practices. The first is the review that is needed to make
certain that the descriptions of the interfaces are complete, while the second is the
need to manage the interfaces throughout the project life-cycle.

The actual combination of the different parts of a product is described in the third
goal and is supported by four practices. The first is a preparation that includes
checking that the delivered components adhere to the criteria for integration that has
been established. The second is the actual assembly activities. These activities should
follow the selected strategy and integration sequence. After the compilation, the
product should be evaluated with specific care in testing and evaluation of the
interface interactions. The final activity is the packaging and delivery to the
customer.

100

4. Applying Ethical Directions on Product Integration

In this section, different ethical theories are related to the goals and practices for
Product Integration as described in the CMMI and given in table 1. The analysis is
done from the view of a software engineer responsible for the development of a
specific function in a software product. For each of the theories, the question if it
supports each of the goals is considered. An indication is given for each of the goals
if the theory can be expected to support or oppose the intentions with the goal. There
are also indications if our analysis is inconclusive. The conclusions in this section can
be debated, and this is probably the most important result as this triggers the
discussion regarding ethical considerations in the development of software products.

4.1 Act-Utilitarianism

For each situation, actions should bring the most good for the most people, and both
immediate and long term effects should be considered.

Prepare for Product Integration. The idea that we should maximize the good for all
people does neither help nor oppose the preparation. As an example, if the developer
synchronizes the integration sequences ad-hoc in a successful way, this benefits most
people as the goal of the project is fulfilled, but does not fulfill the goal of the process.
On the other hand, the existence of this goal in CMMI indicates that there are benefits
for the project and resulting product in having a strategy for the integration
sequence.

Ensure Interface Compatibility. Also this goal may be supported or not. In general,
the number of errors found in later stages of product development will be reduced if
the interface compatibility is ensured. On the other hand, in the short term, this leads
to additional work for all involved engineers, which may already have ensured
interface compatibility in the development of the function.

Assemble the Product Components and Deliver the Product. The goal to maximize
benefit is normally supporting the goal to assemble the product and bring it to the
market. Of course there are exceptions where products do harm to many persons, but
generally act-utilitarianism supports this goal.

4.2 Rule-Utilitarianism

For each situation, a set of chosen rules that should bring the most good for the most
people is to be applied. If the rules are carefully selected, all three goals should be
supported. However, one alternative to a well working product integration selected
by some organization is to test extensively before a product is released. This may be a
way to maximize the benefits for most people, but does not ensure that the goals for
product integration are fulfilled.

101

4.3 Liberty Rights Ethics

The freedom to act for each individual should be respected. For the engineer, this
could mean that as long as the result of the work is leading to the common goal, the
means to that goal is a free choice for the engineer.

Prepare for Product Integration. The preparation requires that a strategy for the
sequence of integration is selected and implemented. This is supported implicitly by
the liberty rights, as it does not prescribe how the engineer meets the requirement on
delivery on a specific time. Also the build up of environment and the specification of
rules is supported, as this makes it easier for the engineer to understand the
constraints for the development of functionality.

Ensure Interface Compatibility. Ensuring interface compatibility requires review.
This can be considered as an infringement on the freedom to act for the engineer and
that the results delivered are not respected. The conclusion is that this goal is not
supported by liberty rights ethics.

Assemble the Product Components and Deliver the Product. The assembly and
delivery of the components and the product depend on the result of the engineering
work. Of course, the quality of the product is important, but the procedures to
achieve it are not prescribed for this goal. Hence, the engineer is free to do what is
required within the constraints, and consequently the goal is supported.

4.4 Welfare rights ethics

Transferred to a product development context, welfare rights ethics can imply the
support from the organization to the individuals that need assistance to be able to
perform the task.

Using this interpretation leads to an inconclusive result regarding the impact on all
three goals for product integration. The needs for the individual may increase the
focus on achieving the goals. One effect of this could be that engineers needing
assistance to perform their task would always get it, and this would lead to better
fulfillment of the goals. On the other hand, it might lead to sub-optimization and
divert the work from the organization’s goals. The influence will hence depend on
the possibility for support within the resource constraints given for different parts of
the organization.

102

Table 1. Relation between Product Integration goals and ethical directions

 Goal 1:
Prepare for
product
integration

Goal 2:
Ensure Interface
Compatibility

Goal 3:
Assemble Product
Components and
Deliver the
Product

Act-
Utilitarianism

Inconclusive,
depends on situation

Inconclusive,
depends on situation

Support,
as it benefits a
number of users

Rule-
Utilitarianism

Support,
but depends on the
set of rules chosen

Support,
but depends on the
set of rules chosen

Support,
but depends on the
set of rules chosen

Liberty rights
ethics

Support,
as long as the
defined areas of
work are respected

Oppose,
conflicts with the
right to work
without interference
within the defined
limits

Support,
as long as the
defined areas of
work are respected

Welfare rights
ethics

Inconclusive,
depends on the
possibilities for
support from
different parts of the
organization

Inconclusive,
depends on the
possibilities for
support from
different parts of the
organization

Inconclusive,
depends on the
possibilities for
support from
different parts of the
organization

Duty ethics Support,
As long as the
organization has a
policy that supports
the goal

Support,
As long as the
organization has a
policy that supports
the goal

Support,
As long as the
organization has a
policy that supports
the goal

Virtue ethics
(MacIntyre)

Inconclusive,
depends on situation

Inconclusive,
depends on situation

Support,
as it benefits a
number of users

Virtue ethics
(Florman)

Support,
as professionalism is
stressed

Support,
as professionalism is
stressed

Support,
as professionalism is
stressed

Ethical egoism Inconclusive,
depends on amount
of work required
and expected
additional future
work.

Oppose,
for the development
of a specific
function, this is only
additional work

Oppose,
for the development
of a specific
function, this is only
additional work as
the function has
already be tested

Community-
oriented self-
realization ethics

Inconclusive,
depends on situation

Inconclusive,
depends on situation

Support,
as it benefits a
number of users

103

4.5 Duty Ethics

What duty ethics imply depends on the rules and guidelines developed and used in
the organization. For development organization, it is often expressed as polices,
indicating the expected behavior from the developers. This leads to a common
conclusion for all three goals for product integration, i.e. it depends on the policy for
product integration in the specific organization. However, the general idea of having
a policy would be supporting the goals as long as they are a part of it.

4.6 Virtue ethics (MacIntyre)

Based on Aristotle, the virtue ethics described by MacIntyre express professions as
valuable social activities. The target for the engineer would be to produce goods that
can be internal or external, to adhere to standards of excellence, and to contribute to
progress of the society. Internal goods can be personal (meaningful work), or public
(medicine or electric power). External goods are earned through activities and
include money, power and prestige.

Prepare for Product Integration. The preparation may be support as the standards
of excellence is aimed for, but there may be a conflict with the aim of producing
external goods as power and prestige.

Ensure Interface Compatibility. Again, this goal is basically supported, but there
may be a conflict in the notion of meaningful work. Checking interface compatibility
may be perceived by engineers to be unnecessary work, as they adhere to standards
of excellence.

Assemble the Product Components and Deliver the Product. As for act-
utilitarianism, the progress and the delivery of internal goods to the public are
generally considered as good, and support this goal.

4.7 Virtue ethics (Florman)

 The virtue ethics described by Florman put the emphasis on the loyalty to the
employer and on professionalism, but emphasis is on desirable features rather than
on expected behavior. An engineer that does the job well is a morally good engineer.
The two virtues are thus loyalty and competence. To act professionally is to work
according to identified and described good practices. The CMMI is a collection of
good practices that has been collected from a large number of successful product
development organizations. The fulfillment of the goals described can considered to
be supported. However, if the organization has selected a different model, with
contradicting goals for product integration, this conclusion is invalid.

4.8 Ethical Egoism

Ethical egoism focuses on long term solutions that would maximize the benefit for
the individual performing the actions. Hence, care for others is not in focus, and for

104

an engineer developing functions for a product may not even care about the final
product results. The goal would be to make sure that the individual contribution is
observed as excellent.

Prepare for Product Integration. The result of the analysis is inconclusive as it
depends on the amount of extra work that is the result of reaching this goal.

Ensure Interface Compatibility. To ensure the compatibility when integrating is
additional work for an engineer doing development of a specific function.

Assemble the Product Components and Deliver the Product. Also for this goal, the
individual engineer developing a function only sees additional work. This activity is
perceived unnecessary as the individual functions have been tested in the
development work.

4.9 Community-oriented self-realization ethics

Emphasis in this direction is on the commitments that individuals make, based on
their self-interest, balanced with an understanding that self-realization depends on
the relationships in the society. The commitments reflect what the engineer care
about and govern the actions in development projects.

Prepare for Product Integration. The decisions in determining the strategy may be
supported, but may also conflict with the interest of the engineer if the requirements
limit the freedom for the developer.

Ensure Interface Compatibility. If this goal is to be supported by this ethical choice,
the commitment from the engineer must be to follow the goal. Otherwise, the
activities leading to ensuring interface compatibility will be considered unnecessary
and not in the self-interest of the engineer.

Assemble the Product Components and Deliver the Product. The commitment of
the individual engineer is often directed towards development of functionality in
products that will contribute to society. This supports the goal of assembling and
delivering the product.

5. Comparison between IEEE Code of Conduct and Different Moral Directions

To follow a code of conduct is considered to be one of the criteria for a profession to
be mature [10]. For software engineering, the IEEE Code of Ethics [6] is one of the
descriptions that have been developed and is also pronounced to be a sign of
maturity [11]. In Table 2, the ten guidelines included in the Code of Ethics are
compared to the ethical approaches that can be considered to be the basis for them.
Note that an approach that does not insist on but still does not contradict the
statement is not indicated below. The interpretation in this section can and should be
discussed as this most likely would increase the knowledge and awareness about the
influence of the ethical directions on the software engineering discipline.

105

Table 2. Relation between IEEE Code of Conducts and ethical directions

According to the IEEE Code
of Conducts, the members
should agree: A

ct
-U

ti
li
ta
ri
a
n
is
m

R
u
le
-U

ti
li
ta
ri
an

is
m

L
ib
er
ty
 r
ig
h
ts
 e
th
ic
s

W
el
fa
re
 r
ig
h
ts
 e
th
ic
s

D
u
ty
 e
th
ic
s

V
ir
tu
e
et
h
ic
s

(M
ac
In
ty
re
)

V
ir
tu
e
et
h
ic
s

(F
lo
rm

a
n
)

E
th
ic
al
 e
g
o
is
m

C
o
m
m
u
n
it
y
-o
ri
en

te
d

se
lf
-r
ea
li
za
ti
o
n
 e
th
ic
s

1. to accept responsibility in
making engineering decisions
consistent with the safety,
health and welfare of the
public, and to disclose
promptly factors that might
endanger the public or the
environment

X X X X X X

2. to avoid real or perceived
conflicts of interest whenever
possible, and to disclose them
to affected parties when they
do exist Develop an
integration plan based on the
strategy

X X X X X X X

3. to be honest and realistic in
stating claims or estimates
based on available data

X X X X X X X

4. to reject bribery in all its
forms

X X X X X

5. to improve the
understanding of technology,
its appropriate application,
and potential consequences

X X X X X

6. to maintain and improve
our technical competence and
to undertake technological
tasks for others only if
qualified by training or
experience, or after full
disclosure of pertinent
limitations

X X X X X

106

Table 2 (continued). Relation between IEEE Code of Conducts and ethical directions

7. to seek, accept, and offer
honest criticism of technical
work, to acknowledge and
correct errors, and to credit
properly the contributions of
others

X X X X X X X

8. to treat fairly all persons
regardless of such factors as
race, religion, gender,
disability, age, or national
origin

X X X X X X X

9. to avoid injuring others,
their property, reputation, or
employment by false or
malicious action

X X X X X X X X

10. to assist colleagues and
co-workers in their
professional development
and to support them in
following this code of ethics

X X X X X X X

6. Organizational influence

Many organizations explicitly select a set of guiding principles that are intended to
ensure that employees base decisions on ethical principles common for the
organization. However, observations made in industrial settings indicate that the
influence on behavior is limited. Probable reasons for this include inadequate
communication of principles and abstract definitions, but also organizational
changes such as mergers, acquisitions, and lay-offs would make it difficult to convey
an ethical direction to the whole organization. The individual selection will
eventually determine the taken action.

7. Conclusion and future work

The influence on the effectiveness and efficiency in the workplace in general and on
product integration in particular from the ethical codes followed is substantial. In
most organizations, there is a mixture of different moral orientations which makes
the analysis difficult. From our compilation and the reasoning above we conclude
that the impact from different ethical theories is difficult to determine theoretically.
An indication that a combination of several directions probably would give the best
result is found through examination of different ethical codes for engineers. The gain
from making ethical choices explicit is that it facilitates rational discussions and
understanding of optimal choices in team work situations where different ethical

107

attitudes always exist, but remain un-explicated. Examples are team members that
are supposed to share their knowledge, information, results, resources etc with each
other, but who might follow the line of ethical egoism.

Future work should include investigations in different organizations with and
without explicit ethical policies. This would increase the understanding of the
influence this has on individual behavior and on product development efficiency.

108

8. References

[1] Martin, M.W., R. Schinzinger, Ethics in Engineering, Fourth edition, McGraw-Hill, New
York, NY, 2005

[2] Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-Wesley, Boston, MA, 2003
[3] ISO/IEC 15288:2002, International Standard, “Systems engineering – Systems life cycle

processes”, ISO/IEC 2002.
[4] ANSI/EIA-632-1999, “Processes for Engineering a System”, Government Electronic and

Information Technology Association, Electronic Industries Alliance, 1999.
[5] ISO/IEC 12207:1995, “Information technology – Software life cycle processes”,

ISO/IEC 1995.
[6] IEEE Code of Ethics,

www.ieee.org/portal/pages/about/whatis/code.html, (link valid April 2005)
[7] ACM Code of Ethics and Professional Conduct,

www.acm.org/constitution/code.html, (link valid April 2005)
[8] Florman, S.C., “Moral Blueprints: On regulating the ethics of engineers”, Harpers 257,

1978.
[9] MacIntyre, A., After Virtue, 2d ed. South Bend, University of Notre Dame Press, 1984.
[10] Ford, G., N.E. Gibbs, “A Mature Profession of Software Engineering.”, SEI, CMU,

CMU/SEI-96-TR-004, January 1996
[11] McConnel, S., Professional Software Development, Addison-Wesley, Boston, MA, 2004

