
Mälardalen University Doctoral Thesis
No.18

Combining Off-line Schedule
Construction and Fixed
Priority Scheduling in

Real-Time Computer Systems

Radu Dobrin

September 2005

Department of Computer Science and Electronics
Mälardalen University

Västerås, Sweden

Copyright c© Radu Dobrin, 2005
ISSN 1651-4238
ISBN 91-88834-87-5
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

Off-line scheduling and fixed priority scheduling (FPS) are often con-
sidered as complementing and incompatible paradigms. A number of
industrial applications demand temporal properties (predictability, jitter
constraints, end-to-end deadlines, etc.) that are typically achieved by
using off-line scheduling. The rigid off-line scheduling schemes used,
however, do not provide for flexibility. On the other hand, FPS has been
widely studied and used in a number of industrial applications, mostly
due to its simple run-time scheduling and small overhead. It provides
more flexibility, but is limited with respect to predictability, as actual
start and completion times of executions depend on run-time events.

In this thesis we first show how off-line scheduling and FPS can be
combined to get the advantages of both – the capability to cope with
complex timing constraints while providing run-time flexibility. The
proposed approach assume that a schedule for a set of tasks with com-
plex constraints has been constructed off-line. We present methods to
analyze the off-line schedule and derive FPS attributes such that the run-
time FPS execution matches the off-line schedule. In some cases, i.e.,
when the off-line schedule can not be expressed directly by FPS, we
split tasks into instances (artifacts) to obtain a new task set with consis-
tent task attributes. Our method keeps the number of newly generated
artifact tasks minimal.

At the same time, we investigate the behavior of the existing FPS
servers to handle non-periodic events, while the complex constraints
imposed on the periodic tasks are still fulfilled. In particular, we pro-

i

ii

vide a solution to server parameter assignment to provide non-periodic
events a good response time, while still fulfilling the original complex
constraints on the periodic tasks.

Secondly, we apply the proposed method to schedule messages with
complex constraints on Controller Area Network (CAN). We analyze
an off-line schedule constructed to solve complex constraints for mes-
sages, e.g., precedence, jitter or end-to-end deadlines, and we derive
attributes, i.e., message identifiers, required by CAN’s native protocol.
At run time, the messages are transmitted and received within time in-
tervals such that the original constraints are fulfilled.

Finally, we propose a method to reduce the number of preemptions
in legacy FPS systems consisting of tasks with priorities, periods and
offsets. Unlike other approaches, our algorithm does not require mod-
ification of the basic FPS mechanism. Our method analyzes off-line a
set of periodic tasks scheduled by FPS, detects the maximum number
of preemptions that can occur at run-time, and reassigns task attributes
such that the tasks are schedulable by the same scheduling mechanism
while achieving a lower number of preemptions. In some cases, there
is a cost to pay for achieving a lower number of preemptions, e.g., an
increased number of tasks and/or reduced task execution flexibility. Our
method provides for the ability to trade-off between the number of pre-
emptions and the cost to pay.

Dedicated to my family

Preface

This journey would not have been possible without the support from a
number of people i meet during the last five years. I want to thank my
supervisor Gerhard Fohler at the Department of Computer Science and
Electronics for his guidance and constant constructive feedback through
this long period of time.

Further more, I want to thank Ivica Crnkovic for his co-supervision,
Salsart group members, Damir, Tomas, Larisa and Pau, for the time
we spent together and for their help with reviewing the work presented
in this thesis, as well as all my other colleagues at the Department of
Computer Engineering for the time we have had during this period.

Many thanks go to Iain Bate and Guillem Bernat who have been a
great help and support during my visit at University of York, as well as
to Michael Gonzalez Harbour and the research group at the University
of Cantabria, Mario, Julio, Patricia, Xavi, for their help and hospital-
ity during my visit in Santader. A part of this work would have been
extremely difficult to perform without the feedback provided by Peter
Puschner who initiated me to the world of linear programming, Sasiku-
mar Punnekat and Jukka Mäki-Turja for their availability whenever I
had questions about FPS details, and Sanjoy Baruah for valuable discus-
sions around optimization theory. Last, but definitely not least, I would
like to thank my family for their support during this period of time.

This work has been supported by ARTES and the EU Information
Society Technologies (IST) Project FIRST.

Radu

v

Publications

I have authored or co-authored the following publications:

Book chapters
• A Component Based Real-time Scheduling Architecture, Gerhard

Fohler, Tomas Lennvall, Radu Dobrin, In Architectures for De-
pendable Systems, 2003. Springer Verlag, Editor(s):Rogerio de
Lemos, Cristina Gacek, and Alexander Romanovsky

Conferences and workshops
• Task Attribute Assignment of Fixed Priority Scheduled Tasks to

Reenact Off-line Schedules, Radu Dobrin and Gerhard Fohler, In
Proceedings of Conference on Real-Time Computer Systems and
Applications, Korea, 2000.

• Implementing Off-line Message Scheduling on Controller Area
Network (CAN), Radu Dobrin and Gerhard Fohler, In Proceed-
ings of Emerging Technologies and Factory Automation, Antibes,
France, 2001.

• Translating Off-line Schedules into Task Attributes for Fixed Pri-
ority Scheduling, Radu Dobrin, Gerhard Fohler and Peter Puschner,
In Proceedings of Real-Time Systems Symposium, London, UK,
2001.

vii

viii

• Attaining Flexible Real-Time Systems by Bringing Together Com-
ponent Technologies and Real-Time Systems TheoryJohan Fredriks-
son, Mikael Åkerholm, Kristian Sandstrom and Radu Dobrin, In
Proceedings of the 29th Euromicro Conference, Component Based
Software Engineering Track Belek, Turkey , 2003.

• Reducing the Number of Preemptions in Fixed Priority Schedul-
ing, Radu Dobrin and Gerhard Fohler, In Proceeding of Euromi-
cro Conference on Real-Time Systems, Catania, Italy, 2004.

Licentiate Thesis

• Radu Dobrin:Transformation Methods for Off-line Schedules to
Attributes for Fixed Priority Scheduling, Licentiate Thesis,
Mälardalen University, May 2003.

Contents

1 Introduction 1
1.1 Real-Time computer systems 1

1.1.1 Event- and time-triggered real-time systems . . . 2
1.2 Fundamental real-time scheduling paradigms 3

1.2.1 Off-line scheduling 3
1.2.2 On-line scheduling 5

1.3 System and task model 10
1.4 Real-time constraints - simple and complex 11
1.5 Scheduling complex constrained tasks in Fixed Priority

Systems (FPS) . 12
1.5.1 Related work 12
1.5.2 Motivation and application domains 13
1.5.3 Off-line vs. Fixed Priority Scheduling 14

1.6 Preemptions in FPS . 17
1.6.1 Related work and motivation 17

1.7 Problem formulation 18
1.8 Results presented in the thesis 19

1.8.1 Transforming off-line schedules to FPS task at-
tributes . 19

1.8.2 Applying the results to schedule complex con-
strained messages on CAN 21

1.8.3 Handling non-periodic events together with com-
plex constrained FPS tasks 22

1.8.4 Preemption reduction in FPS systems 24

ix

x Contents

1.9 Thesis outline . 24

2 Transforming off-line schedules to FPS task attributes 25
2.1 Introduction . 25
2.2 Off-line schedules . 27

2.2.1 Target windows 28
2.2.2 Time triggered system operation and off-line sched-

ule construction 28
2.2.3 FPS reenaction of off-line schedules 28
2.2.4 Increased runtime flexibility 29
2.2.5 Selectively reduced runtime flexibility 30
2.2.6 Transforming the off-line schedule to FPS tasks . 30

2.3 Problem description . 31
2.3.1 Off-line schedule 31
2.3.2 Online scheduling 31

2.4 Attribute assignment algorithm 31
2.4.1 Problem formulation 32
2.4.2 Algorithm overview 32
2.4.3 Derivation of the inequalities 33
2.4.4 Attribute assignment - conflicts 35
2.4.5 ILP problem representation 39
2.4.6 Periods and offsets 41

2.5 Example . 42
2.6 Discussion . 47
2.7 Proofs . 48

2.7.1 Proof 1 . 49
2.7.2 Proof 2 . 54

2.8 Chapter summary . 56

3 Scheduling complex constrained messages on Controller Area
Network (CAN) 59
3.1 Introduction . 59
3.2 Controller Area Network (CAN) and message scheduling 61
3.3 Attribute assignment algorithm 62

3.3.1 Overview . 62

Contents xi

3.3.2 CAN vs. processor scheduling 64
3.3.3 Priority inequalities 66
3.3.4 Attribute assignment - conflicts 67
3.3.5 Minimizing the final number of messages 69

3.4 Example . 70
3.5 Chapter summary . 74

4 Handling non-periodic events together with complex con-
strained fixed-priority tasks 77
4.1 Introduction . 77
4.2 Existing FPS servers 78
4.3 Problem formulation 80
4.4 Motivating example . 81
4.5 Proposed solution - overview 83
4.6 Server attribute assignment 84

4.6.1 Servers that do not preserve their capacity 85
4.6.2 Capacity preserving servers 87

4.7 Chapter summary . 94

5 Controlling the number of preemptions in FPS 97
5.1 Introduction and problem description 97
5.2 Problem formulation and task model 100
5.3 Method overview . 101

5.3.1 Preemption reduction cost 102
5.4 Solving a single preemption 103

5.4.1 Solving a preemption by eliminating the first
condition . 105

5.4.2 Solving a preemption eliminating the second con-
dition . 108

5.4.3 Solving a preemption eliminating the third con-
dition . 108

5.4.4 Artifact tasks 109
5.5 Reducing the number of preemptions - global approach . 111

5.5.1 Preemption dependency tree 111
5.6 A simple example . 113

xii Contents

5.7 Performance evaluation 118
5.8 Chapter summary . 120

6 Conclusions 123

Bibliography 136

Populärvetenskaplig svensk sammanfattning 137

List of Figures

1.1 Table driven scheduling: run-time schedule 5
1.2 Run time RM schedule 6
1.3 Run-time EDF schedule 9
1.4 Preemption example 17

2.1 Sequence of tasks. 34
2.2 Example 1: Off-line Schedule and Target Windows . . . 37
2.3 Resulting FPS tasks. 42
2.4 Example 2: Off-line Tasks 43
2.5 Example 2: Off-line Schedule and Target Windows . . . 44
2.6 Example 2: FPS Tasks 47
2.7 Example 2: FP Schedule 47

3.1 Algorithm overview. 63
3.2 Off-line schedule . 65
3.3 Sequence of messages. 67
3.4 Off-line Scheduled Messages and Target Windows . . . 71

4.1 Motivating example - original task set 82
4.2 Motivating example - problem 83
4.3 Server attribute assignment -no constraint guarantees!. 84
4.4 Server attribute assignment -constraints guaranteed . . 85
4.5 Non-capacity preserving server - off-line schedule 86
4.6 Polling server - FPS schedule 87

xiii

xiv List of Figures

4.7 Old sequence of tasks. 89
4.8 New sequence of tasks to deal with possible server exe-

cution. 90
4.9 Deferrable serve - FPS schedule 94

5.1 A simple example . 100
5.2 An off-line detected initial preemption 104
5.3 An off-line detected potential preemption 105
5.4 Pseudocode for the solving one preemption 110
5.5 Preemption dependency tree 113
5.6 Original FPS schedule: task C is preempted by A and B . 115
5.7 Example: preemption dependency tree 117
5.8 New FPS schedule, zero preemptions 118
5.9 Average preemption reduction 119
5.10 Preemption reduction cost 120
5.11 Number of FPS tasks 121

List of Tables

1.1 Real-time periodic tasks 4
1.2 Off-line scheduling table 4

2.1 Original tasks . 36
2.2 Target windows derived from the off-line schedule 37
2.3 Example 1: Sequences of tasks 38
2.4 Example 2: Inequalities 45

3.1 Original set of messages 71
3.2 Target windows for message invocations 72
3.3 Inequalities . 72
3.4 FP messages . 75

4.1 Original tasks . 81
4.2 FPS attributes . 82
4.3 FPS attributes for constrained periodic tasks and a non-

capacity preserving server 87
4.4 FPS attributes prepared for capacity preserving servers . 88
4.5 FPS attributes for constrained periodic tasks and deferrable

server . 93

5.1 Original FPS tasks . 114
5.2 Target windows for the original task instances 115
5.3 The new FPS attributes that yield no preemptions 118

xv

Chapter 1

Introduction

1.1 Real-Time computer systems

Real-time systems are computer systems in which the correctness of the
system depends not only on the logical correctness of the computations
performed, but also on which point in time the results are provided [52].
Delivering a result at a point in time beyond the latest possible, i.e., after
its deadline, may result to catastrophic consequences inhard real-time
systems. Example of such systems are medical control equipment or ve-
hicle control systems. On the other hand, insoft real-time systems, e.g.,
multimedia applications, a number of deadlines can be missed without
serious consequences. In this thesis we will primarily focus on hard
real-time systems.

A real-time system typically consist of a number ofresources(e.g.,
one or several processors), a number oftasks, designed to fulfill a num-
ber of timing constraints, and aschedulerthat assigns each task a frac-
tion of the processor(s) time, according to ascheduling policy. Tasks are
usuallyperiodicor non-periodic. Periodic tasks consist of an infinite se-
quence of invocations, calledinstancesor jobs. Non-periodic tasks are
invoked by the occurrence of an event. The choice of tasks and schedul-
ing policy is made to satisfy some original constraints imposed on the
system. Tasks can have various parameters, such as period, deadline,

1

2 Chapter 1. Introduction

priority, depending on the scheduling policy chosen to be used.
The scheduling policies are divided inoff-line, [30, 28], andon-line

scheduling, [38]. The main difference between the two is that, in off-line
scheduling, the decision of which task to execute at which time point
and on which processor is made at the design stage, and, at run-time,
the dispatcher selects which task to execute from scheduling tables. On
the other hand, in on-line scheduling, all decisions are made at run-
time depending on the task priorities and their arrival times. At each
point in time, the task which is ready to execute and has the highest
priority, is dispatched to execute. On-line scheduling is furthermore
divided in fixed priority scheduling(FPS), e.g.,rate monotonic(RM),
anddynamic-priority scheduling, e.g.,earliest deadline first(EDF) [38].

A key issue in real-time systems ispredictability, i.e., to be able
to anticipate the behavior of the systembeforerun-time and the guar-
antee that the system will behave as anticipatedat run-time. At the
same time,run-time flexibilityis a desired feature, as not all run-time
events can be completely accounted for in advance. Additionally, the
choice of scheduling strategy in real-time systems is strongly related to
the nature of the timing constraints which are to be fulfilled. As differ-
ent scheduling schemes provide different levels of, e.g., predictability
or flexibility, for the cost of a number of limitations, there is usually a
trade-off between the ability to handle complex constraints and the level
of flexibility provided by the selected scheduling strategy.

1.1.1 Event- and time-triggered real-time systems

In event-triggeredsystems, the activities happen in response to external
events. The typical example of this is the sensor-actuator example: a
sensor detects an external event and activates a task that reacts to this
event (performs a computation), after which the task sends it’s output to
an actuator. This is an example of a system reacting and adjusting to an
external event. One of the main issues about event-triggered systems is
that external events can cause many tasks to be activated, thus, causing
overload in the system, potentially leading to system failure.

1.2 Fundamental real-time scheduling paradigms 3

Time-triggeredsystems, on the other hand, require a priori knowl-
edge about all activities. In distributed time-triggered systems, each
node must have the same notion of time, implying that clock synchro-
nization is needed. The main advantage of time-triggered systems is the
predictable behavior they provide at the cost of low run-time flexibility.
An example of a time-triggered real-time operating system is MARS
[29], and another example is TTP-OS an time triggered OS developed
by TTTech [60].

In this thesis, we present mechanisms to handle real-time, complex
constraints, while providing predictability and run-time flexibility for
the task executions. In particular, we want to handle complex constraints
while exploiting the run-time advantages provided by FPS.

1.2 Fundamental real-time scheduling paradigms

In real-time systems there are two major scheduling strategies: off-line
and on-line scheduling. On-line scheduling is typically priority based
and is additionally divided in fixed priority scheduling (FPS) and dy-
namic priority scheduling, e.g., earliest deadline first (EDF). In this sec-
tion we present a brief introduction to each of them.

1.2.1 Off-line scheduling

This scheduling policy is also calledtable-driven schedulingor cyclic
scheduling, [39], and it is a technique to allocate tasks to the proces-
sors and to resolve complex constraints by determining windows for
tasks to execute in, and sequences, usually stored in scheduling tables.
At run-time, a simple dispatcher selects which task to execute from the
scheduling tables, ensuring tasks execute within the windows and thus
meet their constraints. For off-line scheduled tasks, typically, the run-
time dispatcher is invoked at regular time intervals, i.e.,slots, and per-
forms table lookup for task selection. The off-line scheduler assigns
absolute points in time for the execution of all tasks.

4 Chapter 1. Introduction

Off-line scheduling for time-triggered systems provides determin-
ism, as all times for task executions are determined and known in ad-
vance. In addition, complex constraints can be solved off-line, such as
distribution, end-to-end deadlines, precedence, jitter, or instance separa-
tion. However, as all actions have to be planned before startup, run-time
flexibility is lacking. While the times for temporal constraints have to
be kept, e.g., a task cannot execute after its deadline, order constraints
are relative, i.e., tasks can execute earlier provided the execution order
of the schedule is maintained. The off-line schedule, however, prevents
tasks from executing at a different time, even if resources become avail-
able earlier, e.g., by early termination of a task, i.e., the schedule is over
constrained.

Example: let us assume we have 2 periodic tasks as illustrated in
table 1.1, wherec represents the execution requirement andp the period
of the task.

Task p c
A 3 1
B 5 3

Table 1.1: Real-time periodic tasks

The processor utilization in this case is1
3 + 3

5 = 0.93 and an off-line
scheduler may came up with the a scheduling table schedule illustrated
in table 1.2

time 2-3 3-6 6-7 7-10 10-11 11-12 12-13 13-14 14-15
task A B A B B A B A B

Table 1.2: Off-line scheduling table

Consequently, the run-time dispatcher will perform table lookup and
make sure that the run-time executions of the tasks matches the off-line
scheduling table (figure 1.1)

1.2 Fundamental real-time scheduling paradigms 5

A A A

0 10 time5 15

B

AA

B BBB BBB B

Figure 1.1: Table driven scheduling: run-time schedule

1.2.2 On-line scheduling

On-line scheduling is suitable for event triggered systems as it provides
the ability to handle dynamic on-line events. SPRING [53] is an ex-
ample of an event-triggered real-time operating system. This schedul-
ing paradigm is usually priority driven, e.g., fixed or dynamic priority
based.

Fixed Priority Scheduling (FPS)

FPS is one of the online scheduling strategies and it has been widely
studied and used in a number of applications, mostly due its simple run-
time scheduling, small overhead, and good flexibility for tasks with in-
completely known attributes.

Temporal analysis of FPS algorithms focuses on providing guarantees
that all instances of tasks will finish before their deadlines. If the priori-
ties are determined by the size of the periods, i.e., the shorter the period,
the higher the priority, the scheduling strategy is commonly referred to
asRate Monotonic(RM) scheduling. Liu and Layland [38] provided a
minimum processor utilization bound (least upper bound) under which
all task are guaranteed completion before their deadlines. The utiliza-
tion bound is given by formula 1.1:

6 Chapter 1. Introduction

Ulub ≤ n(2
1
n − 1) (1.1)

When the number of tasks increase, the upper bound converges to

Ulub = ln2 ' 0.69

Some of the assumptions in the above analysis are that the tasks are
independent, deadlines are equal to their periods and tasks are released
at the beginning of their periods.

In our previous example where the tasks described in table 1.1 have
an utilization of 0.93, the least upper bound would be

Ulub = 2(2
1
2 − 1) ' 0.83

Note that, in this case, even if the utilization bound test cannot guar-
antee that the tasks can be scheduled by RM, the tasks still can be suc-
cessfully scheduled when RM algorithm is used (figure 1.2).

A A A

10 time5 15

AA

B BBBB Bp
ri
o
ri
ty

0

Figure 1.2: Run time RM schedule

In the case the task priorities are not scheduled by RM, i.e., priorities
are not ordered according to the size of the periods, the designer has
to perform aresponse time analysis(RTA) to verify that the tasks will
complete before their deadlines under the worse case execution scenario.

1.2 Fundamental real-time scheduling paradigms 7

An early RTA for the task model described by Liu and Layland was
introduced by Joseph and Pandya [23], but with arbitrary assigned pri-
orities. The formula used for deriving the worse case response time of a
taskTi is presented in formula 1.2

Ri = Ci +
∑

∀j∈hp(i)

dRi

Pj
eCj (1.2)

whereRi is the response time of taskTi, Ci is the worse case ex-
ecution time (WCET) of taskTi, hp(i) denotes the set of tasks with
priorities higher thanTi andPj is the period of taskTj .

What we can see in the formula above is thatRi occurs in both sizes
of the equation. The solution to calculateRi is to solve the equation by
using fix iterations on the following relation:

Rn+1
i = Ci +

∑
∀j∈hp(i)

dR
n
i

Pj
eCj

The RTA has been further extended by a number of approaches dur-
ing the following years, to lift the original assumptions, such as task
independency or deadlines less than or equal to periods, or to add new
scheduling demands, e.g., offsets, distribution, or jitter.

The priority assignment in FPS systems, if RM is not suitable due
to the application specific requirements, is, however, difficult, i.e., to
find a feasible priority assignment for given set of tasks with arbitrary
constraints.

The actual start and completion times of execution of tasks, how-
ever, are generally not known and depend largely on run-time events,
compromising predictability.

The tasks to be scheduled by FPS policy can be either periodic or
non-periodic. The periodic tasks are characterized by periods, offsets,
deadlines, and same priorities for all invocations of the same task. These
tasks became ready to execute at their release times, e.g., start of the

8 Chapter 1. Introduction

periods or offsets, and will be scheduled for execution once they have
the highest priority among the tasks in the ready queue.

Non-periodic tasks can be either aperiodic or sporadic. While the
aperiodic tasks attributes are unknown, i.e., arrival time, deadline or
execution requirement, sporadic tasks have minimum inter-arrival times,
i.e., the time interval in which at most one task instance can be released.

Furthermore, FPS is divided inpreemptiveandnon preemptive. In
preemptive FPS, tasks that are currently executing can be interrupted by
any higher priority tasks at any time. On the contrary, in non preemptive
FPS, tasks, once scheduled to execute, will do so until completion.

A main advantage of FPS is the flexibility it provides in terms of the
ability to handle tasks with incompletely known attributes, e.g., aperi-
odic tasks. This is usually done by using servers that identify and use
the slack in the system for non-periodic tasks.

A real-time system running according to the fixed priority schedul-
ing strategy provides for flexible task executions since the scheduling
decision, i.e., the choice of which task to execute at each time point is
made at run-time. Additionally, FPS has the ability to handle on-line
events with incompletely known attributes, such as aperiodic and spo-
radic events. However, FPS is limited with respect to the ability to han-
dle multiple complex constraints, such as jitter, end-to-end deadlines or
instance separation. For example, additional tasks or constraints added
to an existing fixed priority based system require new schedulability
tests which may not have been developed yet, or may find the system
unschedulable in the new configuration.

Earliest Deadline First (EDF) scheduling

The main difference between FPS and EDF is that in dynamic priority
scheduling, e,g., EDF, the priorities of tasks change dynamically during
runtime depending on the task deadlines. As for FPS, EDF has a fairly
simple run-time mechanism, the tasks must be executed in earliest ab-
solute deadline order, and EDF also provides good flexibility to tasks,
whose attributes are not completely known.

1.2 Fundamental real-time scheduling paradigms 9

Under the assumptions used by Liu and Layland in calculation of
the RM lowest upper bound, EDF performs better in the sense that a set
of periodic tasks is schedulable by EDF ([38]) if and only if:

n∑
i=1

Ci

Ti
≤ 1

The schedulability analysis for the EDF algorithm is very simple
compared to the RM schedulability test. If the total task utilization is
kept under100% the task set is guaranteed to meet its deadlines under
EDF scheduling, compared to RM where the situation becomes more
complex if the task set has an utilization higher than69%. In that case,
an exact analysis is required, which is often to complex to perform on-
line.

Tasks that are scheduled by EDF are similar to the FPS tasks, as they
can be periodic or non-periodic (aperiodic or sporadic). The difference
is that EDF tasks do not have fixed priority attributes, as the priorities
are dynamically derived from the deadlines.

The tasks in our example (1.1) have an utilization of 0.93, so they
are guaranteed to complete before their deadlines if scheduled by EDF.
The run-time schedule under EDF scheduling is illustrated in figure 1.3.

A A A

10 time5 15

AA

BBB

0

B

Figure 1.3: Run-time EDF schedule

Additions to the basic EDF algorithm to efficiently handle aperi-
odic tasks by using server mechanisms, e.g., total- or constant-bandwith

10 Chapter 1. Introduction

server, have been presented in [51], and in [1]. Baruah et. al., fur-
ther extended constant bandwith server to multiprocessor systems [6, 7].
Normally, EDF does not behave well in the presence of overload in the
systems, but Buttazzo et. al. [11] extended EDF to Robust EDF (RED),
to handle overload in a predictable way.

1.3 System and task model

We consider a clock synchronized distributed system consisting of a
number of processing and communicating nodes, assuming a discrete
time model [27].

In general, real-time systems have to cope with a variety of events
ranging from a periodic nature, e.g., sampling values provided by a tem-
perature or pressure sensor, or non-periodic, e.g., interrupts or reacting
to a button pressed by the user. In this work, we consider both types of
events.

Periodic tasks They usually consist of an infinite sequence of invo-
cations, calledtask instancesor jobs, activated periodically. Hence, a
periodic task is characterized by a period and an execution requirement,
usually calledcomputation time. Once a periodic task instance is sched-
uled to execute, and completes its execution, it will not be activated
again until the beginning of its next period. An example is the elec-
tronic speed indicator in modern cars, which displays the instantaneous
speed often enough, e.g., with a short activation period, such that the
human eye percepts it as continuos with respect to the speed variations.

Non-periodic tasks Depending on the activation pattern, we identify
two types of non-periodic tasks:aperiodicandsporadictasks.

Aperiodic tasks are be activated by events, such as interrupts, a sen-
sor providing a value above a predefined threshold, etc, at totally irregu-
lar time intervals. An example could be the cooling system in a vehicle,
where an event handler turns on the cooling fans once the temperature
has reached a certain temperature.

1.4 Real-time constraints - simple and complex 11

Sporadic tasks, on the other hand, provide the system designer slightly
more information compared to aperiodics, as they have anminimum
inter-arrival time between two consecutive invocations. Once a spo-
radic task has been activated, the designer can exclude the possibility of
another activation within the time interval specified by the tasks mini-
mum inter-arrival time. Hence, the chances to make accurate scheduling
predictions and guarantees in the system are increased.

In this work, we primarily focus on periodic and, later on, aperiodic
tasks, as this scenario implies the worse case assumptions on task ac-
tivation patterns. However, the more information the system designer
has, e.g., to deal with sporadic events in stead of aperiodics, the higher
the chances to provide a better solution.

1.4 Real-time constraints - simple and complex

In this section we describe a number of constraints that are challenging
to deal with in priority driven scheduling, e.g., FPS, while fairly easy to
solve in off-line scheduling.

The most simple constraints in real-time systems are deadlines, i.e.,
a task, regardless from the scheduling strategy it is executed by, should
execute and complete before a fixed point in time relative to it’s acti-
vation. Often, however, the system designer has to map various perfor-
mance requirements, e.g., such as quality of control in control systems,
to specific demands on individual task or even task instances. This leads
to a various number of complex constraints, the scheduler, at the end,
must guarantee.

In the following, we briefly describe a number of such constraints:

• Jitter – The time interval between consecutive task executions is
bounded by fixed values. In this case, the execution of consecutive
instances of the same task has to be fixed between pre-determined
points in time. Consequently, in some cases, different instances
of the same tasks must have different attributes, e.g., priorities,
leading to inconsistencies in FPS.

12 Chapter 1. Introduction

• Precedence –Tasks must execute in a pre-defined order, e.g.,
sampling and actuating tasks in real-time control systems. Work
has been done to deal with precedence constraints in EDF [13] as
well as precedence relations have been taken into account when
performing the schedulability analysis in FPS [43]. However, the
issue of attribute assignment for FPS is a challenging task as the
task executions depend on the unpredictable run-time events.

• Distribution – Tasks are allocated to different nodes, e.g., to
achieve inter-node communication. Well used in, e.g., automo-
tive and avionics industry (e.g., [12]), together with FPS. Addi-
tionally, in some cases, tasks with precedence constraints have to
be allocated to different nodes. Mapping of all these constraints
to FPS attributes directly, may be a challenging task.

• Instance separation –Usually demanded in control systems [59],
e.g., to achieve synchronized sampling, control computations and
actuating [40]. That may require the execution of different in-
stances of the same task separated by different time intervals, po-
tentially leading to FPS attribute inconsistencies.

Depending on the underlaying scheduling mechanism in the system,
such constraints are more or less challenging to guarantee. Deadlines,
for example, can be guaranteed in all systems, i.e., table driven, FPS or
EDF. However, instance separation, for example, may be a challenging
issue to deal with in priority based systems, while easy to achieve in
table driven ones.

1.5 Scheduling complex constrained tasks in Fixed
Priority Systems (FPS)

1.5.1 Related work

Fixed priority scheduling (FPS) has been widely studied and used in a
number of applications, mostly due by its simple run-time scheduling

1.5 Scheduling complex constrained tasks in Fixed Priority
Systems (FPS) 13

and resulting small overhead. Modifications to the basic scheme to han-
dle semaphores [48], aperiodic tasks [50], static [55] and dynamic [42]
offsets, and precedence constraints [21], have been presented.

Priority assignment for FPS tasks has, for example, been studied in
[5] and [20]. [47] studies the derivation of task attributes to meet overall
constraints, e.g., demanded by control performance. Bate [8] provided
solutions to priority assignment for deadline monotonic (DMPO). Modi-
fications to the basic scheme to handle semaphores [48], aperiodic tasks
[50], static [55] and dynamic [42] offsets, and precedence constraints
[21], have been presented. Sandsröm [45] presented a method for pre-
run-time scheduling of periodic control activities under the interference
of sporadic interrupts.

Controller Area Network (CAN), has gained wider acceptance as a
standard in a large number of industrial and automotive applications.
The priority based message scheduling used in CAN has a number of
advantages, some of the most important being the efficient bandwidth
utilization, flexibility, simple implementation and small overhead. Early
results on message scheduling on CAN have been presented in [57] and
[56], in which the authors focused on fixed priority scheduling based
on work presented in [38] and [37]. Later on, Zuberi [63] showed that
static priority scheduling is not always the most suitable strategy. Ear-
liest Deadline (EDF) can prove significantly better than fixed priority
scheduling [41] with respect to schedulability.

1.5.2 Motivation and application domains

One of the purposes of the work presented in this thesis is to provide
methods to combine the advantages of both scheduling strategies, off-
line scheduling and FPS, i.e., predictability and ability to solve complex
constraints while flexibility at run-time. Instead of direct mapping spe-
cific requirements into FPS attributes, our methods use the ability of
off-line scheduling to solve complex constraints and, then, take advan-
tage of the information provided in the off-line schedule to determine
task attributes suitable for FPS.

14 Chapter 1. Introduction

1.5.3 Off-line vs. Fixed Priority Scheduling

Off-line scheduling, [28, 30], and fixed priority scheduling (FPS), [5,
20], are often considered as having incompatible paradigms, but com-
plementing properties. FPS has been widely studied and used in a num-
ber of applications, mostly due to its simple run-time scheduling, small
overhead, and good flexibility for tasks with incompletely known at-
tributes. Temporal analysis of FPS algorithms focuses on providing
guarantees that all task instances will finish before their deadlines. How-
ever, additional constraints to FPS schemes require new schedulability
tests, which may not have been developed yet, or may find the system
unschedulable in the new configuration. Hence, the run-time flexibil-
ity provided by FPS comes at the expense of ability to handle multiple
constraints, such as, jitter, instance separation or end-to-end deadlines.
The actual start and completion times of execution of tasks, however,
are generally not known and depend largely on run-time events, com-
promising predictability.

Furthermore, FPS is widely used in a number of industrial appli-
cations involving network scheduling using Controller Area Network
(CAN). An approach to time–triggered communication on controller
area network has been presented in [33], while in [2], the authors pre-
sented an approach to enhance both event– and time–triggered commu-
nication in CAN. However, both approaches imply modifications to the
native CAN protocol.

Off-line, table driven, scheduling for time-triggered systems, [28],
on the other hand, provides predictability, as all times for task executions
are determined and known in advance. The off-line scheduler allocates
tasks to the processors and resolves complex constraints by determin-
ing windows for tasks to execute in, and sequences, usually stored in
scheduling tables. At run-time, the dispatcher, invoked at regular time
intervals, selects which task to execute from the scheduling tables, en-
suring tasks execution within the off-line determined windows and, thus,
meet their constraints.

However, as all actions have to be planned before startup, run-time
flexibility is lacking. The advantage of solving complex constraints

1.5 Scheduling complex constrained tasks in Fixed Priority
Systems (FPS) 15

comes at a price of limited run-time flexibility in terms of ability to han-
dle tasks with incompletely known attributes, e.g., aperiodic or sporadic
tasks.

Off-line scheduling for time triggered systems has, for example,
been studied in [28, 30]. The choice of scheduling technique used in
order to achieve different requirements has been analyzed and discussed
[62], [39].

Instead of enhancing only either FPS or off-line scheduling alone,
the solutions presented in this thesis provide for a combination of both,
such that benefits of either scheme are accessible to the other. In particu-
lar, the presented methods provide solutions for the following scenarios:

Legacy Systems: Some safety critical applications, e.g., in the avion-
ics domain [12], demand temporal partitioning of task executions or as-
sertions not only about deadline being met, but restrictions on the actual
times when task executions are performed. Typically, such applications
are executed in time triggered architectures with off-line schedule con-
struction. A move to fixed priority based systems has to ensure the spe-
cific demands will be met, which may be cumbersome applying standard
FPS methods, as these concentrate on deadlines primarily.

The proposed methods transform these demands directly into at-
tributes for tasks to be feasibly scheduled by FPS, pertaining the pre-
dictability provided by off-line schemes.

FPS systems with unresolved constraints: The feasibility test pro-
vided for FPS tasks defines the types of constraints which can be met.
Additional constraints or combinations require modifications to existing
tests or the development of new ones, which may not be available in
limited time.

In addition, constraints demanded by complex applications, cannot
be expressed generally. Control applications may require constraints on
individual instances rather than fixed periods, reliability demands can
enforce allocation and separation patterns, or engineering practice may
require relations between system activities.

16 Chapter 1. Introduction

The proposed method resolves the need for developing of new spe-
cific tests for unusual constraints: first, a designer will apply known
tests on the application under consideration. Should standard schemes
prove to be incapable, the designer submits these tasks to an off-line
scheduling scheme, which can use elaborate and general methods, such
as search or constraint satisfaction, to provide a feasible off-line sched-
ule. Then, by using the proposed methods, we derive attributes, such as
period, priority, and offset for these tasks, such that they can be sched-
uled with FPS, while meeting the specific constraints.

Predictable flexibility: Off-line scheduling provides deterministic ex-
ecution patterns for all tasks in the system, while FPS schemes provide
flexibility for all tasks. Only few applications, however, will demand ei-
ther determinism or flexibility uniformly for all activities in the system.
Rather, only few selected tasks have tight restrictions on their execu-
tions, e.g., those sampling or actuating in a control system, with strict
demands on jitter and variability, while a majority can execute flexibly.

Off-line scehduling in Controller Area Network (CAN): Increasing
demands from industrial applications using CAN for communication,
leads to increased complexity imposed on system. Consequently, mes-
sages transmitted by nodes have to fulfill a number of requirements in
form of complex constraints.

On the other hand, off-line scheduling for time triggered systems
provides determinism [28, 30], and, additionally, complex constraints
can be solved off-line, but this scheduling strategy is not directly suitable
for the native CAN protocol.

By using the proposed methods, we transform off-line scheduled
transmission schemes into sets of messages that can be feasibly sched-
uled on CAN without modifying the basic CAN mechanism.

The methods allows the amount of flexibility at runtime to be set
off-line in a predictable way by including restrictions on task execution
as input to the transformation algorithm.

1.6 Preemptions in FPS 17

1.6 Preemptions in FPS

1.6.1 Related work and motivation

The impact of preemption related overhead in FPS in the context of
real-time systems, is well recognized [9, 44]. In multimedia applica-
tions, for example, tasks may introduce a high context switch cost [17].
In fact, preemption related overhead in FPS may cause undesired high
processor utilization, high energy consumption, or, in some cases, even
infeasibility.

Example 1.4 illustrates a situation where task B, while preempted
by A, misses its deadline due to the introduced context switch cost (a).
However, B would meet its deadline if A would not preempt it (b).

0 3 5 150 3 5 15

A preempts B B misses deadline !
preemption caused

extra overhead

A AB B

dl(B)

B completes before deadline

A AB

dl(B)

(a) B misses deadline because of preemption (b) No preemption - B completes before deadline

Figure 1.4: Preemption example

The direct preemption cost, i.e., costs to perform context switches
[24], to handle interrupts [24, 22, 9], or to manipulate task queues [9,
24], has been analyzed. Cache-related preemption, i.e., indirect cost,
[31, 46], has been analyzed to incorporate it into schedulability analysis,
as well as approaches to bound the cache-related preemption delay have
been presented [32]. Approaches to reduce the number of preemptions
in FPS have been presented [61, 25, 26], where tasks, besides their pri-
orities, are assigned a threshold value such that they can be preempted
only by other tasks with priorities higher than the threshold. This ap-
proach results, in essence, in a dual priority system which is not directly

18 Chapter 1. Introduction

suitable for legacy systems, where exchanging the scheduler or modify-
ing it by, e.g., adding mutexes to simulate preemption threshold, is not
desirable, or not possible.

In [10], the author showed that RM introduces a higher number of
preemptions than EDF. At the same time, reducing the number of pre-
emptions can also be beneficial from an energy point of view in systems
with demands on low power consumption. When a task is preempted
there is a great probability that its contents in the cache will be lost.
When the execution of the task is again resumed it will cause a lot of
energy consuming accesses to off-chip memory. An access to off-chip
memory is typically 10-100 times more expensive than an on-chip cache
access in terms of energy consumption. Reducing the number of pre-
emptions will reduce these additional expensive memory accesses due
to reduced cache pollution.

Moreover, schedulability of a task set in preemptive FPS does not
imply the schedulability if the same task set in non-preemptive FPS.

1.7 Problem formulation

In this work we aim to combine the advantages provided by two funda-
mental scheduling paradigms: off-line and fixed priority scheduling.

First, we introduce a method to transform off-line scheduled tasks
with complex constraints to attributes for fixed priority scheduling. First,
an off-line schedule is constructed for a set of tasks to fulfill their com-
plex constraints. Then, by analyzing the off-line schedule together with
the original constraints, we derive FPS attributes, i.e., priorities, offsets,
deadlines, such that the tasks, when scheduled by FPS, will execute flex-
ibly, while fulfilling the same complex constraints of the original off-line
scheduled tasks.

Instead of direct mapping specific requirements into FPS attributes,
our methods use the ability of off-line scheduling to solve complex con-
straints and, then, take advantage of the information provided in the
off-line schedule to determine task attributes suitable for FPS.

1.8 Results presented in the thesis 19

Thus, we combine FPS flexibility at runtime with the capability of
off-line scheduling to resolve complex constraints.

Secondly, we apply the proposed approach to implement off-line mes-
sage scheduling in CAN. We use off-line scheduling to reduce the com-
plexity of mapping complex constraints to unique identifiers required
for message scheduling on CAN. We take advantage of the CAN par-
ticularities to optimize our solution, as well as we modify our previous
approach to meet the scheduling mechanism requirements on CAN.

As one of the main advantages provided by FPS is flexibility in terms
of the ability to handle events with incompletely known attributes, we
investigate the ability of our method to handle non-periodic events by
using existing fixed priority servers. In particular, we provide mech-
anisms to allow for the inclusion of non-periodic events via servers, as
well as a method to assign attributes to servers such that the non-periodic
event receive the best service while the constraints on the periodic tasks
are fulfilled.

Finally, we address the issue of preemption cost in FPS systems. We
introduce a method to control the number of preemptions in existing
FPS systems, with no modifications to the underlaying scheduler. As
preemption reduction does not come for free, we provide users of FPS
systems for the ability to trade of the level of preemptions for the pre-
emption reduction cost, with no modifications to the original scheduler.

1.8 Results presented in the thesis

1.8.1 Transforming off-line schedules to FPS task attributes

First, we present a method to combine off-line schedule construction
with fixed priority scheduling by determining task attributes for the off-
line scheduled tasks, such that the original schedule is reconstructed if

20 Chapter 1. Introduction

the tasks are scheduled by FPS at run-time. The method analyzes an off-
line schedule together with original task constraints to create sequences
and windows of tasks. Priorities and offsets are set to ensure task orders
in sequences and relations between windows.

FPS cannot reconstruct all schedules with periodic tasks. The con-
straints expressed via the off-line schedule may require that instances of
a given set of tasks need to be executed in different order on different
occasions. Hence, there not always exist a valid FPS priority assignment
that can achieve these different orders. Our methods detects such situa-
tions, and circumvents the problem by splitting a task into its instances.
Then, the algorithm assigns different priorities to the newly generated
“artifact” tasks, the former instances. Lower priority tasks can be added
for run-time use.

Key issues in resolving the priority conflicts are the number of ar-
tifact tasks created, and the number of priority levels. Depending on
how the priority conflict is resolved, the number of resulting tasks may
vary, e.g., splitting a task with a large number of instances over LCM
would result in a large number of artifacts. We minimize the number of
artifacts by generating optimal solutions with an ILP-based algorithm.

We assume that a schedule for a set of tasks with complex constraints
has been constructed off-line and we present a method to analyze the
off-line schedule and derive an FPS task set with FPS attributes prior-
ity, offset, and period, such that the runtime FPS execution matches the
off-line schedule. The proposed method analyzes the schedule and sets
up inequality relations for the priorities of the tasks under FPS. Integer
linear programming (ILP) is then used to find a FPS priority assignment
that fulfills the relations. In case the priority relations for the tasks of
the off-line schedule are not solvable we split tasks into the number of
instances, to obtain a new task set with consistent task attributes. By
using ILP, we can ensure that our schedule translation algorithm keeps
the number of newly generated artifact tasks minimal, while additional
demands can be added by inclusion in the goal function.

1.8 Results presented in the thesis 21

1.8.2 Applying the results to schedule complex constrained
messages on CAN

Furthermore, we extended the previously introduced approaches ([16]),
to implement off-line scheduling in Controller Area Network (CAN)
([15]). The ILP-formulation is modified to ensure unique priorities for
the messages, as required by the CAN protocol.

In this approach, we apply the previously developed methods to take
advantage of the benefits of off-line scheduling in (CAN). Assuming
that a schedule, for a set of tasks transmitting messages on CAN, has
been constructed off-line, we present a method that analyzes the off-line
schedule and derives a set of periodic messages with fixed priorities,
which can be scheduled on CAN. Based on the information provided by
the off-line schedule, the method derives inequality relations between
the priorities of the messages under FPS. In case the priority relations of
the messages are not solvable, we split some messages into a number of
artifacts, to obtain a new set of messages with consistent identifiers. We
use integer linear programming to minimize the final number of mes-
sages.

The off-line analysis we perform in the proposed method is simpli-
fied when applied to CAN, due to the CAN properties which we can
take advantage of:

• The message length is constant in CAN – This fact ease the off-
line analysis we perform in our methods, as it avoids situations
where the order of transmission may change as a consequence of
variable transmission time. In task scheduling we assume task
executing for worst case execution time (WCET) while the actual
execution time at run-time is most likely much less.

• CAN scheduling is non-preemptive – In preemptive task schedul-
ing, the execution order may change, due to variations in the ex-
ecution times. In CAN this problem no longer exist since the
message length is constant and no preemptions may occur.

An additional issue is that CAN scheduling require unique priorities.

22 Chapter 1. Introduction

We solve the issue by simply adding an extra constraint to the ILP.
By using our method, we solve the issue of attribute assignment for

a set of messages with complex constraints and schedule them on CAN
while preserving the native CAN mechanism.

1.8.3 Handling non-periodic events together with complex
constrained FPS tasks

Motivation and related work

One of the main advantages provided by FPS is the capability to handle
non-periodic events, e.g., aperiodic tasks. In FPS, non periodic events
are commonly handled by servers, e.g., background scheduling, polling
or deferrable servers, or slack stealing. FPS servers are scheduled as
tasks with periods, capacities and priorities, to use the slack in the sys-
tem for non-periodic tasks.

Polling, Deferrable and Sporadic Server, as well as Priority Ex-
change have been introduced by Lehoczky and Sprunt et. al. in ’87
and ’89, [36, 49], while Slack Stealing was introduced by Lehoczky et.
al. in ’92, [35].

All of them have advantages and disadvantages in terms on respon-
siveness of the non-periodic tasks vs. computational overhead and uti-
lization bounds for the periodic tasks. In 1995, Tia et. al. [54] proved
the non optimality of the existing fixed-priority servers, i.e., no existing
approach can minimize the response time of non-periodic tasks while
still guaranteeing the feasibility of the periodic ones. The main reason
is that, in some cases, aperiodics may have to execute later than the
earliest possible start of execution in order to achieve the best response
time.

However, the utilization bound analysis was provided for the servers
together with periodic tasks scheduled by RM. In our methods, on the
other hand, the tasks are not scheduled by RM as we aim to deal with
periodic tasks with complex constraints. As a consequence, our task set
consists of tasks with arbitrary priorities, offsets and deadlines shorter
than periods.

1.8 Results presented in the thesis 23

In this work we investigated the possibility to use the existing FPS
servers to handle non-periodic events together with the tasks obtained
by using the our transformation approach. We aimed to be able to han-
dle non-periodic events while not jeopardizing the complex timing con-
straints of the periodic tasks.

Proposed solution

In this work we have analyzed the servers based on their run-time be-
havior with respect to their activation times.

For analysis purposes, we can divided the FPS servers in two major
categories depending on the behavior of the server upon the presence
(or absence) of a non-periodic event: servers that do not preserve their
capacity during their period if no aperiodic requests are pending, and
servers that do. In the first case, if no aperiodic tasks are waiting to
be served at the beginning of the server period, the server capacity is
waisted and replenished at the beginning of the next period.

We show that servers that do not preserve their capacity during their
periods, if no aperiodic requests are pending at the beginning of the
period, can be easily incorporated in our method while guaranteeing the
constraints of the periodic tasks, by treating them as periodic tasks that
are ready to execute at the beginning of their periods, and do not suspend
themselves. In this case, the only difference between the server and the
periodic tasks is that the server may not execute at all if no aperiodic
requests are pending at the beginning of its period.

Furthermore, we provide a mechanism to be able to handle non-
periodic events by existing server that preserve their capacity during
their periods until an aperiodic requirement occurs. The difficulty of
scheduling this type of servers together with periodic, complex con-
strained tasks, is that the server execution, i.e., at which time the server
starts its execution within its period, can not be predicted such that it
can be included in the off-line schedule construction.

While our method can feasibly schedule the existing servers together
with the periodic FPS tasks created by the method described in chapter
2, any feasible attribute assignment can be used on the servers as long as

24 Chapter 1. Introduction

the designer can guarantee the completion of the periodic tasks before
their deadlines. That is because, in our off-line to FPS transformation,
we specified the release times and deadline of the tasks, i.e., the tar-
get windows, in which if the tasks execute and complete, the original
constraints are guaranteed.

1.8.4 Preemption reduction in FPS systems

Proposed solution

Once we have migrated off-line scheduling based systems to FPS, we
aimed to further improve FPS by controlling the number of preemptions.
In particular, we propose a method to reduce the number of preemptions
in legacy FPS systems consisting of tasks with priorities, periods and
offsets. Approaches to reduce the number of preemptions exist, but they
modify the basic FPS mechanism.

Our method analyzes off-line a set of periodic tasks scheduled by
FPS, detects the maximum number of preemptions that can occur at run-
time, and reassigns task attributes such that the tasks are schedulable by
the same scheduling mechanism, while achieving a significantly lower
number of preemptions.

In some cases, there is a cost to pay for a lower number of pre-
emptions in terms of increased amount of tasks and/or reduced task
execution flexibility. Our method provides for the ability to choose a
user-defined number of preemptions with respect to the cost to pay.

1.9 Thesis outline

In chapter 2 we present an a method to combine off-line and fixed pri-
ority scheduling. We apply the results to CAN message scheduling in
chapter 3 and we extend it to fully take advantage of FPS mechanism
in chapter 4 where we handle non-periodic events. In section 5 we in-
troduce a method to control the number of preemptions in FPS and we
conclude the thesis in chapter 6.

Chapter 2

Transforming off-line
schedules to FPS task
attributes

2.1 Introduction

Fixed priority scheduling (FPS) has been widely studied and used in a
number of applications, mostly due by its simple run-time scheduling
and resulting small overhead. Modifications to the basic scheme to han-
dle semaphores [48], aperiodic tasks [50], static [55] and dynamic [42]
offsets, and precedence constraints [21], have been presented. Conse-
quently, FPS enables good flexibility for tasks with incompletely known
attributes. Temporal analysis of FPS algorithms focuses on meeting
deadlines, i.e., guarantees that all instances of tasks will finish before
their deadlines. The actual times of executions of tasks, however, are
generally not known and depend largely on run-time events, compro-
mising predictability.

Off-line scheduling for time-triggered systems, on the other hand,
provides strong predictability, as all times for task executions are deter-
mined and known in advance. In addition, complex constraints can be
solved off-line, such as distribution, end-to-end deadlines, precedence,

25

26 Chapter 2. Transforming off-line schedules to FPS task
attributes

jitter, or instance separation. All this is enabled at the expense of loosing
run-time flexibility, as all actions have to be planned before.

In this chapter, we present an algorithm to combine off-line sched-
ule construction with fixed priority run-time scheduling. The resulting
systems have a time-triggered base that is complemented with even-
triggered on-line scheduling. This allows us to combine benefits of off-
line scheduling, in particular a distributed system, complex, constrained
tasks, and end-to-end deadlines, with online scheduling, which allows
flexible task execution. A number of tasks are specified to execute pre-
dictable, while allowing flexibility for all others.

Our method works by transforming off-line scheduled tasks with
their original constraints into tasks with attributes suited for fixed prior-
ity scheduling, i.e., periods, deadlines, and offsets, which will reenact
the original offline schedule at runtime. It divides the off-line sched-
ule and its tasks into windows and sequences, sets priorities to ensure
execution orders within windows, and determines priorities and offsets
to ensure orders and relations between windows. As FPS cannot recon-
struct all schedules with periodic tasks, our algorithm can split tasks into
several instances to achieve consistent task attributes. Tasks with lower
priorities can be added for run-time scheduling.

Priority assignment for FPS tasks has been studied in, e.g., [5], [20],
and [47] study the derivation of task attributes to meet a overall con-
straints, e.g., demanded by control performance. Instead of specific re-
quirements, our algorithm takes an entire off-line schedule and all task
requirements to determine task attributes. A method to transform off-
line schedules into earliest deadline first tasks has been presented in
[19].

The proposed method allows the amount of flexibility at runtime
to be set off-line in a predictable way by including restrictions on task
execution as input to the transformation algorithm.

FPS cannot reconstruct all schedules with periodic tasks with the
same priorities for all instances directly. The constraints expressed via
the off-line schedule may require that instances of a given set of tasks

2.2 Off-line schedules 27

need to be executed in different order on different occasions. Obviously,
there exist no valid FPS priority assignment that can achieve these dif-
ferent orders. Our algorithm detects such situations, and circumvents
the problem by splitting a task into its instances. Then, the algorithm
assigns different priorities to the newly generated "artifact" tasks, the
former instances.

Key issues in resolving the priority conflicts are the number of arti-
fact tasks created, and the number of priority levels. Depending on how
the priority conflict is resolved, the number of resulting tasks may vary,
depending on the periods of the split tasks. Our algorithm minimizes
the number of artifact tasks. By using an ILP solver for the derivation of
priorities, additional demands such as reducing number of preemptions
levels can be added by inclusion in the goal function.

The chapter is organized as follows: in section 2.2 we discuss the
rationale of our method. We give a brief description of the problem in
section 2.3 followed by the problem formulation and the basic idea of
the proposed algorithm in section 2.4. We illustrated our method by an
example in Section 2.5. In section 2.7 we give the format proofs to the
proposed approach and we summarize the chapter in section 2.8.

2.2 Off-line schedules

In this section, we discuss the rationale of our method and position
its functionality with respect to application timing constraints, off-line
scheduler, and FPS online execution of tasks. We discuss the complex-
ity reduction of the NP hard scheduling problem with general constraints
achieved by the off-line scheduler and how the new method provides for
a selective choice of degree of online flexibility of the resulting FPS
tasks.

Before starting the discussion, we introduce the termtarget win-
dows.

28 Chapter 2. Transforming off-line schedules to FPS task
attributes

2.2.1 Target windows

We define the target window of a task as the interval of time in which the
instance will execute and complete at run-time. For example, the target
window of a task scheduled by the RM algorithm will be the period of
the task. The target window of a task scheduled off-line will consist of
the time slots that the off-line scheduler assigned to the task.

2.2.2 Time triggered system operation and off-line schedule
construction

We assume a distributed system of stand-alone computers connected
via a shared network. Tasks are allocated to these nodes, communicate
across the system, and are demanded to fulfill complex constraints, such
as precedence, end-to-end deadlines, and jitter. The off-line scheduler
allocates tasks to nodes and resolves complex constraints by determin-
ing windows for tasks to execute in, and sequences, usually stored in
scheduling tables. The resulting off-line schedule is one feasible, likely
suboptimal solution. At run-time, a simple dispatcher selects which task
to execute from the scheduling tables, ensuring tasks execute within the
windows and thus meet their constraints.

This way, the complexity of the original scheduling problem is re-
duced off-line, which allows for elaborate methods, improvement of re-
sults and modifications in the failure case. The transformation method
can be flexible to include new types of constraints, to accommodate
application specific demands and engineering requirements. Runtime
scheduling is simplified to executing taskset within the windows con-
structed by the off-line scheduler, calledtarget windowsfurther on; then
all original constraints will be fulfilled.

2.2.3 FPS reenaction of off-line schedules

For off-line tasks, typically, the runtime dispatcher is invoked in each
node at regular time intervals,slots, and performs table lookup for task
selection. While being simple, this is not the only way to ensure tasks

2.2 Off-line schedules 29

execute in the windows, from now on calledtarget windows, and in the
order computed by the off-line scheduler.

In this work, we propose to use standard fixed priority scheduling
instead: by deriving priorities and offsets for tasks in such a way that
tasks execute within their target windows and fulfill the precedence re-
quirements when scheduled by FPS, the system will reenact the off-line
schedule. Thus, the advantages of deterministic off-line scheduling can
be combined with FPS scheduling at runtime.

Strict reenaction on a slot basis will over constrain the schedule for
the sake of determinism by eliminating all flexibility of the resulting
tasks. While this is demanded in some safety critical applications which
apply FPS scheduling, e.g., for legacy reasons, the potential for flexibil-
ity in FPS scheduling remains unused.

2.2.4 Increased runtime flexibility

By modifying target windows, flexibility can be increased at runtime,
while keeping the original constraints. Target windows created by the
off-line scheduler resolve two types of constraints:temporal, e.g., start
of periods, end-to-end deadlines, sending or receipt of messages over
the network, or jitter, instance separation, etc, andorder of task execu-
tion, as determined by the off-line scheduler, e.g., for data flow process-
ing, precedence, mutual exclusion. The off-line scheduler resolves both
types of constraints by assigning absolute points in time for the execu-
tion of all tasks. While the times for temporal constraints have to be
kept, e.g., a task cannot execute after its deadline, order constraints are
relative, i.e., tasks can execute earlier provided the execution order of
the schedule is maintained.

The off-line schedule, however, prevents tasks from executing at a
different time, even if resources become available earlier, e.g., by early
termination of a task, i.e., the schedule is over constrained.

We provide an execution pattern which is more flexible than in-
terpreting an offline schedule but nevertheless guarantees to meet the
given constraints. We propose to join target windows of order con-
strained tasks which have the same temporal constraints. These tasks

30 Chapter 2. Transforming off-line schedules to FPS task
attributes

form chains according to their order inside these new target windows.
Thus, we can exploit more flexibility while maintaining the constraints
resolved by the offline schedule.

2.2.5 Selectively reduced runtime flexibility

While desirable in general, additional flexibility may be harmful for
some tasks, e.g., those sampling and actuating in a control system. For
such tasks, the deterministic execution provided by the offline schedule
has to be pertained. Eliminating flexibility forall tasks in the system to
preserve only few, over constrains the system.

We propose to prevent the joining of target windows or to reduce
the length of some windows selectively to keep the strict execution be-
havior of selected tasks, while providing flexibility for the rest. Thus,
our methods allows the amount of run-time flexibility of a task to be set
offline in a predictable way.

2.2.6 Transforming the off-line schedule to FPS tasks

In this cahpter, we present a method which determines attributes for
tasks assigned to target window and associated chains such that, if exe-
cuted according fixed priority scheduling, they will execute inside their
target window and according to the order inside the chains.

Target windows can be derived from off-line schedules directly, with-
out further knowledge about the original timing constraints. In that case,
the off-line schedule will be re-enacted exactly by the FPS tasks, pro-
viding the same determinism. The resulting assignment, however, will
lead to inflexible schedules and inefficient attributes.

We envision our method to be used with transformations as de-
scribed above, providing for predictable flexibility while deriving sim-
ple attributes.

2.3 Problem description 31

2.3 Problem description

2.3.1 Off-line schedule

First, an off-line schedule is created for a set of tasks and constraints.
While our method does not rely on a particular off-line scheduling al-
gorithm, we have used the one described in [3] for our implementation
and analysis. The schedule is usually created up to the least common
multiple, LCM, of all task periods. LCM/p(Ti) instances of each taskTi

with period p(Ti) will execute in the schedule.
The off-line scheduler resolves constraints such as distribution, end-

to-end deadlines, precedence, etc, and creates scheduling tables for each
node in the system, listing start- and finishing-times of all task execu-
tions. These scheduling tables are more fixed than required by the orig-
inal constraints, so we can replace the exact start- and finishing-times
of tasks with feasibility windows, taking the original constraints into
account. A task receiving (sending) a message over the network, for
example, has to start (finish) after (before) the scheduled transmission
time, giving more leeway than the rigid scheduling table, defining re-
lease times (deadlines). Slot shifting [4] uses this method to transform
off-line schedules into task for earliest deadline first scheduling.

2.3.2 Online scheduling

At run-time, we want tasks to be scheduled according to fixed priority
assignment. Our method assigns priorities, offsets, deadlines, periods.
We refer to anexecution window, Wexec(T j

i), of an instanceT j
i of a

taskTi, as the time interval in whichT j
i will execute and complete if

scheduled by FPS together with the other instances of the other tasks.

2.4 Attribute assignment algorithm

We present a method which determines attributes for tasks assigned to
target windows and associated chains such that, if executed according

32 Chapter 2. Transforming off-line schedules to FPS task
attributes

to fixed priority scheduling, they will execute inside their target window
and obey the order constraint of the task chains.

2.4.1 Problem formulation

Given a set of off-line scheduled tasks,Original_Tasks where

Original_Tasks = {T1, T2, . . . , Tn}

with constraints represented by target windows,TWi, i = 1, 2, . . .,
we want to transform them into a set of tasks,FPS_Taskswhere

FPS_Tasks = {T1, T2, . . . , Tm},

with attributes suitable for FPS, i.e.,prio(Ti), o(Ti), dl(Ti), p(Ti),
such that:

1. Each instance of each taskTi will execute at run time inside its
target window

2. The order of execution enforced by the original task constraints is
preserved

if the tasksTi ∈ {FPS_Tasks} are scheduled by FPS.

2.4.2 Algorithm overview

As input to our method we have:
TasksetTi ∈ {Original_Tasks}, i = 1, 2, . . ., with constraints

expressed in:

• Off-line schedule, up to LCM, expressing the original task con-
straints, that gives off-line scheduled start- and finishing times for
each instancej of each taskTi

st(T j
i) = off − line scheduled start time of T j

i

ft(T j
i) = off − line scheduled finishing time of T j

i

2.4 Attribute assignment algorithm 33

• Target windows,TWn, n = 1, 2, . . ., that gives earliest start
times and deadlines for each instanceT j

i of each taskTi:

est(T j
i) = begin(TWn) = begin(TW (T j

i))

and

dl(T j
i) = end(TWn) = end(TW (T j

i))

We start with target windows and sequences of instances. We trans-
late order constraints into priority constraints between the new FP tasks.

We may not be able to find a FPS schedule with the same number
of tasks as the original one, but we may have to create new tasks by
splitting some of the original off-line tasks. The resulting number of
FPS tasks is to be minimized.

Output: we are looking for a set of tasks,Ti ∈ {FPS Tasks}, with:

• Priorities,prio(Ti)

• Offsets,o(Ti)

• Periods,p(Ti), where Ti ∈ {FPS_Tasks}

2.4.3 Derivation of the inequalities

Given the target windows derived from the original constraints and the
off-line schedule and defined asTWn = {T j

i | est(T j
i) = tk =

begin(TWn), anddl(T j
i) = end(TWn)}, wherebegin(TWn) is the

starting time andend(TWn) the end time of thenth target window, we
derive thesequences of taskscorresponding to the start of each target
window. The derivation of the sequences is illustrated in figure 2.1.

34 Chapter 2. Transforming off-line schedules to FPS task
attributes

{current instances}tk{interfering instance}tk
�� @@@

@
@@

TWn

TWn−q

TWn+r

A B

C D

F

tk−1 tk tk+1

SEQk =< DAB >

Figure 2.1: Sequence of tasks.

A sequence of tasksSEQk consists of task instances, ordered by
increasing scheduled start times according to the off-line schedule. A
sequence may contain instancesT j

i of tasksTi such thatest(T j
i) =

tk, referred to as{current instances}tk , or instancesT q
s of tasksTs

from overlapping target windows such thatest(T q
s) < tk andft(T q

s) >
tk, which we refer to as{interfering instances}tk , wheretk is the
starting time ofTWn, i.e.,begin(TWn).

SEQk = {{current instances}tk ∪
∪{interfering instances}tk}ordered =

= <
k
S1,

k
S2, . . . ,

k
SN >

Where:

• {current instances}tk = {T j
i | est(T

j
i) = tk}

• {interfering instances}tk = {T q
s | est(T q

s) < tk ∧ ft(T q
s) >

tk}

Additionally, we define:

2.4 Attribute assignment algorithm 35

• first(SEQk) =
k
S1 = first task instance in SEQk

• last(SEQk) =
k
SN = last task instance in SEQk

The priority assignment has to preserve the execution order expressed
in the off-line schedule. Therefore, from each sequence of tasksSEQk,
k = 1, 2, . . ., we derive priority relations between the task instances
within SEQk.

prio(
k
S1) > prio(

k
S2) > . . . > prio(

k
SN)

The priority inequality system derived from the sequences of tasks, in-
cludes all task instances in the off-line schedule.

2.4.4 Attribute assignment - conflicts

Based on the order of execution expressed by the inequalities derived in
Section 2.4.3, we derive attributes - priorities and offsets - for each task.

Our goal is to provide tasks with fixed offsets and fixed priorities. It
may happen, however, that we have to assign different offsets/priorities
to different instances of the same task, in order to reenact the off-line
schedule at run time. These cases cannot be expressed directly with
fixed priorities and fixed offsets and are the sources foroffset assignment
conflictsor priority assignment conflicts. In both cases, we split the
conflicting task into instances such that, further on, each instance will
be considered as an independent task with one instance during LCM.

By offset assignment conflictwe mean that different instances of the
same task have to be assigned different offsets in order to ensure the
run-time execution of each one of them in the derived target window.

for 1 ≤ i ≤ nr_of_off − line_scheduled_tasks
for 1 ≤ j ≤ n, where n = nr_of_instances(Ti)

if: begin(TW (T j
i))− (j − 1)p(Ti) 6=

6= begin(TW (T j+1
i))− j ∗ p(Ti),

36 Chapter 2. Transforming off-line schedules to FPS task
attributes

Ti p c

A 5 1
B 10 3
C 20 8

Table 2.1: Original tasks

Then:We split Ti into Ti,1, Ti,2, . . . , Ti,n

The offset and period assignment will be described in section 2.4.6.

Priority assignment conflictsare detected after the derivation of the
sequences, and occurs in the cases when two different instances of the
same task have to be assigned different priorities in order to ensure the
run-time execution of each one of them in the derived target window,
and in the right position in the sequence the tasks belongs to. In this
case, since a priority assignment involves more than one task, there is
typically a choice of which task to split.

In our method, we split tasks that causes offset assignment conflicts
into instancesbeforederiving the sequences of instances. By that, we
reduce the probability of priority assignment conflict eventually caused
by the same tasks since the new created tasks will have only one instance
during LCM.

We illustrate the issues with an example. Assume that we have the
off-line schedule in Figure 2.2 expressing the original constraints of the
taskset in table 2.1.

Let’s assume that we have a precedence constraint between the(4m+
1)th instance of A and the(2m + 1)th instance of B, and a precedence
constraint between the(2n + 2)th instance of B and the(4n + 3)th

instance of A (see 2.1).

2.4 Attribute assignment algorithm 37

T j
i TW (T j

i)
A1 [0,5]
A2 [5,10]
A3 [10,15]
A4 [15,20]
B1 [0,10]
B2 [10,20]
C1 [0-20]

Table 2.2: Target windows derived from the off-line schedule

A4m+1 → B2m+1, m = 0, 1, 2, . . . (2.1)

B2(n+1) → A4n+3, n = 0, 1, 2, . . .

TW (C1)︷ ︸︸ ︷
TW (B1)︷ ︸︸ ︷ TW (B2)︷ ︸︸ ︷

A B B B C A C C C C B B B A C A C C
0 ︸ ︷︷ ︸

TW (A1)

5 ︸ ︷︷ ︸
TW (A2)

10 ︸ ︷︷ ︸
TW (A3)

15 ︸ ︷︷ ︸
TW (A4)

20

Figure 2.2: Example 1: Off-line Schedule and Target Windows

The time pointst1 = 0, t2 = 5, t3 = 10, t4 = 15 mark the
beginning of the target windows (Figure 2.2), i.e.,TW1 = TW (A1) =
[0, 5], TW2 = TW (B1) = [0, 10], TW3 = TW (C1) = [0, 20], TW4 =
TW (A2) = [5, 10], etc. The full description of the derived target win-
dows is presented in table 2.2.

Now, by analyzing the overlapping between the target windows, we
derive sequences of instances for each start of each target window and
the priority relations (inequalities) between the tasks of each target win-
dow (see table 2.3).

38 Chapter 2. Transforming off-line schedules to FPS task
attributes

k tk

{
current

inst.

}
tk

{
intf.
inst.

}
tk

SEQk Priority inequalities

1 0 A1, B1, C1 None A1, B1, C1 prio(A1) > prio(B1)
prio(B1) > prio(C1)

2 5 A2 C1 A2, C1 prio(A2) > prio(C1)
3 10 A3, B2 C1 B2, A3, C1 prio(B2) > prio(A3)

prio(A3) > prio(C1)
4 15 A4 C1 A4, C1 prio(A4) > prio(C1)

Table 2.3: Example 1: Sequences of tasks

In this example, we can easily see that we do not have any offset
assignment conflicts, since the target windows of the instances of the
same task begins at the same point in time relative to the task period.
According to the sequenceSEQ1 =< A1, B1, C1 >, taskA must be
assigned a higher priority then taskB. On the other hand, according to
the sequenceSEQ3 =< B2, A3, C1 >, taskB must be assigned higher
priority thenA. In this case we have a cycle of priority inequalities that
has to be solved:

prio(A1) > prio(B1) > . . . > prio(B2) > prio(A3)

We solve this issue by splitting the task with the inconsistent priority
assignment into a number of new periodic tasks with different priorities.
The instances of the new tasks comprise all instances of the original
tasks.

Since a priority assignment conflict involves more than one task, like
in our example, there is typically the choice of which task to split. Our
goal is to find the splits which yield the smallest number of FPS tasks.
In our example, we have to break the chain by splitting eitherA or B
into instances and considering each one of these instances as individual
tasks. Depending on the number of instances ofA andB during LCM,
the choice of the task to be split influences the number of artifact tasks

2.4 Attribute assignment algorithm 39

created.
In order to minimize the number of artifact tasks, we create an in-

teger linear programming problem from the derived system of priority
inequalities to first identify which instances to split, if any, and to derive
priorities for the resulting FPS tasks. The flexibility of the ILP solver
allows for simple inclusion of other criteria via goal functions.

In section 2.4.6 we present a complete solution for our example.

2.4.5 ILP problem representation

The ILP problem formulation presented in this section is a contribution
from Peter Puschner.

A linear programming (LP) problem consists of a linear goal func-
tion in a number of variables and a set of linear inequality relations of
the variables. LP solving searches a value assignment for all variables
(solution) that optimizes (minimizes or maximizes) the given goal func-
tion under the given constraints. If the values of a solution have to be
integral the problem is called an integer linear programming (ILP) prob-
lem.

The aim of the given attribute assignment problem is to find a task
set, i.e., a minimum number of tasks together with their priorities, that
fulfills the priority relations of the sequences of the schedule. As men-
tioned above, each task of the task set is either one of the original tasks
or an artifact task created from one of the instances of an original task
selected for splitting.

The problem is translated into an ILP problem, because we are only
interested in integral priority assignments and solutions. In the ILP
problem the goal functionG to be minimized computes the number of
tasks to be used in the FPS scheduler

G = N +
N∑

i=1

(ki − 1) ∗ bi,

whereN is the number of tasks in the off-line schedule,ki is the
number of instances of taskTi, andbi is a binary integral variable that

40 Chapter 2. Transforming off-line schedules to FPS task
attributes

indicates ifTi needs to be split into its instances.
The constraints of the ILP problem reflect the restrictions on the

task priorities as imposed by scheduling problem. The priority relations
of the original tasks of the off-line schedule form the basis for the ILP
constraints. To account for the case of priority conflicts, i.e., when tasks
have to be split, the constraints between the original tasks are extended
to include the constraints of the artifact tasks. Thus each priority relation

prio(
k
Sl) > prio(

k
Sl+1)

with
k
Sl = T j

i and
k
Sl+1 = T q

p , is translated into an ILP constraint

pi + pj
i > pp + pq

p,

where the variablespi andpp stand for the priorities of the FPS tasks
representing the original tasksTi andTp, respectively, andpj

i , pq
p stand

for the priorities of the artifact tasksT j
i andT q

p (in case it is necessary
to split the off-line tasks). Although this may look like a constraint
between four tasks (Ti, T j

i , Tp, T q
p) it is in fact a constraint between two

tasks – for each task only its original (Ti resp.Tp) or its artefact tasks
(T j

i resp.T q
p) can exist in the FPS schedule. A further set of constraints

for each off-line taskTi ensure that only either the original tasks or its
artefact tasks are assigned valid priorities (greater than 0) by the ILP
solver. All other priorities are set to zero.

pi ≤ (1− bi) ∗M

∀j : pj
i ≤ bi ∗M

In these constraintsM is a large number, larger than the total num-
ber of instances in the off-line schedule. The variablebi for taskTi,
which also occurs in the goal function, is the binary variable that indi-
cates ifTi has to be split, i.e.,bi allows only a task or its artifact tasks
to assume valid priorities. Since the goal function associates a penalty
equal to the number of instances ofTi for eachbi that has to be set to

2.4 Attribute assignment algorithm 41

1, the ILP problem indeed searches for a solution that produces a mini-
mum number of task splits. The constraints on the variablesbi complete
the ILP constraints:bi ≤ 1.

The solution of the ILP problem yields the total number of tasks as
the result of the goal function. The values of the variablespi andpj

i

for each task represent a priority assignment for tasks and artifact tasks
that satisfies the priority relations of the scheduling problem. Ifpi > 0
or pj

i > 0 then the respective taskTi or T j
i exists in the FPS schedule

and its priority ispi or pj
i , respectively. If a variable (pi or pj

i) has been
assigned the value zero the task/artifact task is not included into the FPS
schedule, i.e.,FPS_tasks = {Ti : pi > 0} ∪ {T j

i : pj
i > 0} and for

each task inFPS_tasks the priorityprio(Ti) is the value of the priority
variable of the corresponding task/artifact task, i.e.,pi or pj

i .
In our example (Example 1), the solution provided by the solver is:

bA = bC = 0
bB = 1, meaning that task B is to be split

pA = 3
p1

B = 2
p2

B = 4
pC = 1

2.4.6 Periods and offsets

Since the priorities of the FP tasks have been assigned by the LP-solver,
we can now focus on the assignment of periods and offsets. Now we
have a set of tasks with priorities,FPS_tasks, produced by the LP-
solver, consisting of a subset of the original taskset,{orig_tasks} ⊆
{Original Tasks}, and a set of artifact tasks,{art_tasks}:

FPS_tasks = {orig_tasks ∪ art_tasks}
Based on the information provided by the LP-solver, we assign peri-

ods and offsets to each task inTi ∈ {FPS_Tasks}, in order to ensure

42 Chapter 2. Transforming off-line schedules to FPS task
attributes

Ti p c o prio

A 5 1 0 3
B1 20 3 0 2
B2 20 3 10 4
C 20 8 0 1

Figure 2.3: Resulting FPS tasks.

the run time execution within their respective target windows, as follow-
ing:

for 1 ≤ i ≤ nr_of_tasks_in(FPS_tasks)

p(Ti) =
LCM

nr_of_instances(Ti)

o(Ti) = begin(TW (T 1
i))

The final set of tasks, derived from the original off-line scheduled
tasks in example 1, by performing the steps described in Sections 2.4.4,
2.4.5 and 2.4.6, are illustrated in Figure 2.3. The highest value repre-
sents the highest priority.

2.5 Example

We illustrate the ability of the method to transform off-line scheduled
tasks with complex constraints to FPS tasks, with an example.

We assume we have the taskset described in Figure 2.4 and the ear-
liest start times and the deadlines of the off-line tasks, are equal to the
start and end of the periods. In this case, lets assume the precedence
constraints are:

2.5 Example 43

Task p c Node

A 15 2 0
B 15 1 0
C 15 5 0
D 10 3 0
E 10 2 0
F 15 3 1
G 15 4 1

Figure 2.4: Example 2: Off-line Tasks

A → B → C;D → E;F → G;F → C

and it takes one time slot to send a message between 2 nodes. Ad-
ditionally, we want the FPS execution of task A to be fixed between
(est(A) + 2) and(est(A) + 4).

First, an off-line schedule is constructed, by an arbitrary off-line
scheduler, to meet the constraints, and we derive the target windows for
each task instance (figure 2.5).

The priority inequalities between the instances are derived in the
same way as in the example presented in Section 2.4 and shown in table
2.4.

From the inequalities, we can see that we have a number of priority
assignment conflicts, i.e.,

prio(E1) > prio(B1) > prio(C1) > prio(D2)

resulting fromSEQ3 corresponding tot3 = 5, and

prio(D2) > prio(E2)

from SEQ4, meaning that we have a cycle of inequalities consisting of

prio(E1) > prio(B1) > . . . > prio(E2)

44 Chapter 2. Transforming off-line schedules to FPS task
attributes

TW (D1)︷ ︸︸ ︷ TW (D2)︷ ︸︸ ︷ TW (D3)︷ ︸︸ ︷
TW (E1)︷ ︸︸ ︷ TW (E2)︷ ︸︸ ︷ TW (E3)︷ ︸︸ ︷

TW (B1)︷ ︸︸ ︷
TW (A1)︷︸︸︷ TW (C1)︷ ︸︸ ︷

TW (B2)︷ ︸︸ ︷
TW (A2)︷︸︸︷ TW (C2)︷ ︸︸ ︷

N2

N1

F F F G G G G F F F G G G G

D D A A E E B C C C C C D D E E A A B C C C C C D D E E

0 ︸ ︷︷ ︸
TW (F 1)︸ ︷︷ ︸

TW (G1)

15 ︸ ︷︷ ︸
TW (F 2)︸ ︷︷ ︸

TW (G2)

30

Figure 2.5: Example 2: Off-line Schedule and Target Windows

Another cycle of inequalities is given bySEQ1, SEQ2, SEQ3 and
SEQ4:

prio(D1) > prio(E1) > . . . > prio(C1) > prio(D2)

ILP formulation At this point, we formulate the ILP problem. The
goal function is to minimize the number of artifact tasks, and, thus, to get
information about which task(s) to split. In our case, the goal function
is:

minG = 7 + bA + bB + bC + 2bD + 2bE + bF + bG;

2.5 Example 45

tk Node

{
current

inst.

}
tk

{
intf.
inst.

}
tk

SEQk inequalities

0 0 D1, E1 None D1, E1 prio(D1) > prio(E1)
1 F 1, G1 None F 1, G1 prio(F 1) > prio(G1)

2 0 A1, B1 E1 A1, E1, B1 prio(A1) > prio(E1)
prio(E1) > prio(B1)

4 0 C1 E1, B1 E1, B1, C1 prio(E1) > prio(B1)
prio(B1) > prio(C1)

10 0 D2, E2 C1 C1, D2, E2 prio(C1) > prio(D2)
prio(D2) > prio(E2)

15 0 None E2 E2 -
1 F 2, G2 None F 2, G2 prio(F 2) > prio(G2)

17 0 A2, B2 None A2, B2 prio(A2) > prio(B2)
20 0 C2, D3, E3 None C2, D3, E3 prio(C2) > prio(D3)

prio(D3) > prio(E3)

Table 2.4: Example 2: Inequalities

The priority constraints derived from the task sequences are:

constraint 1 :
pD + p1

D > pE + p1
E + 1 ; pF + p1

F > pG + p1
G + 1;

pA + p1
A > pE + p1

E + 1 ; pE + p1
E > pB + p1

B + 1;
pE + p1

E > pB + p1
B + 1 ; pB + p1

B > pC + p1
C + 1;

pC + p1
C > pD + p2

D + 1 ; pD + p2
D > pE + p2

E + 1;
pF + p2

F > pG + p2
G + 1 ;

pA + p2
A > pB + p2

B + 1 ;
pC + p2

C > pD + p3
D + 1 ;

pD + p3
D > pE + p3

E + 1 ;

Additionally, we need ensure for each taskTi that only either the origi-
nal task or its artifact are assigned valid priorities (greater than 0) by the

46 Chapter 2. Transforming off-line schedules to FPS task
attributes

solver. All other priorities are set to zero.

constraint 2 :
pA < 17− 17bA; p1

A < 17bA; p2
A < 17bA;

pB < 17− 17bB; p1
B < 17bB; p2

B < 17bB;
pC < 17− 17bC; p1

C < 17bC; p2
C < 17bC;

pD < 17− 17bD; p1
D < 17bD; p2

D < 17bD; p3
D < 17bD;

pE < 17− 17bE; p1
E < 17bE; p2

E < 17bE; p3
E < 17bE;

pF < 17− 17bF ; p1
F < 17bF ; p2

F < 17bF ;
pG < 17− 17bG; p1

G < 17bG; p2
G < 17bG;

where bA, bB, bC, bD, bE, bF, bG are boolean variables.

The output provided by the ILP is:

V alue of objective function : 11
pA = 5, pB = 3, pC = 2, pD = 0, pE = 0, pF = 1, pG = 0
p1

A = 0, p2
A = 0, p1

B = 0, p2
B = 0, p1

C = 0, p2
C = 0

p1
D = 5, p2

D = 1, p3
D = 1, p1

E = 4, p2
E = 0, p3

E = 0
p1

F = 0, p2
F = 0, p1

G = 0, p2
G = 0

bA = 0, bB = 0, bC = 0, bD = 1, bE = 1, bF = 0, bG = 0

In the output provided by the solver, we see that the boolean vari-
ables associated to the tasks C and D are equal to 1, meaning that in-
stances of these two tasks have to be transformed into artifacts, to solve
the priority inconsistencies and to ensure the minimum number of final
tasks.

Finally we assign offsets and periods to the FPS tasks in order to en-
sure the execution within their target windows (Figure 2.6). The sched-
ule obtained by scheduling the final taskset by FPS is illustrated in Fig-
ure 2.7.

2.6 Discussion 47

Ti p c o prio

A 15 2 2 5 (highest)
B 15 1 2 3
C 15 5 4 2
D1 30 2 0 5
D2 30 2 10 1
D3 30 2 20 1
E1 30 2 0 4
E2 30 2 10 0
E3 30 2 20 0
F 15 3 0 1
G 15 4 0 0 (lowest)

Figure 2.6: Example 2: FPS Tasks

F F F G G G G F F F G G G G

D1 D1 A A E1 E1 B C C C C C D2 D2 E2 E2 A A B C C C C C D3 D3 E3 E3

N2

N1

0 15 30

Figure 2.7: Example 2: FP Schedule

2.6 Discussion

Our method does not introduce artifacts or reduce flexibility unless re-
quired by constraints: a set of FPS tasks, scheduled off-line according
to FPS, and transformed by our method will execute in the same way as
the original FPS tasks. The FPS tasks resulting from our method exe-
cute flexibly, unless prevented by reducing target windows for strict pre-
dictability for some tasks. Tasks can execute earlier if preceding tasks
finish earlier than the assumed worst case execution time, or may even
change order of execution, if tasks are not ready to run, provided the

48 Chapter 2. Transforming off-line schedules to FPS task
attributes

priority order is kept.
In some cases, we have to perform additional splits, due to violation

of the periodicity in the off-line schedule, which gives different offsets
for different instances of the same task.

By minimizing the number of artifact tasks, our method minimizes
the number of offsets in the system as well, since we don’t change off-
sets unless we have to split tasks. By using ILP, we minimize the number
of artifact tasks and, implicitly, offsets.

While our method is capable of deriving FPS tasks for general off-
line schedules, the resulting task set and attributes may be awkward in
extreme cases, e.g., the off-line schedule includes non periodic patterns
or changes execution orders of tasks. Still, our method allows these to
be re-enacted with standard FPS scheduling.

Note that our method allows, e.g., tasks to execute according to ear-
liest deadline first order, although using FPS, by creating artifact tasks
with different priorities. Thus, the properties of, in this case, EDF can be
exploited in an FPS system. The resulting increase in utilization comes
from the periods of the artifact tasks being set to LCM.

Target windows can be derived from off-line schedules directly, with-
out further knowledge about the original timing constraints. In that case,
the off-line schedule will be re-enacted exactly by the FPS tasks, pro-
viding the same determinism. The resulting assignment, however, will
lead to inflexible schedules and inefficient attributes.

We envision the proposed method to be complemented by a run-
time enforcement mechanism, such as a watch-dog, to ensure tasks do
not overrun their budgets.

On-line tasks with lower priority can easily be added to the fixed
priority schedule, while an on-line acceptance test can be performed on
the higher priority sporadic or aperiodic tasks.

2.7 Proofs

We prove the correctness of the method in two steps. First, we prove
that FPS tasks will meet their deadlines, and second, that we preserve

2.7 Proofs 49

the order of execution enforced by the task constraints expressed in the
off-line schedule.

2.7.1 Proof 1

Theorem: Any instanceT j
i of any taskTi, produced by the method

described in Section 2.4, execute at run-time within its derived target
window, if scheduled by FPS together with all other FP tasks. In fact
it complete its execution before it’s off-line scheduled finishing time,
R(T j

i) ≤ ft(T j
i).

Proof: We want to prove that

∀tk, SEQk =<
k
S1,

k
S2, . . . , last(SEQk) >

R(
k
Si) ≤ ft(

k
Si) ≤ dl(

k
Si) = end(TW (T j

i)),
∀i ∈ [1, nr_of_tasks_in_SEQk]

whereR(
k
Si) = est(

k
Si) + c(

k
Si) +

∑
∀j∈hp(i) c(Tj).

Tj is a task instance belonging to eitherSEQk or SEQk+n, n ≥ 1.
All task instances with earliest start times less or equal totk are included
in SEQk as eithercurrent_instancestk or interfering_instancestk.
However, there might be an interference from task instances belonging
to ’later’ sequencesSEQk+n that are not taken into account when de-
riving the priority inequalities corresponding toSEQk.

What do we know?

1. The start and end of the target windows of a task represent the
task’s earliest start time and deadline respectively

∀ TWn, ∀ T j
i ∈ TWn,

est(T j
i) = begin(TWn) and dl(T j

i) = end(TWn)

50 Chapter 2. Transforming off-line schedules to FPS task
attributes

2. The sum of the wcet of the tasks in a sequence are less than or
equal to the finishing time of the last task in the sequence (from
the off-line schedule).

∀SEQk, ∀ i ∈ [1, nr_of_tasks_in_SEQk],

tk + c(
k
Si) + c(

k
Si−1) + . . . + c(

k
S1) ≤ ft(

end
S i),

3. The priorities of the tasks in a sequence are assigned in descend-
ing order absed on the order of execution specified in the off-line
schedule.

∀SEQk,

prio(
k
S1) > prio(

k
S2) > . . . > prio(last(SEQk)),

(given by ILP)

4. ∀i ∈ [1, nr_of_tasks_in_SEQk],

ft(
k
Si) ≤ end(TW (

k
Si)),

(given by the off-line schedule)

We use induction.

(a) As the first step, we prove that the theorem is true for the "last"
sequence in the off-line schedule,SEQend corresponding to the
time tend since in this case we don’t have interference from task
instances belonging to "later" sequences:

∀ i,
end
S i ∈ SEQend, R(

end
S i) ≤ ft(

end
S i)

Proof:

The last sequence derived from the off-line schedule is:

SEQend =<
end
S 1,

end
S 2, . . . , last(SEQend) >

Then,
∀i ∈ [1, nr_of_instances_in_SEQend].

2.7 Proofs 51

From (2)

tend + c(
end
S i) + c(

end
S i−1) + . . . + c(

end
S 1) ≤ ft(

end
S i)

From (3):

c(
end
S 1) + c(

end
S 2) + . . . + c(

end
S i−1) =

∑
∀j∈hp(i)

c(Tj)

since there is no interference from task instances belonging to
’later’ sequences.

That results in:

tend + c(
end
S i) +

∑
∀j∈hp(i)

c(Tj) ≤ ft(
end
S i)

Additionally we know thatest(
end
S i) ≤ tend (from the definition

of the sequences):

est(
end
S i) + c(

end
S i) +

∑
∀j∈hp(i)

c(Tj) ≤ ft(
end
S i)

so:

R(
end
S i) ≤ ft(

end
S i)

meaning that
end
S i complete its execution before its off-line sched-

uled finishing time, and implicitly, before the end of its target
window (from (1) and (4)).

(b) We assume

52 Chapter 2. Transforming off-line schedules to FPS task
attributes

∀i ∈ [1, nr_of_inst._in_SEQk],

if SEQk = <
k
S1, . . . , last(SEQk) > then R(

k
Si) ≤ ft(

k
Si)

We proveSEQk−1:

∀ i,
k−1
S i ∈ SEQk−1, R(

k−1
S i) ≤ ft(

k−1
S i)

Here, we have two cases:

Case1:

The sequences do not overlap:

SEQk ∩ SEQk−1 = ∅

In this case we have no interference; the proof given in (a) still
holds.

Case2:

The sequences do overlap:

SEQk ∩ SEQk−1 = common_tasks

where:

common_tasks = {T j | T j ∈ SEQk ∧ T j ∈ SEQk−1 ∧
∧st(T 1) < st(T 2) < . . . < st(Tm)}

so common tasksis a squence of tasks ordered increasingly ac-
cording to their off-line scheduled start times.

2.7 Proofs 53

common_tasks =< T 1, T 2, . . . , Tm >

Then:

SEQk−1 = <
k−1
S 1, . . . ,

k−1
S n > ∪

∪<
k−1
S n+1, . . . , last(SEQk−1) >︸ ︷︷ ︸

common_tasks

= <
k−1
S 1, . . . ,

k−1
S n,

k−1
S n+1, . . . , last(SEQk−1)︸ ︷︷ ︸

common_tasks

>

We know (from the assumption) that:

∀Ti ∈ common_tasks ⊆ SEQk ⇒ R(T i) ≤ ft(T i)

and, from the priority assignment mechanism and (3):

prio(
k−1
S i) > prio(T j), ∀i ∈ [1, n], ∀T j ∈ {common_tasks},

Then,∀i ∈ [1, n] : (from(2))

R(
k−1
S i) = tk−1︸︷︷︸

≥est(
k−1
S i))

+c(
k−1
S i) + c(

k−1
S i−1) + . . . + c(

k−1
S 1)︸ ︷︷ ︸∑

∀j∈hp(i)
c(Tj)

≤ ft(
k−1
S i)

Hence:

R(
k−1
S i) = est(

k−1
S i) + c(

k−1
S i) +

∑
∀j∈hp(i)

c(Tj) ≤ ft(
k−1
S i).�

54 Chapter 2. Transforming off-line schedules to FPS task
attributes

2.7.2 Proof 2

Theorem: If there is a precedence relation expressed in the original
task constraints and/or the off-line schedule between any two instances
T i

m, T j
n of any two tasksTm, Tn, T i

m → T j
n, thenT i

m execute before
T j

n when scheduling the FPS-task produced by the method described in
2.4 by FPS, assuming that the precedence requirement is fulfilled in the
off-line schedule.

Proof: We prove that if there is an overlapping, in terms of time, be-
tween the target windows of the two instances,TW (T i

m) and TW (T j
n),

thenT i
m is assigned a higher priority thenT j

n, prio(T i
m) > prio(T j

n).
Additionally, we know that any instance of any FP task execute inside
its target window if scheduled by FPS (2.7.1) and, if there is an over-
lapping between the two target windows, then the target window ofT i

m

must begin before the beginning of the target window ofT j
n:

begin(TW (T i
m)) ≤ begin(TW (T j

n))

We have two cases:

1. The target windows start at the same point in time.

begin(TW (T i
m)) = begin(TW (T j

n)) = tk

then:T i
m, T j

n ∈ current_instancestk ∈ SEQk, and the off-line
execution ofT i

m is before the off-line execution ofT j
n (from the

off-line schedule). Then:

prio(T i
m) > prio(T j

n)

since

prio(
k
S1) > prio(

k
S2) . . . > prio(last(SEQk))

where the off-line execution of
k
Si is before the off-line execution

of
k
Si+1, ∀i ∈ [1, nr_of_instances_inSEQk].

2.7 Proofs 55

2. The target window ofT i
m starts before the target window ofT j

n

begin(TW (T i
m)) = tk < begin(TW (T j

n)) = tp

Here, again, we have two cases:

(a) The tasks do not interfere with each other, i.e.,T i
m finish its

execution before the start of the target window ofT j
n. :

ft(T i
m) ≤ begin(TW (T j

n)) = tp

(b) T i
m finish its execution, according to the off-line schedule,

inside the target widow ofT j
n

ft(T i
m) > begin(TW (T j

n)) = tp

then:

T i
m ∈ {interfering_instances}tp ∈ SEQp

and

T j
n ∈ {current_instances}tp ∈ SEQp

andT i
m is off-line scheduled to execute beforeT j

n (from the
off-line schedule). Then:

prio(T i
m) > prio(T j

n)

since

prio(
p

S1) > prio(
p

S2) > . . . > prio(last(SEQp))

where
p

Si is off-line scheduled to execute before
p

Si+1,
∀i ∈ [1, nr_of_instances_in(SEQp)].�

56 Chapter 2. Transforming off-line schedules to FPS task
attributes

2.8 Chapter summary

In this chapter we have presented a method that combines off-line sched-
ule construction with fixed priority run-time scheduling. We use off-line
schedules and target windows to express complex constraints and pre-
dictability for selected tasks, and derive attributes for tasks, such that
if applying FPS at run-time, the tasks will execute within the specified
target windows and fulfill the original constraints.

Thus, the method solves issues arising from legacy systems, e.g.,
partition scheduling for avionics applications, allows to handle con-
straints not covered by FPS feasibility tests, while using standard FPS at
runtime. At the same time, it provides for predictable flexibility, i.e., the
restricted execution of selected tasks, e.g., for sampling and actuating in
control systems, while enabling runtime flexibility for others.

Our method analyzes the off-line schedule and the target windows
and derives priority relations between task instances, expressed in a set
of inequalities. In certain cases, the method splits tasks into instances,
creating artifact tasks, as not all off-line schedules can be expressed di-
rectly with FPS. We use standard integer linear programing to solve the
priority inequalities and minimize the number of artifact tasks created.
Finally, we assign offsets and periods to the task set provided by ILP in
order to ensure the correct run-time execution within the derived target
windows.

In some cases, we have to perform additional splits, due to a vio-
lation of the periodicity in the off-line schedule, which gives different
offsets for different instances of the same task. By minimizing the num-
ber of artifact tasks, our method minimizes the number of offsets in the
system as well. The number of artifact tasks and offsets can be de-
creased by reducing target windows, if the resulting loss in flexibility is
acceptable.

Our method does not introduce artifacts or reduce flexibility unless
required by constraints: a set of FPS tasks, scheduled off-line according
to FPS, and transformed by our method executes in the same way as the
original tasks.

2.8 Chapter summary 57

To this point, we have concentrated on reconstructing the off-line
schedule. Using the flexibility of the ILP solver, we can add objectives
by inclusion in the goal function. We have implemented the described
method and tested the results both via response time analysis and the
original off-line schedule and original task constraints. Our algorithm
determines task attributes trying to keep priorities for all instances of pe-
riodic tasks the same. This will lead to inconsistent priority assignments
for some schedules, e.g., those created with a earliest deadline first strat-
egy. Our algorithm attempts to resolve the arising priority conflicts by
splitting the task into several instances with different priorities. Here,
we assume that task dependencies have been resolved off-line.

Chapter 3

Scheduling complex
constrained messages on
Controller Area Network
(CAN)

3.1 Introduction

Controller Area Network (CAN) has gained wider acceptance as a stan-
dard in a large number of industrial applications. The priority based
message scheduling used in CAN has a number of advantages, some of
the most important being the efficient bandwidth utilization, flexibility,
simple implementation and small overhead. Early results on message
scheduling on CAN have been presented in [57] and [56], in which the
authors focused on fixed priority scheduling based on work presented in
[38] and [37]. Later on, Zuberi [63] showed that static priority schedul-
ing is not always the most suitable strategy. Earliest Deadline (EDF)
can prove significantly better then fixed priority scheduling [41].

Off-line scheduling for time triggered systems, on the other hand,
provides determinism [28], [30], and, additionally, complex constraints

59

60 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

can be solved off-line, but this scheduling strategy is not suitable for
CAN.

In this chapter we apply the previous results presented in chapter 2 to
message scheduling on CAN. We present a method that transforms off-
line scheduled transmission schemes into sets of messages that can be
scheduled on CAN. It assumes a schedule has been constructed for a set
of off-line scheduled messages to meet their complex constraints. Our
method takes the off-line schedule, with derived time intervals in which
messages must be transmitted, i.e.,Target Windows, and assigns FPS
attributes, (i.e., priorities) to the messages. It then, provides informa-
tion about periods and offsets the messages have to be sent with by the
sending nodes, such that the message transmission at runtime matches
the off-line schedule. It does so by deriving priority inequalities, which
are then resolved by integer linear programming (ILP).

FPS cannot reconstruct all schedules with periodic messages with
the same priorities for all instances (invocations) directly. The con-
straints expressed via the off-line schedule may require different mes-
sage sequences for invocations of the same message, as, e.g., by earliest
deadline first, leading to inconsistent priority assignment. This phe-
nomenon can be expressed as a cycle of inequalities. Our algorithm
detects such situations, and circumvents the problem by splitting a mes-
sage into its invocations. Then, the algorithm assigns different priorities
to the newly generated "artifact" messages, the former invocations.

Key issues in resolving the priority conflicts are the number of ar-
tifact messages created. Depending on where a priority conflict circle
is "broken", the number may vary, depending on the periods of the split
messages. Our algorithm minimizes the number of artifact messages by
solving the priority ILP.

Priority assignment for FPS tasks has, for example, been studied in
[5], [4] and [20]. [47] study the derivation of task attributes to meet
a overall constraints, e.g., demanded by control performance. Instead
of specific requirements, our algorithm takes an entire off-line sched-
ule and all message requirements to determine message attributes. A
method to transform off-line schedules into earliest deadline first tasks

3.2 Controller Area Network (CAN) and message scheduling
61

has been presented in [18]. In the previous chapters we presented meth-
ods to deal with priority assignment for off-line CPU scheduled tasks.

The rest of the chapter is organized as follows. In section 3.2 we
give a brief overview of message scheduling on CAN. The method we
are proposing is presented in section 3.3 and, then, illustrated with an
example in section 3.4. We summarize the chapter in section 3.5.

3.2 Controller Area Network (CAN) and message
scheduling

CAN consists of the physical and data link layers. Each CAN frame
consist of seven fields. In this paper we focus on the identifier field
(ID). The identifier field may have two lengths: 11 bits, which is the
standard format, and 29 bits, the extended format, and it controls mes-
sage addressing and bus arbitration . In this approach we focus only
on the former since the nodes can set message filters in order to receive
only the identifiers they are interested in.

The nodes are connected via a wired OR (or wired AND) CAN bus.
The time axis is divided in slots which must be larger or equal to the
time it takes the signal to propagate back and forth the bus,t = 2L

V ,
whereL is the bus length andV is the propagation speed of the signal.
When a node has to send a message, it calculates the message ID which
may be based on the priority of the message. The message ID must be
unique in order to prevent eventually ties. The message is then sent to
the bus interface chips, which, further on, write the message ID on the
bus, bit by bit, whenever the bus is idle at the beginning of a time slot.
After writing a bit on the bus, the chip waits for the signal to propagate
along the bus and, then, reads the bus. If the bit read is different from the
bit sent, then there is another message on the bus with a higher priority,
and the sending node aborts the transmission. Otherwise the node gets
the right to send the message without being preempted.

In our approach, we assume a schedule has been constructed for a
set of off-line messages. The proposed method transforms the off-line
scheduled messages into as set of messages suitable for priority-based

62 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

CAN message scheduling. Since we do not want to assign any other
attributes than priorities to the message ID’s (e.g., periods and offsets),
due to the restrictions enforced by the ID format, we rather provide in-
formation about attributes that have to be assigned by the programmer
to the sending nodes and messages (periods, offsets and priorities) in
order to ensure the run-time transmission of the messages according to
the specifications expressed in the off-line schedule. Furthermore, we
assume that the nodes are clock synchronized and the off-line schedule
has been constructed by taking into account the increased bandwidth
consumption due to the exchange of messages required by the time syn-
chronization method.

3.3 Attribute assignment algorithm

3.3.1 Overview

Figure 3.1 gives an overview of the algorithm.

1,2 Initially, the off-line schedule table for a set of messages with
constraints, is given.

3 Target windows for each invocation of each message are derived
from the original message constraints and the off-line schedule.

4 Sequences are now straightforward to derive from the target win-
dows and the transmission order expressed in the off-line sched-
ule.

5 The analysis of each sequence provides a set of inequalities be-
tween priorities of invocations of different messages.

6 We use integer linear programming to solve the system of inequal-
ities and the result is the final set of messages with fixed priorities.

Off-line schedule: The input to our method is the off-line schedule
expressing the constraints specified for the messages to be sent on CAN.

3.3 Attribute assignment algorithm 63

Figure 3.1: Algorithm overview.

The schedule is usually created up to the least common multiple,LCM ,
of all message periods. We haveLCM/T (Mi) invocations of each mes-
sageMi with periodT (Mi) in the off-line schedule.

The off-line scheduler resolves constraints such as distribution, end-
to-end deadlines, precedence, etc, and creates scheduling tables for each
node in the system, listing start- and finishing-times of all message in-
vocations. These scheduling tables are more fixed than required by the
original constraints, so we can replace the exact sending- and receiving-
times of messages with target windows, taking the original constraints
into account.

Target windows (TW (M j
i)) of each invocationM j

i of each message
Mi, are derived from the off-line schedule and the original constraints
transformed into earliest start times and deadlines.

64 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

TW (M j
i) = [tm, tn]

where

tm = begin(TW (M j
i)) and tn = end(TW (M j

i))

The earliest transmission start time, est(M j
i), of an invocationM j

i

of a messageMi, is provided by the message constraints expressed in
the off-line schedule. Thescheduled receiving time, srt(M j

i), of an
invocationM j

i of a messageMi, is the time whenM j
i is received by

the receiving node according to the off-line schedule. Thescheduled
transmission start time, start(T j

i), of an invocationM j
i of a message

Mi, is the time whenM j
i is sent on the bus, according to the off-line

schedule.

3.3.2 CAN vs. processor scheduling

There are a number of particularities in CAN compared to processors
scheduling, which we can take advantage of.

1. Message length is constant. That eliminates the issues that may
arise in processor scheduling when tasks, at run-time, execute less
than WCET on which the analysis has been performed. In our
case, the messages will not start to be transmitted earlier at run-
time, as in processor scheduling, due to tasks executions for less
than WCET.

2. CAN scheduling is non-preemptive. This ease the calculation of
the sequences of messages as we can eliminate interference from
earlier transmitted messages. For example, lets assume we have 2
messages off-line scheduled to be ready to be transmitted at time
0, and a messageC with an earliest transmission timeest(C) =
5. The off-line schedule is illustrated in figure 3.2.

3.3 Attribute assignment algorithm 65

A CB

A,B

0

C

5

Figure 3.2: Off-line schedule

In this case, we have 2 sequences, one starting at time 0 and the
other one starting at time 5. Now, in processor scheduling, the
sequences would be:

SEQ0 = < A,B >

SEQ5 = < B, C >

However, in CAN scheduling message B would not interfere with
the message C as C will not preempt it. Hence, the sequences in
CAN are:

SEQ0 = < A,B >

SEQ5 = < C >

The main advantage of having less messages in the sequences is
that it will lead to fewer priority inequalities to be solved by ILP.
The fewer constraints we send to ILP, the bigger chance to find an
attribute assignment that yields least artifacts.

3. CAN scheduling requires unique identifiers (priorities). This we
can easily deal with by adding an extra constraint to th ILP solver
requiring unique priorities.

∀i, p(Mi) 6= p(Mi+1)

66 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

Consequently, we redefine our sequences introduced in chapter 2.
A sequenceS(tk) consists of invocations of messagesM j

i ordered
by increasing scheduled transmission start times according to the off-
line schedule. A sequence may contain invocationsM j

i such that

begin(TW (M j
i)) = est(M j

i) = tk

that we denote ascurrent invocationsof TW (M j
i), and invocations

M q
p from overlapping target windows such that

est(M q
p) < tk and start(M q

p) > tk

denoted asinterfering invocationsof TW (M j
i).

Additionally:

• first(S(tk)) = S(tk)1 = first message invocation in the sequence
S(tk)

• last(S(tk)) = S(tk)N = last message invocation inS(tk).

The derivation of a sequence corresponding to a timetk is illustrated
in figure 3.3. Note that, in figure 3.3, message ’E’ is not included in the
sequence corresponding to the timetk, since it’s earliest transmission
start time is greater thentk. ’E’ will be instead acurrent invocationin
the sequence corresponding to the timetk+1.

We refer to antransmission window, Wtrans(M
j
i), of an invocation

M j
i of a messageMi, as the time interval in whichM j

i will be sent
and receivedat runtime. We want to find fixed priorities, offsets, and
deadlines such that the transmission window of each message invocation
M j

i , Wtrans(M
j
i), will be contained within the respective target window

TW (M j
i), and transmission order specified off-line, kept.

3.3.3 Priority inequalities

Our algorithm derives relations (inequalities of priorities) among the
invocations of the messages by traversing the off-line schedule repre-
sented by the series of target windows in increasing order of time. It

3.3 Attribute assignment algorithm 67

{current invoc.}tk{intf. invoc.}tk
�� @@@

@
@@

TW (A,B)

TW (C,D)

TW (E)

A B

C D

E

tk−1 tk tk+1

S(tk) =< S(tk)1, S(tk)2, S(tk)3 >=< D, A,B >

Figure 3.3: Sequence of messages.

determines priority inequalities between invocations according to the
sequencesS(tk) associated with target windows, such that:

P (S(tk)1) > P (S(tk)2) > . . . > P (S(tk)N)

where

S(tk)1 = first(S(tk)) and S(tk)N = last(S(tk))

Note that the inequalities have to take into account relations between
priorities of invocations of the current target window and possibly inter-
fering target windows.

3.3.4 Attribute assignment - conflicts

Our goal is to provide messages with fixed priorities periodically sent
on the bus. It may happen, however, that we have to assign different
priorities or/and offsets to different invocations of the same message in
order to reenact the off-line schedule at run time. These cases cannot
be expressed directly with fixed priorities and fixed offsets and are the
sources foroffset assignment conflictsor priority assignment conflicts.

68 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

In both cases, we split the conflicting message into artifacts, such
that, further on, each artifact will be considered an independent mes-
sage, invoked only once during LCM. Thus we create a number of ar-
tifact messages equal to the number of invocations during LCM of the
message to be split minus one (since the original message will be re-
placed by a number of messages equal to the number of its invocations).

By offset assignment conflictwe mean that different invocations of the
same message may have to be invoked at different points in time, relative
to the sending task period, in order to ensure the run-time transmission
of each one of them in the derived target window.

for 1 ≤ i ≤ nr_of_off − line_sched_messages
for 1 ≤ j ≤ n, where n = LCM/T (Mi)

if begin(TW (M j
i))− (j − 1) ∗ T (Mi) 6=

6= begin(TW (M j+1
i))− j ∗ T (Mi),

(whereT (Mi) is the period of the messageMi)
then splitMi into Mi,1,Mi,2, . . . ,Mi,n

By splitting Mi, we remove it from the original set of messages,
orig_messages, and we insertMi,1, Mi,2, . . ., Mi,n into orig_messages.

Priority assignment conflictsare detected after the derivation of the
sequences, and occurs in the cases when two different invocations of
the same task may have to be sent with different priorities in order to
ensure the run-time transmission of each one of them in the derived
target window, and in the right position in the sequence the message
belongs to. In this case, since a priority assignment involves more than
one message, there is typically a choice of which message to split.

In our method, we split messages that causes offset assignment con-
flicts into artifactsbeforederiving the sequences of invocations. By

3.3 Attribute assignment algorithm 69

that, we reduce the probability of priority assignment conflict eventu-
ally caused by the same messages since the new created messages will
be invoked only once during LCM.

3.3.5 Minimizing the final number of messages

In order to minimize the number of artifact messages, we create an in-
teger linear programming problem from the derived system of priority
inequalities to first identify which messages to split, if any, and to de-
rive priorities for the resulting fixed priority messages. We aim for the
minimum amount of artifact messages, and implicitly priorities, due to
the limited amount of priorities available when scheduling messages on
CAN.

The inequalities obtained from the execution order within the se-
quences, may form a circular chain of priority relations between mes-
sages invocations, e.g.,

P (M j
i) > P (Mn

m) > . . . > P (M j+k
i) > . . . > P (Mn+q

m)

Here, we use a higher value to represent a higher priority. In this
case we cannot assign the same priority to both invocationsj and(j+k)
of Mi, nor to invocationsn and(n + q) of Mm. We have to break the
chain by splitting eitherMi or Mm into artifacts and considering each
one of them as individual messages, which will result in a larger num-
ber of messages compared to the number of original off-line scheduled
messages. We formulate a goal function for an integer linear program-
ming solver to identify the minimum amount of messages with fixed
priorities.

G = #final_msgs = #orig_msgs +
N∑

i=1

(|Mi| − 1) ∗ bi

where:

70 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

• #final_msgs is the number of final messages

• #orig_msgs is the number of original messages

• |Mi| = number of invocations ofMi in LCM

• bi is a boolean variable associated to each messageMi, bi ∈
{0, 1}. bi = 1 means thatMi needs to be split into|Mi|messages.

Additionally, the solver provides priority values for the messages
(split or non-split).

At this point we have a set of messages with fixed priorities,fi-
nal_msgs, produced by the ILP-solver. Finally, we assign periods and
offsets to each message (i.e., provide information about when the mes-
sages are to be sent by the controller interface) provided by the ILP-
solver in order to ensure the run time transmission of the messages
within their respective target windows, as following:

for 1 ≤ i ≤ #(final_msgs)

T (Mi) =
LCM

nr_of_invocations(Mi)
offset(Mi) = begin(TW (M1

i))

3.4 Example

We illustrate the method with an example. Assume that we have the set
of messages, sent from two nodes, shown in table 3.1.

Additionally we assume that we have a precedence constraint be-
tween the(4m + 1)th invocation of A and the(2m + 1)th invocation of
B,

A4m+1 → B2m+1

3.4 Example 71

Message Node message size period (T)

A 1 1 5
B 2 3 10
C 1 4 20

Table 3.1: Original set of messages

wherem = 0, 1, 2, . . . , and a precedence constraint between the
(2n + 2)th invocation of B and the(4n + 3)th invocation of A,

B2(n+1) → A4n+3

wheren = 0, 1, 2,
First, an off-line schedule is constructed by an arbitrary off-line

scheduler to meet the constraints. Then, by analyzing the off-line sched-
ule, the target windows are derived for each message invocation.

An off-line schedule that meet the original constraints is illustrated
in figure 3.4.

TW (C1)︷ ︸︸ ︷
TW (B1)︷ ︸︸ ︷ TW (B2)︷ ︸︸ ︷

A B B B C C C C A B B B A A
0 ︸ ︷︷ ︸

TW (A1)

5 ︸ ︷︷ ︸
TW (A2)

10 ︸ ︷︷ ︸
TW (A3)

15 ︸ ︷︷ ︸
TW (A4)

20

Figure 3.4: Off-line Scheduled Messages and Target Windows

The target windows corresponding to each message invocation are
presented in table 3.2.

Next, by analyzing the overlapping between the target windows, we
derive sequences for message transmission. The derivation of the in-
equalities, performed as described in section 3.3.3, is illustrated in the
table 3.3.

At time tk=10, we have the inequalityP (B2)>P (A3) added to the
relations obtained att1=0 andt2=5: P (A1)>P (B1), andP (A2)>P (C2).

72 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

M j
i TW (M j

i)
A1 [0,5]
A2 [5,10]
A3 [10,15]
A4 [15,20]
B1 [0,10]
B2 [10,20]
C1 [0-20]

Table 3.2: Target windows for message invocations

tk Message S(tk) inequalities
invocations

0 A1, B1, C1 A1, B1, C1 P (A1) > P (B1)
P (B1) > P (C1)

5 A2 A2

10 A3, B2 B2, A3 P (B2) > P (A3)
15 A4 A4

Table 3.3: Inequalities

That gives a circular chain of priorities that must be solved:

P (A1) > P (B1) > . . . > P (B2) > P (A3)

In this case, there are 2 options to solve the problem: we can either
choose to split message A, or message B. Splitting B will create two
artifact messages, while splitting A will result in four.

ILP formulation At this point we are ready to formulate the ILP prob-
lem. The goal function is to minimize the number of artifacts

3.4 Example 73

minG = #final_msgs = #orig_msgs +
n∑

i=1

(|Mi| − 1) ∗ bi

with the constraints formulated from the priority inequalities. Con-
sequently, the ILP formulation is:

minG = 3 + 3bA + bB

subject to :
PA + PA1 > PB + PB1 + 1;
PB + PB1 > PC + PC1 + 1;
PB + PB2 > PA + PA3 + 1;

An additional constraint is to ensure for each messageMi that only
either the original message or its artifact are assigned valid priorities
(greater than 0) by the ILP solver. All other priorities are set to zero.

PA < 8− 8bA;
PA1 < 8bA;
PA2 < 8bA;
PA3 < 8bA;
PA4 < 8bA;

PB < 8− 8bB;
PB1 < 8bB;
PB2 < 8bB;

74 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

where bA, bB are boolean variables

bA ≤ 1
bB ≤ 1
bC ≤ 1

The solution provided by the ILP solver is:

• bA = bC = 0

• bB = 1, meaning message B is to be split,

• pA = 2

• pB1 = 3

• pB2 = 1

• pC = 4

• #final_msg = #orig_msg +
∑N

i=1(|Ti| − 1) ∗ bi = 4

Periods and offstes We see that the solution to our problems implies
the inclusion of 2 artifacts, B1 and B1 for the former instances of B. As
the ILP solver has already privided valid priorities to the new messages,
we still have to assign periods and offsets to ensure their transmission
within their original target windows.

The final set of messages is shown in table 3.4. The lowest value
represents the highest priority.

3.5 Chapter summary

In this chapter applied the results presented in chapter 2 to CAN mes-
sage scheduling, by scheduling complex constrained off-line scheduled
messages on CAN. We use off-line schedules and target windows to ex-
press complex constraints and predictability for selected messages. We,

3.5 Chapter summary 75

msg node msg size T offset dl prio

A 1 1 5 0 5 2
B1 2 3 20 0 10 3
B2 2 3 20 10 20 1
C 1 4 20 0 20 4

Table 3.4: FP messages

then, derive attributes for the off-line scheduled messages, such that the
messages will be transmitted within the specified target windows while
fulfilling the original constraints, when scheduled on CAN.

In this approach we take advantage of the CAN particularities com-
pared to processor scheduling, e.g., constant message length and non-
preemptive message scheduling, while satisfying the CAN requirement
on unique message identifiers.

Our method analyzes the off-line transmission scheme and the tar-
get windows and derives priority relations between the invocations of
the messages, expressed in a set of inequalities. In certain cases, the
method splits messages into instances, creating artifact messages with
fixed priorities, as not all off-line schedules can be expressed directly
with FPS. We use standard integer linear programing to solve the prior-
ity inequalities and minimize the number of artifact messages created.
Finally, offsets and periods can be assigned in the implementation, to
the set of sending tasks provided by ILP in order to ensure the run-time
transmission of the messages within the derived target windows.

In some cases, we may perform additional splits, due to violation
of the periodicity in the off-line schedule, which gives different offsets
at which different instances of the same message have to be sent. The
number of artifact messages caused by offset assignment conflicts, could
be decreased by reducing target windows, if the resulting loss in flexi-
bility is acceptable. The priority inversion phenomenon, due to the non-
preemption of message transmission, can be solved by modifying the
start of the target windows of the messages with precedence relations

76 Chapter 3. Scheduling complex constrained messages on
Controller Area Network (CAN)

considering the precision achieved in the global time synchronization.
Our method does not introduce artifacts or reduce flexibility unless

required by constraints: the fixed priority messages provided by our
method, with input consisting of a set of messages with fixed priori-
ties, scheduled off-line according to FPS, will be transmitted within the
derived target windows and in the off-line specified transmission order.

Chapter 4

Handling non-periodic events
together with complex
constrained fixed-priority
tasks

4.1 Introduction

In the previous chapters we have shown how off-line scheduling and
FPS can be combined to take advantage of the benefits provided by both,
i.e., predictability and ability to handle complex timing constraints pro-
vided by off-line scheduling and flexibility provided by FPS. However,
one of the main advantages obtained by using FPS is the capability to
handle non-periodic events, i.e., aperiodic tasks.

In FPS, non-periodic events are commonly handled by servers, e.g.,
background scheduling, polling or deferrable servers, or slack stealing.
In this chapter we investigate the possibility to use the existing FPS
servers to handle non-periodic events together with the tasks obtained by
using the approach presented in chapter 2. What we want is to be able to
handle non-periodic events in the best way, i.e., to provide them a good

77

78 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

response time, while not jeopardizing the complex timing constraints of
the periodic tasks.

This chapter is organized as follows: section 4.2 gives a description
of the existing FPS serves. In section 4.3 we give the problem formula-
tion followed by the proposed solution in section 4.5 and we conclude
the chapter in section 4.7.

4.2 Existing FPS servers

A FPS server is scheduling entity that has a capacity to serve events that
not arrive periodically. Thus, a server has period, priority and a capacity
that represents how much processor time can be used during a given
period of time (servers period) for non-periodic events.

For analysis purposes, we can classify the FPS servers in two major
categories depending on the behavior of the server upon the presence
(or absence) of a non-periodic event: servers that do not preserve their
capacity during their period if no aperiodic requests are pending, and
servers that do. In the first case, if no aperiodic tasks are waiting to
be served at the beginning of the server period, the server capacity is
waisted and replenished at the beginning of the next period.

Background scheduling This is the simplest algorithm to handle non-
periodic events in FPS. These are served in the background, i.e., when-
ever the processor is not executing periodic tasks. In this case, the non-
periodic events are scheduled at the lowest priority in the system. While
the scheduling overhead introduced by this method is minimal, the re-
sponse time of aperiodic tasks is poor (long).

Polling server In this case, the polling server [36, 49] is a task with
FPS parameters, i.e., period, priority and worse case computation time,
usually calledcapacity. At run-time, the server gives its capacity to any
aperiodic tasks that are pending. The server parameters are assigned in
the same way as the parameters of the period tasks, usually by RM.

4.2 Existing FPS servers 79

The server is active at regular periods of time, specified by the server
period, and serves any pending aperiodic tasks within the limit of its
capacity. If no aperiodics are pending, the server suspends itself until
the next activation. In that case, the server capacity is wasted.

Both background scheduling and polling server belong to the cate-
gory of servers that do not preserve their capacity during their periods,
if no aperiodic requests are pending.

Deferrable server This method is the first one in the category of servers
that preserve their capacity during their periods if no aperiodic requests
are pending. It was introduced by Lechoczky et. al. [36] to overcame
the limitations of the polling server. The main difference between de-
ferrable server and polling server is that deferrable server preserves its
capacity during its period if no aperiodics are pending. Thus, the re-
sponse time of the aperiodic tasks is improved compared to the usage of
the polling server. However, the schedulability bound for the periodic
tasks under RM suffers, as deferrable server violates the basic assump-
tion that task execute as soon they are ready to run and have the highest
priority.

Priority exchange Lechoczky et. al. [36] further introduced this
server to improve the RM schedulability bound for the periodic task
set, compared to the deferrable server. However, the response time of
the aperiodic tasks is slightly increased.

The main difference between deferrable server and priority exchange
is that PE exchanges its capacity for the execution time of lower priority
tasks, if no aperiodic requests are pending. By doing so, the schedulabil-
ity bound under RM is improved, compared to deferrable server. On the
other hand, priority exchange introduces more computational run-time
overhead than deferrable server

Sporadic server This technique was introduced by Sprunt et. al. [49].
The main difference between this technique and the ones introduced in
deferrable server and priority exchange is that the server replenishes its

80 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

capacity whenever it has been entirely consumed by aperiodic tasks,
rather then at the beginning of the period.

Slack stealing Was introduced by Lechoczky and Ramos-Thuel [35]
to improve the response time of non-periodic events compared to the
previous approaches. In this method, the basic idea is to ’steal’ all avail-
able processor time unused by periodic tasks. While analysis of previ-
ous approaches is based on WCET of periodic tasks, slack stealing is
using even available processor time due to periodic task executions less
than WCET. While the original approach used a static computation of
the slack in the system, Davis et. al. [14] presented a dynamic method
to calculate and use the slack in the system, i.e., to calculate the slack
upon every aperiodic request. However, the computational overhead in-
troduced by this approach is significantly higher than the original one.

Slack stealing was originally considered optimal in the sense that
it can use all available slack in the system to serve non-periodic events
and, thus, minimize the response time of the aperiodic tasks. However,
in 1995, Tia et. al. [54] proved the non optimality of the existing fixed-
priority servers, i.e., no existing approach can minimize the response
time of non-periodic tasks while still guaranteeing the feasibility of the
periodic ones. The main reason is that, in some cases, aperiodics may
have to execute later than the earliest possible start of execution in order
to achieve the best response time.

4.3 Problem formulation

For a given set of tasks with complex constraints, we want to find FPS
parameters for both tasks and existing FPS servers, e.g., polling, de-
ferrable or slack stealing, such that the periodic tasks will execute fea-
sibly (i.e., meeting the original complex constraints) while non-periodic
events are provided a short response time by the existing FPs servers.

In other words, we want to find FPS parameters for the tasks, and as
high server priority as possible, such that the non-periodic requests are

4.4 Motivating example 81

served as fast as possible while the periodic tasks execute fulfilling the
original complex constraints.

4.4 Motivating example

Ideally, we would like to assign the servers the highest priority to make
sure that the aperiodic requests are provided a fast service. However, we
have to take into consideration the schedulability of the periodic tasks
as well, i.e., we can not minimize the reaction time to serve an ape-
riodic request on the expense of any of the periodic tasks. Moreover,
in our task model, we have to deal not only with periodic tasks sched-
uled according to RM, but with tasks with complex constraints as well
for which the priority assignment has been performed according to the
method described in chapter 2

Motivating example Let’s assume we have a set of 3 tasks as illus-
trated in table 4.1 where we want to fix the execution times of, e.g., task
B at fixed points in time, e.g., an instance separation of 11 time units
between B’s instances.

Task p c
A 5 1
B 10 3
C 20 6

Table 4.1: Original tasks

However, since B doesn’t have the shortest period, priority assign-
ment according to RM would not guarantee the constraint satisfaction.
Instead we use our method described in chapter 2 and assign the second
instance of B an offset equal to 1 (table 4.2). As an attribute incon-
sistency occurs between B’s instances, we create artifacts for these as
shown in table 4.2.

82 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

Task p c prio offset dl
A 5 1 2 0 5
B1 20 3 3 0 10
B2 20 3 3 11 20
C 20 6 1 0 20

Table 4.2: FPS attributes

In this system, if we don’t need to deal with non-periodic events,
the task will execute in a FPS system fulfilling the original constraint on
task B (figure 4.1).

A

0 10 time5 15 20

11

A A A

B1

C

B2

C C

p
ri
o
ri
ty

Figure 4.1: Motivating example - original task set

Let us now assume we want to be able to handle non-periodic events
as well, together with our tasks. The processor utilization in the system
is 75%. Thus, there are 5 time units of slack up to LCM (20), if the tasks
execute for WCET. We can use, for example, a polling server with a pe-
riod of 5 and a capacity 1 to distribute the capacity evenly over LCM.
Now, if the server is not aware of the constraint on the instances of B,
it could have the highest priority and, if there are any aperiodic jobs
pending at the start of the server period, they will be served immedi-
ately while the periodic task will meet their deadlines. However, if an
aperiodic task J arrives at time 0, it will be scheduled by the server and
the constraint on B’s instances will no longer hold even if all tasks meet

4.5 Proposed solution - overview 83

their deadlines (figure 4.2)

A A A A

<11

B1 B2

0 10 time5 15 20

C C

J

p
ri
o
ri
ty

J

Figure 4.2: Motivating example - problem

In our example, the server was one that does not preserve its ca-
pacity. In this case, the server execution is interfering with the periodic
tasks (upon an aperiodic request) for a period of time no longer than
its capacity, starting at the beginning of its period, i.e., if no aperiodic
requests are pending then, the server suspends itself until the beginning
of its next period.

In the case that the chosen server is a capacity-preserving one, e.g.,
deferrable server, things could get even worse. That is because the server
not only executes either at the beginning of its period or not at all, but
anywhere within its period. In that case its potential interference in-
tervall is drastically increased. The server execution will interfere with
the periodic tasks for a period of time not longer than its capacity, but
starting anywhere within its period

4.5 Proposed solution - overview

What we can conclude from the example above is that if the server is not
aware of the constraints on the periodic tasks, i.e., the server parameter
assignment is performed after the attribute assignment to the periodic

84 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

tasks, the constraints cannot be guaranteed (figure 4.3). However, if
the server is aware of the original constraints, i.e., the system designer
assigns server parameters by taking into consideration the constraint on
the periodic tasks, the server execution can be controlled such that it
would not interfere with the constrained periodic tasks.

Tasks
(periodic)

Server (non-periodic
tasks)

Offline schedule

FPS

Off-line to FPS
transformation

Complex
constraints

Figure 4.3: Server attribute assignment -no constraint guarantees!

To do so, we have to perform the attribute assignment on the periodic
tasks and server(s) at the same time in the off-line phase, i.e., both tasks
with constraints and the server(s) should be used as input to the method
presented in chapter 2 (figure 4.4).

4.6 Server attribute assignment

To perform the server attribute assignment, by taking into account the
available resources in the system, as well as the original constraints on
the periodic tasks, we divided the servers in two groups: servers that

4.6 Server attribute assignment 85

Tasks
(periodic) Server (non-periodic

tasks)

Offline schedule

FPS

Off-line to FPS
transformation

Complex
constraints

Figure 4.4: Server attribute assignment -constraints guaranteed

preserve their capacity during their period, and servers that don’t.

4.6.1 Servers that do not preserve their capacity

In this case the server will become active at the beginning of its period,
if any aperiodic request is pending, and will execute when it will have
the highest priority among the tasks in the ready queue. In that sense, the
server will behave exactly as a periodic task with aworst case execution
time equal to its capacity and abest case execution time equalto 0,
making the procedure of off-line schedule construction for the periodic
tasks and server quite trivial. The important thing is to make sure that
the server execution will not influence the execution of the constrained
tasks.

86 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

Example - polling server

In the example described in section 4.4, an off-line schedule constructed
to guarantee both server and periodic tasks with the separation constraint
on the instances of task B could be the one presented in figure 4.5. In
this example we use polling server, and we choose to assign it a period
of 5 time units and a capacity of 1 to equally distribute the slack in
the system over the LCM. However, the system designer could choose a
different period/capacity assignment as well, and our method will assign
the rest of the FPS attributes, e.g., priorities, accordingly.

A A A A

0 10 time5 15 20

C

11

B

S S S S

B B B B B

C C C C C

Figure 4.5: Non-capacity preserving server - off-line schedule

Then, by using the off-line schedule that includes the server as input
to the method presented in chapter 2, we end up with FPS attributes for
both periodic tasks and server as presented in table 4.3

Let’s now assume that an aperiodic requestJ occurs at time 4 with
an execution requirement of 3 time units. J be served starting at time 5,
since it was not pending at the beginning of the server period, and will
complete at time 16 while all periodic tasks meet their deadlines and the
original constraint on B’s instances holds. The run-time execution of the
periodic tasks and the service provided by the server to the aperiodics is
illustrated in figure 4.6.

The task attributes shown in table 4.3 illustrate the highest priority

4.6 Server attribute assignment 87

Task p c prio offset dl
A 5 1 2 0 5
B1 20 3 4 0 10
B2 20 3 4 11 20
C 20 6 1 0 20
S 5 1 3 0 5

Table 4.3: FPS attributes for constrained periodic tasks and a non-
capacity preserving server

A A A A

0 10 time5 15 20

CC

11

B1 B2

J J

p
ri
o
ri
ty

J

J

Figure 4.6: Polling server - FPS schedule

that the server can be assigned without jeopardizing the original com-
plex constraints. Hence, we can feasibly schedule the periodic tasks and
guarantee their constraints while providing the best possible service to
non periodic events.

4.6.2 Capacity preserving servers

In this case, the server can start to serve an aperiodic request anywhere
within its period. That makes it difficult to schedule it off-line, i.e., to
construct an off-line schedule for both constrained periodic tasks and
server while taking full advantage of the server flexibility to handle ape-

88 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

riodics. Instead, we can try to make sure that the execution scenarios
for the server are limited, in order to guarantee the constraints on the
periodic tasks, while still provide for flexibility.

Ideally, we would always like to have as high priority as possible
on the server, but not on the expense of the periodic tasks and their
constraints. Hence, we have to protect the constrained periodic tasks
from possible server interference.

At the same time, the system designer must be aware of the behavior
of the server as well, i.e., the mapping of complex constraints to FPS
attributes must be performed by taking into account the possibility that
the server may start executing at any point in time during its period.
Hence, the time intervals between the release time and deadline of the
tasks, i.e., thetarget windowsmust represent time windows in which
each task, if it executes and completes, will fulfill its original constraints.

In out previous example, we have to assign the instances of B dead-
lines of 3 and 14 respectively (table 4.4).

Task p c prio offset dl
A 5 1 2 0 5
B1 20 3 3 0 3
B2 20 3 3 11 14
C 20 6 1 0 20

Table 4.4: FPS attributes prepared for capacity preserving servers

If we recall how we identified the current and interfering instances
in chapter 2, we derived the sequence corresponding to timetk as shown
in figure 4.7. However, at that point we were only concerned with deriv-
ing FPS attributes to fulfill the original constraints without taking into
account non-periodic events.

Now, on the other hand, when we derive the priority inequalities
between the task instances, we have to take into account the possibility
that the execution of some instance of a periodic task can be postponed
by the non-predictable execution of the server, and the execution of this
particular instance can, in its turn, interfere with another one, at a later

4.6 Server attribute assignment 89

{current instances}tk{interfering instance}tk
�� @@@

@
@@

TWn

TWn−q

TWn+r

A B

C D

F

tk−1 tk tk+1

SEQk =< DAB >

Figure 4.7: Old sequence of tasks.

point in time. In figure 4.7, the execution of C could be delayed by the
execution of the server upon an aperiodic request. In that case, C will
interfere with A and B, and, later on, possibly with F as well. Hence, C
must be included in the sequence corresponding timetk as an interfering
instance (figure 4.8).

Once the new sequences are derived, it is straight forward to derive
the priority inequalities as described in chapter 2.

At this point we are ready to add the server to our task set. In order
to find the highest feasible priority for the server, we first identify the
possible interference between the server and the periodic task instances.
As the period and capacity of the server is decided as described in the
previous section, we define the time interference between thekth server
instance, i.e.,Serverk, and thejth instance of taskTi, as shown in the
formula 4.1

time_interference(T j
i , Serverk) = [t1, t2], (4.1)

90 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

{current instances}tk{interfering instances}tk
�� @@@

@
@

�
�

�TWn

TWn−q

TWn+r

A B

C D

F

tk−1 tk tk+1

SEQk =< CDAB >

Figure 4.8: New sequence of tasks to deal with possible server execu-
tion.

where

t1 = max(Rel(T j
i), Rel(Serverk))

t2 = min(dl(T j
i), dl(Serverk))

We say thattime_interference(T j
i , Serverk) = 0 if t1 ≥ t2 and we

denote the size of the interference intervall by

|time_interference(T j
i , Serverk)| = t2− t1

However, the execution interference introduced by the server to any
periodic task instance is never greater than the server capacity or the
length of the interference intervall, in case the length of interference
intervall is less than the server capacity. Thus, we define the execution
interference introduced by thekth server instance to thejth instance
of the taskTi, exec_interference(Serverk, T j

i), as shown in formula
4.2.

4.6 Server attribute assignment 91

if (time_interference(Serverk, T j
i)), (4.2)

then exec_interference(Serverk, T j
i) =

= min{|interference(T j
i , Serverk)|, C(Server}

In a similar way, we can calculate the execution interference of
higher priority task instances,hp(T j

i) to the execution ofT j
i (formula

4.3).

if (time_interference(hp(T j
i), T j

i)), (4.3)

then exec_interference(hp(T j
i), T j

i) =

=
∑

T n
m∈hp(T j

i)

min{|interference(Tn
m, T j

i)|, C(Tn
m)}

Note that at this point the priorities have not been assigned by ILP yet.
However, we know which the interfering instances are by analyzing the
sequences derived as shown in figure 4.8 and we know that the priority
ordering within the same sequence will be assigned in a descending or-
der. For example, in the sequenceSEQk =< ABC >, A will get the
highest priority followed by B while C will get the lowest priority. In
this case, A and B will belong the set of tasks with higher priority than
C, i.e.,hp(C).

What we have to check here is if it is possible to run the server
at a higher priority than the periodic task instances it interferes with,
while not causing the periodic instances to miss their deadline. At the
same time, we have to take into account the interference from the other
periodic tasks as well.

For every capacity preserving server, except slack stealing which
we discuss later in this section, we will use the algorithm presented in
equation 4.4.

At this point, we use ILP to solve the priority inequalities between
the original periodic tasks by analyzing the sequences, together with the
priority inequalities between the task instances and the server instances.

92 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

The ILP solver will provide us information about which priorities we
should assign to the tasks and the server, such that the server priority is
maximized while the original constraints on the periodic tasks fulfilled
when the task set is scheduled by FPS.

∀T j
i ,

if (interference(T j
i , Serverk) 6= 0) (4.4)

{
if(|exec_interference(Serverk, T j

i)|+
+|exec_interference(hp(T j

i), T j
i)|+

+C(T j
i) ≤ dl(T j

i))

prio(Serverk) > prio(T j
i)

else

prio(Serverk) < prio(T j
i)

}
else

no interference → no priority constraint

between Serverk and T j
i .

In cases of attribute inconsistencies between different instances of
the same task, or between different server instances, we create artifacts
for the instances to achieve consistent FPS attributes, as described in
chapter 2

Slack Stealing: in the case slack stealing is used as algorithm to han-
dle aperiodics, we do not have to take its interference with the peri-
odic tasks into consideration, as the slack stealer keeps track and uses
the available slack in the system without causing any deadline misses
among the periodic tasks. Since the task deadlines represent the latest
point in time at which periodic task can complete their execution such
that their complex constraints are fulfilled, slack stealing can be directly
used to handle the non period events.

4.6 Server attribute assignment 93

Example - deferrable server

Lets take a look at the example we shown in figure 4.6 where we used
polling server and we had an aperiodic request at time 4, and lets see
what happens if we use, e.g., deferrable server instead.

First, the off-line scheduler has to make sure that the task deadlines
reflect the original constraint on the instances of B, i.e., the target win-
dows of the instances of be will be [0,3] and [11,14]. Then, we assign
the server a period of 5 and a capacity of 1, to allow for full exploitation
of the available slack in the system and to equally distribute the capacity
of the server over LCM.

Secondly, we derive the priority inequalities by analyzing the inter-
ference between the tasks and server as described in formulas 4.2, 4.3,
4.4 and we use ILP to solve the inequalities.

The task and server parameters are presented in table 4.5. Due to
FP attribute inconsistency on B’s instances, i.e., in this case release time
inconsistency, we create artifacts for the former instances of B.

Task p c prio offset dl
A 5 1 2 0 5
B1 20 3 4 0 3
B2 20 3 4 11 14
C 20 6 1 0 20
S 5 1 3 0 5

Table 4.5: FPS attributes for constrained periodic tasks and deferrable
server

The run time schedule in the presence of an aperiodic request at
time 4 is illustrated in figure 4.9. We can see that, by using DS, the
completion time of the aperiodic task is now 11 in stead of 16 as in
the case PS was used, while all task meet their deadlines. Hence, the
original constraint on B’s instances holds as well.

94 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

A A A A

0 10 time5 15 20

CC

11

B1 B2

J J

p
ri
o
ri
ty

J

J

Figure 4.9: Deferrable serve - FPS schedule

4.7 Chapter summary

In this chapter, we investigated how existing FPS servers can be used
together with FPS task sets obtained by using the method described in
chapter 2, while guaranteeing the original complex constraints on the
periodic tasks and providing a good service for non-periodic requests.
We have shown that problems may arise if the servers are not aware
of the complex constraints on the periodic tasks, e.g., if the server is
added to the system after the transformation of the off-line schedule to
task attributes for FPS. Instead, we proposed the inclusion of the server
together with the rest of the periodic tasks and their constraints during
the off-line schedule construction.

We have shown that servers that do not preserve their capacity dur-
ing their periods, if no aperiodic requests are pending at the beginning
of the period, can be easily incorporated in our method while guaran-
teeing the constraints of the periodic tasks, by treating them as periodic
tasks that are ready to execute at the beginning of their periods, and do
not suspend themselves. In this case, the only difference between the
server and the periodic tasks is that the server may not execute at all if
no aperiodic requests are pending at the beginning of its period.

4.7 Chapter summary 95

Furthermore, we have provided a mechanism to be able to handle
non-periodic events by existing servers that preserve their capacity dur-
ing their periods until an aperiodic requirement occurs. The difficulty
of scheduling this type of servers together with periodic, complex con-
strained tasks, is that the server execution, i.e., at which time the server
starts its execution within its period, can not be predicted such that it
can be included in the off-line schedule construction.

While some of these servers manage to schedule themselves without
causing any deadline misses among the periodic tasks, e.g., slack stealer,
others, e.g., deferrable server, are dependent on the set of FPS parame-
ters assigned to them, to ensure the timeliness of periodic tasks. How-
ever, by modifying the method presented in chapter 2 we can find high
priorities for these servers such that non-periodic events are promptly
served while the constraints on the periodcs are still fulfilled.

The modifications to our original transformation method consist in,
first, assign task deadlines to reflect the latest points in time at which
periodic tasks must complete to fulfill their complex requirements. Sec-
ondly we include the interference from the tasks earlier off-line sched-
uled whose executions may be postponed by the server, into the deriva-
tion of the sequences and to derive the priority relations between tasks
and server accordingly.

In our method we choose server periods and capacities to distribute
the exploitations of the amount of slack in the system over LCM. The
main advantage of equally distributing the server execution over LCM,
i.e., short periods that imply an increased number of server instances
up to LCM, is that we increase the chances to provide the aperiodics a
prompt service by assigning the server a high priority. In some cases,
we may have to create artifacts for the server instances to achieve a high
priority setting. This is because the server can have temporary high
priorities over short period of times, but not during the entire LCM. If,
on the other hand, we choose to assign a server a period equal to LCM
and a capacity up to full processor utilization together with the periodic
tasks, we may end up in a situation where the server mast be assigned
the lowest priority, since it interferes with all periodic task instances,

96 Chapter 4. Handling non-periodic events together with
complex constrained fixed-priority tasks

ending up with background scheduling.
While our method can feasibly schedule the existing servers together

with the periodic FPS tasks created by the method described in chapter
2, any feasible attribute assignment can be used on the servers as long as
the designer can guarantee the completion of the periodic tasks before
their deadlines. That is because, in our off-line to FPS transformation,
we specified the release times and deadline of the tasks, i.e., the tar-
get windows, in which if the tasks execute and complete, the original
constraints are guaranteed.

Chapter 5

Controlling the number of
preemptions in FPS

5.1 Introduction and problem description

Preemptive fixed priority scheduling (FPS) has been widely studied since
the work of Liu and Layland [38]. It has gained large acceptance in a
number of applications, mostly due to simple run-time scheduling and
good flexibility for tasks with incompletely known attributes. However,
the impact of preemption related overhead in FPS in the context of real-
time systems, is well recognized [9, 44]. In multimedia applications, for
example, tasks may introduce a high context switch cost [17]. In fact,
preemption related overhead in FPS may cause undesired high processor
utilization, high energy consumption, or, in some cases, even infeasibil-
ity. In [10], the author showed that the rate monotonic algorithm (RM)
introduces a higher number of preemptions than earliest deadline first al-
gorithm (EDF). At the same time, reducing the number of preemptions
can also be beneficial from an energy point of view in systems with
demands on low power consumption. When a task is preempted there
is a great probability that its contents in the cache will be lost. When
the execution of the task is again resumed it will cause a lot of energy
consuming accesses to off-chip memory. An access to off-chip memory

97

98 Chapter 5. Controlling the number of preemptions in FPS

is typically 10-100 times more expensive than an on-chip cache access
in terms of energy consumption. Reducing the number of preemptions
will reduce these additional expensive memory accesses due to reduced
cache pollution.

The direct preemption cost, i.e., costs to perform context switches
[24], to handle interrupts [24, 22, 9], or to manipulate task queues [9,
24], has been analyzed. Cache-related preemption, i.e., indirect cost,
[31, 46], has been analyzed to incorporate it into schedulability analysis,
as well as approaches to bound the cache-related preemption delay have
been presented [32]. Approaches to reduce the number of preemptions
in FPS have been presented [61, 25, 26], where tasks, besides their pri-
orities, are assigned a threshold value such that they can be preempted
only by other tasks with priorities higher than the threshold. This ap-
proach results, in essence, in a dual priority system which is not directly
suitable for legacy systems, where exchanging the scheduler or modify-
ing it by, e.g., adding mutexes to simulate preemption threshold, is not
desirable, or not possible.

In this chapter, we introduce a method to reduce the number of pre-
emptions in FPS systems in which modifications to the original sched-
uler are not desirable or not even possible. The method can be directly
applied on existing FPS systems with high preemption costs as no addi-
tional modifications to the underlying scheduler are required. In particu-
lar, we provide users of FPS systems the ability to choose a user defined
number of preemptions with respect to an eventual cost to pay.

Our method analyzes a set of periodic tasks with periods, priori-
ties and offsets, scheduled by an FPS algorithm, in order to identify the
number of preemptions that can occur at run-time. The basic idea is to
reassign attributes to the tasks such that the tasks will execute feasibly
at run-time while achieving a lower number of preemptions. To resolve
a preemption between two task instances, we either swap the priorities
or we force the task instances to be released simultaneously (e.g., by
reassigning offsets).

Since reassigning attributes to a particular task instance may lead

5.1 Introduction and problem description 99

to inconsistent attributes for the instances of the same task, we create
artifact tasks for the task instances to solve the inconsistency. In a re-
cent chapter 2 we transformed off-line schedules into FPS schemes. In
[3], the authors derived response time bounds for tasks with offsets in-
formation and introduced an optimal priority ordering algorithm. In our
approach, however, we strictly focus on reducing the number of preemp-
tions in existing FPS systems consisting of tasks with periods, priorities
and offsets, without modifying the underlying scheduler.

By choosing to eliminate preemptions one by one, we may lose op-
timality, since, depending on which preemption is chosen to be elimi-
nated first, the outcome of the method may differ. In this work we use
a global approach to detect preemption dependencies and to selectively
choose a user-defined level of preemptions with respect to the trade-off
between the number of preemptions and the cost to pay, i.e., the number
of new artifacts eventually created and the level of decreased flexibility.
To do so, we construct a preemption dependency graph that comprises
all possible steps we can perform to eliminate preemptions, and all cor-
responding states representing the new number of preemptions achieved
by the new task attributes, and the cost to pay.

Motivating example As a short example, let us assume we have two
tasks, A and B, with periods and WCET (3,1) and (5,3) respectively,
scheduled by a preemptive fixed priority scheduling algorithm. We as-
sume that the deadlines are equal to the end of the periods and the tasks
execute for WCET. Task A has a higher priority then task B. In fig-
ure 5.1(a) we illustrate a scenario where A preempts B at time t=3 and
causes B to miss its deadline at time t=5, due to the context switch. This,
however, would be avoided if the second instance of A would have a
lower priority then B (figure 5.1(b)). On the other hand, the first in-
stance of A has to have a higher priority then B, otherwise it would
miss its deadline. In our method we solve this dilemma by transforming
task A’s instances into new periodic tasks with consistent FPS attributes.
The new tasks will be assigned periods equals to the least common mul-
tiple of the tasks periods, LCM, and offsets and priorities to ensure the

100 Chapter 5. Controlling the number of preemptions in FPS

execution and completion between the original release times (rel) and
deadlines (dl).

0 3 5 150 3 5 15

A preempts B B misses deadline !
preemption caused

extra overhead

A AB B

dl(B)

B completes before deadline

A AB

dl(B)

(a) B misses deadline because of preemption (b) No preemption - B completes before deadline

Figure 5.1: A simple example

The rest of the chapter is organized as follows: in section 5.3 we
give an overview of the proposed method. Section 5.4 describes the
basic approach to solve a single preemption. The algorithm proposed to
reduce the number of preemptions is described in section 5.5 followed
by a simple example (section 5.6) and performance evaluation (section
5.7). Section 5.8 concludes the paper.

5.2 Problem formulation and task model

Problem formulation Given a set of periodic tasks with periods, worst
case execution times (WCET), offsets, and priorities, schedulable by a
standard FPS algorithm, we want to provide new sets of feasible at-
tributes such that the tasks will achieve a lower number of worst case
preemption scenarios if scheduled by the same scheduling algorithm.
In particular, we want to provide for the ability to chose a user-defined
number of preemptions with respect to the cost to pay.

Task model In this approach, we assume that the tasks are periodic,
with attributes suitable for fixed priority scheduling and schedulable by

5.3 Method overview 101

a preemptive fixed priority scheduling algorithm. We use the same task
model as described in the previous chapters:

• we denote tasks asTi, i ∈ {1, 2, . . .}

• T j
i is thejth instance ofTi, j ∈ {1, 2, . . . , LCM

p(Ti)
}

• p(Ti) is the period ofTi

• prio(Ti) andoffset(Ti) are the priority and offset ofTi

• dl(Ti) is the deadline ofTi

• c(Ti) is the worst case execution time (wcet) ofTi

• rel(T j
i) is the release time ofT j

i

• we definestart(T j
i) andfinish(T j

i) as the actual start and fin-
ishing time ofT j

i , derived in the off-line analysis, assuming that
all tasks execute for wcet.

Furthermore, we assume that the deadline of each task is less than
or equal to its period and tasks do not suspend themselves.

5.3 Method overview

Here we provide an off-line method to analyze the preemptions which
can occur when a set of tasks is scheduled by FPS, and to reduce the
number of preemptions by reassigning attributes to the tasks.

For a given set of periodic tasks scheduled by FPS, we first perform
an off-line preemption analysis assuming the task executions for wcet.
The preemption analysis takes into account evenpotential preemptions
that may occur if tasks execute for less than wcet. By that, we detect the
points in time at which a preemption can occur.

For each preemption we have apreempting task instanceand apre-
empted task instance. Depending on the processor utilization during
the time interval in which the preempting/preempted task instances can

102 Chapter 5. Controlling the number of preemptions in FPS

feasibly execute, we attempt to eliminate the preemption by forcing the
execution of either the preempted or the preempting instance such that
they do not preempt each other while still executing feasibly.

In our method, we reassign attributes, i.e., priorities or offsets, to the
individual instances. For example, assume that theith instance of a high
priority taskA, Ai, is preempting thejth instance of a low priority task
B, Bj , at timet. In this case, we can either reassignAi a lower priority
thanBj , or we can attempt to preventBj from executing before timet,
i.e., to reassignBj an offset such thatBj will be released at timet. At
the same time, we have to make sure that an attribute reassignment, i.e.,
new priority or new offset, will not prevent any task from completing
before its original deadline. If both options will cause any deadline
miss, we can not solve the preemption. We perform a standard response
time analysis to investigate the feasibility of the tasks after reassigning
attributes, [58, 34].

When we reassign priorities, i.e., when we swap the priorities of two
task instances which preempt each other, we consider the priority rela-
tions of the rest of the tasks as well. We do so by solving the new priority
relation together with the old ones by using integer linear programming
(ILP). Particular task priorities can be selected to not be changed (with
respect to the other task priorities) by simply reformulating the ILP rep-
resentation. In the same way, particular task offsets can be specified to
remain unchanged. However, that will reduce the possibilities of elimi-
nating preemptions.

5.3.1 Preemption reduction cost

Since reassigning attributes to a particular task instance may lead to in-
consistent attributes for the instances of the same task, we create artifact
tasks for the task instances to solve the inconsistency. The number of
artifacts created to achieve a particular number of preemptions is one
of the costs we have to pay. However, by using ILP, we ensure that the
number of eventually created artifacts is minimal.

Another cost is given by the reduced flexibility in the case we re-
assign offsets and decrease the time interval in which an instance may

5.4 Solving a single preemption 103

execute feasibly. Here, we use the term introduced in chapter 2, i.e.,
target window, to measure the loss of flexibility. In particular, We use
the number of decreased target windows as a measurement unit for the
decreased flexibility introduced by our method.

As prevoiusly described, the target window of a task instance is the
time interval in which the instance has to execute and complete in order
to execute feasibly, e.g., the target window of a particular instanceT j

i of
a taskTi, is the time interval between its release time, i.e., offset or start
of the period,rel(T j

i), and its deadline,dl(T j
i):

TW (T j
i) = [rel(T j

i), dl(T j
i)]

Since resolving a preemption by reassigning attributes may solve or
introduce another one, as the execution pattern of several tasks may
change, we construct apreemption dependency treeto detect all feasi-
ble task sets schedulable by the original fixed priority mechanism, which
will execute achieving a lower number of preemptions. By keeping track
of the preemption reduction cost, we provide for the ability to chose a
user-defined number of preemptions with respect to the cost to pay.

5.4 Solving a single preemption

In this section we describe our basic approach to solve one particular
preemption.

Preemptions: In our off-line preemption analysis we assume that tasks
execute for wcet. However, at run-time, tasks will most likely execute
for less than wcet, implying a different number of preemptions com-
pared to the ones detected by our off-line method. Our goal is to detect
all possible preemptions that may occur at run-time. Hence, we divide
the preemptions we attempt to solve in two major categories:

104 Chapter 5. Controlling the number of preemptions in FPS

Initial preemptions - are detected in the off-line analysis, i.e., a high
priority task instance isinitially preemptinga low priority task instance
(figure 5.2).

B B

Ahigh priority

low priority

Figure 5.2: An off-line detected initial preemption

We say that a high priority task instanceTm
i is initially preempting

a low priority task instanceTn
j if:

rel(Tn
j) < rel(Tm

i) and

start(Tn
j) < start(Tm

i) and

finish(Tn
j) > rel(Tm

i)

Potential preemptions - can occur at run-time due to task executions
less than wcet. In figure 5.3 a) we can see that if tasks execute for
WCET, no preemption will occur. However, in this situation we consider
task A potentially preempting task B since, if task C, that delays the
execution of B, is executing for less then wcet, then B can start executing
earlier, i.e., before the release time of A, and will actually be preempted
by A (figure 5.3 b).

We say that a high priority task instanceTm
i is potentially preempt-

ing a low priority task instanceTn
j if:

rel(Tn
j) < rel(Tm

i) and start(Tn
j) > finish(Tm

i)

Consequently, in order to cover both types of preemptions, we define
the preemptions we attempt to solve as following:

Tm
i is preemptingTn

j if the following three conditions hold:

5.4 Solving a single preemption 105

B

A

C

B

A

C

B

high priority

medium priority

low priority

a) off-line analysis – potential preemption b) on-line execution less than wcet - preemption

Figure 5.3: An off-line detected potential preemption

prio(Tm
i) > prio(Tn

j) (5.1)

rel(Tm
i) > rel(Tn

j) (5.2)

finish(Tn
j) > rel(Tm

i) (5.3)

Hence, it is sufficient to eliminate any of the conditions to ensure
that the preemption is avoided. However, the preemption reduction cost
may vary depending on which condition we decide to eliminate.

5.4.1 Solving a preemption by eliminating the first condition

The basic idea is to swap the priorities of the preempting and preempted
instances while taking into consideration the priority relations between
all task instances as well. We do so by, first, breaking down the original
priority relations to the instance level in form of priority inequalities,
and then, we solve the inequalities by usinginteger linear programming
(ILP).

Preparing step: Before attempting to solve any preemption, we break
down the original priority relations,prio(Ti) > prio(Tj), to the in-
stance level. The reason for expressing the original priority relations

106 Chapter 5. Controlling the number of preemptions in FPS

between the tasks by priority relations between task instances is that
our method attempts to solve preemptions by reassigning attributes to
individual task instances by using ILP.

We first introduce the concept ofinterferencebetween the execu-
tion of the task instances. The condition of interference in (5.5) is used
to prevent priority relations between task instances that do not interfere
with each other from over constraining the inequality system, as using
ILP to solve an over-constrained inequality system, will result in an sub-
optimal solution.

For instance, if there is a priority relation between two tasksA and
B, e.g.,prio(A) > prio(B), but no actual interference between, e.g.,
the fifth instance of A and the first instance of B, then there is no need to
add the priority inequalityprio(A5) > prio(B1) to our representation
of the priority relations.

Hence, we express the original priority relations among the tasks as
following:

∀i, j, m, n, if interference(Tm
i , Tn

j) == 1, (5.4)

replace prio(Ti) op prio(Tj) by

prio(Tm
i) op prio(Tn

j)

where

op =


>, if prio(Ti) > prio(Tj)
<, if prio(Ti) < prio(Tj)
=, otherwise

The interference between two task instances,Tm
i andTn

j is defined
in (5.5).

5.4 Solving a single preemption 107

interference(Tm
i , Tn

j) = (5.5)
1, if


rel(Tm

i) ≤ rel(Tn
j) and dl(Tm

i) > rel(Tn
j)

or
rel(Tm

i) ≥ rel(Tn
j) and dl(Tn

j) > rel(Tm
i)

0, otherwise

ILP formulation Once the priority inequalities between the task in-
stances are derived, we simply search the inequality system for the pri-
ority relation between the preempted and preempting task instances, and
reverse the inequality. Then, we solve the new inequality system by us-
ing integer linear programming (ILP) in order to find a feasible priority
assignment. By using ILP, we make sure that the rest of the priority
relations between the task instances will not change, even though the
individual priority values may change.

Let’s assume, for example, that theith instance of taskTm, T i
m,

is preempting thejth instance ofTn, T j
n, i.e., the two task instances

are interfering with eachother and the priority ofTm is higher than the
priority of Tn. Then, we search the inequality system for the inequality
prio(T i

m) > prio(T j
n) and we replace it byprio(T i

m) < prio(T j
n).

The next step is to solve the new inequality system, followed by
performing a response time analysis to verify the feasibility of the task
instances with the new attributes.

The potential cost introduced in this step is an increased number of
tasks as a result of priority inconsistencies, i.e., we may have to create
new tasks for the instances with eventual inconsistent priorities. How-
ever, the goal function of the ILP solver is formulated to find a solution
to the new priority inequalities and to minimize (if any) the number of
tasks instances with inconsistent attributes [16]. If the inequality solver
yields no solution or, if the schedulability test finds the task unschedu-
lable due to the new attributes, then we can not solve this particular
preemption by reassigning priorities.

108 Chapter 5. Controlling the number of preemptions in FPS

5.4.2 Solving a preemption eliminating the second condition

The next alternative we have is to force the task instances to be released
simultaneously. That is, to reassignTn

j a release time (offset) equal to
rel(Tm

i). From the definition of the preemptions we aim to solve, (5.2),
we know thatrel(Tn

j) < rel(Tm
i), so, in essence, we decrease the time

interval in which the instance can feasibly execute, i.e., its target win-
dow, from [rel(Tn

j), dl(Tn
j)) to [rel(Tm

i), dl(Tn
j)). Then, we perform

the schedulability analysis to verify the schedulability of all task.

However, by reassigning offsets, i.e., by postponing the release time
of a task instances, we decrease the flexibility of that particular instance.
Thus, the cost introduced in this step is, besides eventual new tasks re-
sulted from offset inconsistencies, a decreased flexibility for particular
tasks. If the task set is found unschedulable, we can not solve this par-
ticular preemption in this step.

5.4.3 Solving a preemption eliminating the third condition

The last possibility we have to solve a particular preemption is to reas-
sign attributes such that the third condition no longer holds.

Proposition 1 If a task instanceTn
j is off-line detected to be pre-

empted by at least one task instanceTm
i , we define apreemption block

of Tn
j , denoted asp_block(Tn

j), as the time interval betweenstart(Tn
j)

andfinish(Tn
j). The length ofp_block(Tn

j) is constant regardless from
the execution order of the task instances in the block, assuming task ex-
ecutions for wcet.

Hence, a sufficient condition to ensure that the third condition no
longer holds is to assignTm

i an earliest start time equal tofinish(Tn
j)−

c(Tm
i), i.e., to force the preempted instance to execute at the end of the

preemption block.

rel(Tm
i) = finish(Tn

j)− c(Tm
i)

5.4 Solving a single preemption 109

Proof If Tm
i is forced to execute at the end of the preemption block

of Tn
j , it will leave an idle time betweenstart(Tn

j) and(finish(Tn
j)−

c(Tm
i)) equal to its computation time,c(Tm

i). That time will be used
by any of the instances all ready executing inp_block(Tn

j), so the pre-
emption block will endc(Tm

i) time units earlier. Hence,Tn
j will finish

beforeTm
i is released and the preemption will be eliminated.�

As in the previous step (5.4.2), the cost introduced is given by both
increased number of tasks as well as decreased flexibility.

However, solving another preemption may turn our ’unsolvable’
preemption solvable, or may even solve it automatically as the execu-
tion behavior of several tasks changes. In section 5.5 we show how we
take advantage of this phenomena by recursively investigating all possi-
ble effects caused by solving a preemption.

The pseudocode for solving one particular preemption by reassign-
ing priorities or offsets, is shown in figure 5.4. The input consist of the
original task attributes, i.e., priorities, offsets, periods and deadlines.

R(Ti) in figure 5.4 represents the worst case response time of task
Ti, obtained by performing a response time analysis on the set of tasks.

5.4.4 Artifact tasks

By reassigning attributes to eliminate preemptions, we may end up with
inconsistent priorities or offsets for different instances of the same task.
To solve this side-effect of our proposed preemption reduction method,
we split the task with the inconsistent attributes into a number of new
periodic, fixed priority tasks and, by that, we create a number ofartifact
tasks, each of them with FPS attributes. The number of new created
artifact tasks is the cost we have to pay to reduce the number of preemp-
tions. The instances of the new tasks comprise all instances of the orig-
inal task. If at least one of the instances of a taskTi has been reassigned
new attributes, i.e., priorities or offsets, and, by that, creating inconsis-
tent task attributes, we transform the instancesT j

i , j ∈ [1, LCM
period(Ti)

], in
new tasksτij as described in equation 5.6.

110 Chapter 5. Controlling the number of preemptions in FPS

solve preemption(A is preempting B) by eliminating the first condition
{
get task_attributes;
inequalities=create_priority_inequalities; //add the new priority inequality to the system
replace(‘prio(A)>prio(B)‘ by ‘prio(A)<prio(B)’ in ‘inequalities’);
if(LP_solve(inequalitites)) //if ILP yields a solution to the inequalities
{

if(R(
i
T) dl(

i
T), i) //perform the feasibility test for all tasks Ti

{
create artifacts(task_attributes); //artifacts for tasks with inconsistent attributes (if any)

 save task_attributes; //save the new task attributes
exit(success); //preemption solved

}
}
exit(failure); //preemption unsolvable
}
solve preemption(A is preempting B) by eliminating the second condition
{
get task_attributes;
update (‘rel(B):=rel(A)’); //update offset of B

if(R(
i
T) dl(

i
T), i) //perform the feasibility test for all tasks

{
create artifacts(task_attributes); //artifacts for tasks with inconsistent attributes (if any)

 save task_attributes; //save the new task attributes
exit(success); //preemption solved

}
exit(failure); //preemption not solvable
}
solve preemption(A is preempting B) by eliminating the third condition
{
get task_attributes;
update(‘rel(A)=dl(B)- c(A)’); //update offset of A

if(R(
i
T) dl(

i
T), i) //perform the feasibility test for all tasks

{
create artifacts(task_attributes); //artifacts for tasks with inconsistent attributes (if any)

 save task_attributes; //save the new task attributes
exit(success); //preemption solved

}
exit(failure); //preemption not solvable
}

Figure 5.4: Pseudocode for the solving one preemption

period(τij) = LCM (5.6)

priority(τij) =

{
new priority, if reassigned
unchanged, otherwise

offset(τij) =

{
new offset, if reassigned
(j − 1) ∗ period(Ti), otherwise

deadline(τij) = unchanged

From the implementation point of view, when we create artifacts for
the instances of a taskTi, we create copies of the task control block of
Ti pointing at the same code and data segment, but with different FPS

5.5 Reducing the number of preemptions - global approach 111

attributes. Hence, the modified tasks can be directly scheduled without
modifications to the original scheduler.

5.5 Reducing the number of preemptions - global
approach

Our goal is to reduce the number of preemptions in FPS without mod-
ifying its basic mechanism. As described in section 5.4, we attempt to
eliminate (solve) a preemption by task attribute reassignment, i.e., prior-
ity or offset reassignment, while guaranteeing the feasibility of the task
set.

However, if we use a constructive approach, i.e., if we attempt to
eliminate the preemptions in a particular order, we may lose optimality
in terms of finding the minimum number of preemptions. Depending
on which particular preemption we choose to resolve first, the results,
in terms of the number of preemptions achieved and/or the number of
artifacts created, may differ. That is due to the fact that resolving a
preemption by reassigning task attributes may resolve or introduce ad-
ditional ones, as the execution pattern of several tasks may change.

Therefore, for each feasible task set, we choose to solve all preemp-
tions by all approaches, i.e., we attempt to eliminate each preemption
yielded by a particular task set by all three approaches (5.4.1, 5.4.2 and
5.4.3).

5.5.1 Preemption dependency tree

To find the optimum desired level of preemptions with respect to the
artifacts to be created, we construct apreemption dependency treethat
comprises all possible steps we can perform to eliminate preemptions.

Description of the tree The root of the tree consists of the original
task attributes together with the corresponding off-line detected preemp-
tions. Each preemption point is an edge from a node, i.e., solving that
particular preemption will give us another node, with another task set

112 Chapter 5. Controlling the number of preemptions in FPS

and new preemption points. Thus, by eliminating each of the preemp-
tions, we obtain one, two or three new nodes, i.e., one for each success-
fully eliminated condition. If all approaches yield feasible task sets, we
obtain 3 new nodes.

At the same time, we keep track of the cost we have to pay for each
preemption we succeed to solve, i.e., the number of artifacts and the
number of reduced target windows. Thus, each new created node in the
graph will contain:

• The new feasible task attributes and the new preemptions yielded
by the tasks in this configuration.

• The cost to pay, i.e., the number of artifacts and the number of
reduced target windows.

Since one of the advantages obtained by using FPS is flexibility, the
more appropriate way to solve a preemption is to reassign priorities.
That is due to the fact that solving a preemption by reassigning offsets
implies reducing the target windows of the task instances. However, our
goal is to find the set of task attributes that yields the minimum number
of preemptions while guaranteeing feasibility. Therefore, we attempt
to solve each preemption by eliminating each of the three conditions in
order to find all possible preemption sets yielded by corresponding task
attributes.

The dependency tree is constructed by recursively using the 3 ap-
proaches described in sections 5.4.1, 5.4.2, and 5.4.3, followed by a
new preemption analysis each time a preemption is resolved. The fea-
sible task sets contained in the nodes of the tree are schedulable by the
same original fixed priority mechanism.

A user-defined state can be selected by performing a basic tree-
search, with respect to the trade-off between the number of preemptions,
the number of artifacts and the number of reduced target windows.

5.6 A simple example 113

(m/n/q) = m preemptions, n artifacts, q reduced target windows
pn = the n’th off-line detected preemption

initial state:
- original task attributes
- ’n’ preemptions
- 0 artifacts
- 0 reduced target windows

new states after solving
each preemption

(n,0,0)
…

{task attributes}

p1 p2
pn

(m”,q”,r”)
…

{task attributes”}

p1
p2

pn”

…
first condition second condition

…
(m’,q’,r’)

…p1
p2

pn’

{task attributes”}

(m”’, q”’,r’”)
…

{task attributes’”}

p1
p2

pn”’

third condition

Figure 5.5: Preemption dependency tree

5.6 A simple example

We illustrate the proposed preemption reduction method with an exam-
ple. We assume the set of FPS tasks described in table 5.1.

The task attributes are period (p), worst case execution time (c) and
priority (prio). For an easier and more intuitive reading, we assume
that the offsets are equal to the start of the period and a higher value
represents a higher priority. In this example we assume that the worst
case context switch time has been taken into account when calculating
the worst case execution times for each task.

From the FPS schedule shown in figure 5.6, we can see that four
preemptions can occur at run-time, if the tasks execute for wcet, when
scheduled by FPS. Hence, the root of the preemption dependency tree

114 Chapter 5. Controlling the number of preemptions in FPS

Task p c prio
A 5 1 3
B 10 3 2
C 20 8 1

Table 5.1: Original FPS tasks

consist of 3 tasks, A, B and C with the original attributes, 4 preemptions,
0 artifacts, and 0 modified target windows.

The first preemption is detected at time t=5 whenA2 is preempting
C1. We first attempt to solve the preemption by swapping the priori-
ties ofA2 andC1. To do so, we first derive the target windows of the
task instances (table 5.2) and, then, we break down the original prior-
ity relations between the tasks to the instance level. By analyzing the
overlapings between the target windows (i.e., the interference between
the task instances), we then derive the system of priority inequalities be-
tween the individual task instances according to (5.4). In our example,
the original relationsprio(A) > prio(B) > prio(C) are transformed
as following:

prio(A) > prio(B) → prio(A1) > prio(B1), (5.7)

prio(A3) > prio(B2)
prio(A) > prio(C) → prio(A1) > prio(C1),

prio(A2) > prio(C1),
prio(A3) > prio(C1),
prio(A4) > prio(C1)

prio(B) > prio(C) → prio(B1) > prio(C1),
prio(B2) > prio(C1)

Note that the priority inequalitiesprio(A2) > prio(B1), prio(A2) >
prio(B2), andprio(A4) > prio(B2) are not included in the inequality
system, since there is no interference (as defined in (5.5)) between the
mentioned instances. Hence, we do not have to take into account the

5.6 A simple example 115

priority relation between them.

task
A B C

1 [0,5] [0,10] [0,20]
instance nr. 2 [5,10] [10,20]

3 [10,15]
4 [15,20]

Table 5.2: Target windows for the original task instances

At this point, we just replace the derived priority inequality between
A2 andC1, i.e.,prio(A2) > prio(C1), by prio(A2) < prio(C1). By
solving the new inequality system using ILP, we obtain new task set con-
sisting of 6 tasks (3 artifacts) with the following priorities: prio(A1)=5,
prio(A2)=1, prio(A3)=4, prio(A4)=3, prio(B)=3, prio(C)=2. However,
a schedulability test finds the new task set infeasible since the second
instance of A will miss its deadline.

A1 A2 A4

0 5 10 15 20

preemption

B1 B2

0 10 20

C1 C1 C1 C1

0 20

dl

dl

dldl dl

dl

A3
dl

Figure 5.6: Original FPS schedule: task C is preempted by A and B

The second option we have is to reassignC1 a release time equal
to 5, which is the release time ofA2. This time, the task set is found
schedulable. The new node we add to the tree consists of task attributes

116 Chapter 5. Controlling the number of preemptions in FPS

for 3 tasks, i.e.,{task attributes’}(Figure 5.7). The only difference from
the original attributes in figure 5.1 is that C has now an offset equal to
5. The new number of preemptions (detected by performing the off-
line preemption analysis) has decreased to 3, we have not introduced
artifacts since C has only one instance in LCM and we have reduced
one target window (TW (C1)).

The third alternative to solving the preemption is to assignA2 an
offset equal tofinish(C1)− wcet(A2) = 17. However, we can easily
see that the new task set will not be feasible sinceA2 has a deadline
equal to 10. Hence, no new node will be added to the tree.

At this point we update (as described in (5.4)) the priority inequali-
ties based on the modified target windows (in our case the only modified
target window isTW (C1) = [5, 20]).

prio(A) > prio(B) → prio(A1) > prio(B1) (5.8)

prio(A3) > prio(B2)
prio(A) > prio(C) → prio(A2) > prio(C1)

prio(A3) > prio(C1)
prio(A4) > prio(C1)

prio(B) > prio(C) → prio(B1) > prio(C1)
prio(B2) > prio(C1)

We can see now that the inequalityprio(A1) > prio(C1) has been
removed in (5.8) sinceC1 is no longer interfering withA1.

In the same way we derive the rest of the nodes in the preemption
dependency graph, by attempting to solve each preemptions by all three
approaches. Due to space limitations, we show only a feasible path in
the preemption dependency tree in figure 5.7. However, when running
the example in our simulator, the complete tree consisted of 36 nodes
while the solution presented in this section was found after building 8
nodes.

5.6 A simple example 117

(4/0/0)

second condition

X

Legend:

(m/n/q) = m preemptions, n artifacts, q reduced

target windows

{task attributes}

p1
p2

p3

p4

(3/0/1){task attributes’}

p1 p2 p3

first condition

first condition

(2/1/1){task attributes’’}

p1 p2

first condition

(1/4/1){task attributes’’’}

p1

(0/4/1){task attributes’’’’}

first condition

…

…
X

… …

…

…

third condition

…

Figure 5.7: Example: preemption dependency tree

Once the tree is constructed, the user can easily traverse it to find
the optimum solution. If the choice is to minimize the number of pre-
emptions, one can follow the path shown in figure 5.7. The final node is
obtained after successively eliminating 4 preemptions:A2 preemptsC1

(the case we have described above),B2 preemptsC1, A3 preemptsC1

and, finally,A4 preemptsB2. The minimum amount of preemptions,
i.e., 0, is yielded by the task attributes shown in table 5.3, and the cost
to pay is 4 artifacts and one reduced target window.

However, the user can choose an intermediate node if the trade-off
between the number of preemptions and the number of artifacts is more
suitable, e.g., 2 preemptions vs. 1 artifact and 1 reduced target window.

118 Chapter 5. Controlling the number of preemptions in FPS

The final set of tasks with new attributes and the FPS schedule are
shown in table 5.3 and figure 5.8 respectively. In each step, the artifact
tasks are created as described in (5.4.4).

Task p c offset prio
A1 20 1 0 2
A2 20 1 5 5
A3 20 1 10 3
A4 20 1 15 1
B1 20 3 0 1
B2 20 3 10 2
C 20 8 5 4

Table 5.3: The new FPS attributes that yield no preemptions

C

0 5 20

dl
rel

A1

0 5 20

dl
rel

A2

0 5 10 20

dl
rel

B1

0 10 20

dldl
rel

B2

0 10 20

dl
rel

A3
dl

0 10 15 20

rel

A4

0 15 20

dl
rel

Figure 5.8: New FPS schedule, zero preemptions

5.7 Performance evaluation

We have performed a number of experiments to evaluate the efficiency
of our method. We have used synthetic tasks with randomly generated

5.7 Performance evaluation 119

attributes, schedulable by FPS.
The experiments were run on each task set until either the tree was

complete, a node containing attributes yielding 0 preemptions was found,
or for a maximum duration of 2 minutes. The hardware used for the ex-
periments consisted of a P4 PC at 1.9MHz.

Each point in the graph was created by performing computations on
50 task sets consisting of 5 to 10 tasks respectively. The LCM for each
task set was randomized between 10 to 20 times the number of tasks.
The periods were randomized in the interval[LCM

nr. of tasks , LCM], and
the wcet’s were chosen to ensure an utilization of at least 0.6. In our
experiments, the average utilization was 0.89. The priorities have been
assigned according to the RM algorithm and original offsets were set to
zero due to the optimality of RM priority assignment for this particualar
setup. However, our method does not depend on the presence of offsets
or priority assigment algorithm as it relies on release and start times.

0

5

10

15

20

25

30

35

40

45

5 6 7 8 9 10
original number of tasks

av
g

. n
r.

 o
f

p
re

em
p

ti
o

n
s

original preemptions
new preemptions

Figure 5.9: Average preemption reduction

When searching the tree for the best solution, we chose the node
containing the task attributes with that yielded the lowest number of
preemptions. If more than one node contained the minimum number of

120 Chapter 5. Controlling the number of preemptions in FPS

preemptions, the chosen node was the one containing the least number
of artifacts.

As we can see in figure 5.9, the method significantly managed to
reduce the worst case number of preemptions for an average cost pre-
sented in figure 5.10.

0

1

2

3

4

5

6

7

8

9

5 6 7 8 9 10

original number of tasks

a
v

e
ra

g
e

 v
a

lu
e

nr. of artifacts
nr. of reduced target windws

Figure 5.10: Preemption reduction cost

The average increase in the number of tasks introduced by our method
is presented in figure 5.11.

5.8 Chapter summary

In this chapter, we proposed a method to reduce the number of pre-
emptions in FPS without modifying its basic mechanism. Hence, the
method is directly applicable to FPS systems in which modifications to
the original scheduler are not desirable or not even possible.

Assuming the WCET for the tasks, the method analyzes off-line a
set of periodic tasks with fixed priorities and offsets, scheduled by FPS,
and identifies the number of preemptions that can occur at run-time.
Our method reduces the number of preemptions by reassigning task at-

5.8 Chapter summary 121

0

2

4

6

8

10

12

14

16

18

20

5 6 7 8 9 10

original number of tasks

av
er

ag
e

va
lu

e

new number of tasks

Figure 5.11: Number of FPS tasks

tributes, i.e., priorities and offsets such that the tasks are schedulability
is maintained on the original scheduler, while the number of preemp-
tions is reduced.

However, in some cases, the attribute reassignment procedure yields
inconsistent attributes for instances of the same task. We solve the phe-
nomena by creating artifacts for the task instances with inconsistent FPS
attributes. Hence, no modifications are needed to the original scheduler.
We keep the number of artifacts minimal by using ILP. The number of
artifacts and the reduced flexibility are the costs we have to pay for re-
ducing the number of preemptions.

Since solving a particular preemption changes the execution pat-
tern of several tasks and, thus, may imply introducing or solving other
ones, we use a global approach by constructing a preemption depen-
dency tree, to detect all the preemption dependencies and, implicitly,
the set of feasible task attributes that yields the minimum number of
preemptions. The preemption dependency tree comprises all possible
steps we can perform to eliminate preemptions and all corresponding
states representing the new task attributes with corresponding new num-

122 Chapter 5. Controlling the number of preemptions in FPS

ber of preemptions, the number of artifacts to be created and the level
of reduced flexibility, i.e., the cost we have to pay. Hence, we provide
for the ability to select a user-defined optimum state with respect to the
trade-off between the number of preemptions and the cost to pay.

Chapter 6

Conclusions

In this thesis we present methods that combine off-line schedule con-
struction with fixed priority run-time scheduling. In particular, we want
to take advantage of all benefits provided by off-line scheduling, while
using fixed priority scheduling. We use off-line schedules to express
complex constraints and predictability for selected tasks. Then, we de-
rive attributes for tasks, such that, if applying FPS at run-time, the tasks
will execute flexibly while fulfilling their original constraints.

Thus, the methods solve issues arising from legacy systems, e.g.,
partition scheduling for avionics applications, and allows to handle con-
straints not covered by FPS feasibility tests, while using standard FPS
at runtime. Also it provides for predictable flexibility, i.e., the restricted
execution of selected tasks, e.g., for sampling and actuating in control
systems, while enabling runtime flexibility for others.

Our method analyzes an off-line schedule, constructed to solve com-
plex constraints, and derives attributes for fixed priority scheduling such
that the tasks, when scheduled by FPS, execute flexibly while fulfilling
the original constraints. In certain cases, the method splits tasks into
instances, creating artifact tasks, as not all off-line schedules can be
expressed directly with FPS. In our approach, we use standard integer
linear programing to solve priority inequalities derived from the off-line

123

124 Chapter 6. Conclusions

schedule and minimize the number of artifact tasks created. Finally, we
assign offsets and periods to the task set provided by ILP in order to
ensure the correct run-time execution.

In some cases, we have to perform additional splits, due to a vi-
olation of the periodicity in the off-line schedule, which gives differ-
ent offsets for different instances of the same task. By minimizing the
number of artifact tasks, our method minimizes the number of offsets
in the system as well. The number of artifact tasks and offsets can be
decreased by adjusting the target windows, if the resulting loss in flexi-
bility is acceptable. For example, if one particular instance of a task has
to be assigned a different offset than the others, we could adjust all of
them to match the constrained instance’s offset. However, in this case,
we would have to reduce the target windows for all instances, resulting
in a loss of flexibility.

Our methods do not introduce artifacts or reduce flexibility unless
required by constraints: a set of FPS tasks, scheduled off-line according
to FPS, and transformed by our method, executes in the same way as the
original tasks.

We have applied the method to schedule messages with complex con-
straints on CAN. We use the information provided by an off-line sched-
ule constructed to solve complex constraints on messages and we derive
attributes, i.e., message identifiers, required by CAN’s native protocol.
At run time, the messages are transmitted and received within time in-
tervals such that the original constraints of the messages are fulfilled.

We take advantage of the CAN particularities, i.e., constant mes-
sage length and non-preemptive behavior, to relax the constraints to our
optimization problem, and, thus, to provide for better solutions.

We solve the requirement of unique message identifiers by simple
constraint inclusion to the ILP formulation.

To this point, we have concentrated on reconstructing the off-line
schedule. Using the flexibility of the ILP solver, we can add objectives
by inclusion in the goal function. In our approach, we assumed that all
task dependencies have been resolved off-line.

125

As one of the advantages provided by FPS is run-time flexibility, we
have investigated how existing FPS servers can be used together with
FPS task sets obtained by using our transformation method described
in chapter 2, while guaranteeing the original complex constraints on the
periodic tasks and providing a good service for non-periodic requests.
We have shown that problems may arise if the servers are not aware
of the complex constraints on the periodic tasks, e.g., if the server is
added to the system after the transformation of the off-line schedule to
task attributes for FPS. Instead, we proposed the inclusion of the server
together with the rest of the periodic tasks and their constraints during
the off-line schedule construction.

We have provided a mechanism to handle non-periodic events by
existing servers that preserve their capacity during their periods until
an aperiodic requirement occurs. The difficulty of scheduling this type
of servers together with periodic, complex constrained tasks, is that the
server execution, i.e., at which time the server starts its execution within
its period, can not be predicted such that it can be included in the off-line
schedule construction.

Finally, we proposed a method to reduce the number of preemptions
in FPS without modifying its basic mechanism. Hence, the method is
directly applicable to FPS systems in which modifications to the original
scheduler are not desirable or not even possible.

Assuming the WCET for the tasks, the proposed method analyzes
off-line a set of periodic tasks with fixed priorities and offsets, sched-
uled by FPS, and identifies the number of preemptions that can occur at
run-time. Our method reduces the number of preemptions by reassign-
ing task attributes, i.e., priorities and offsets such that the task schedu-
lability is maintained on the original scheduler, while the number of
preemptions is reduced.

As the preemption reduction does not come for free, in this work we
used a global approach to detect preemption dependencies and to pro-
vide for the ability to selectively choose a user-defined level of preemp-
tions with respect to the trade-off between the number of preemptions

126 Chapter 6. Conclusions

and the cost to pay.
To do so, we construct a preemption dependency graph that com-

prises all possible steps we can perform to eliminate preemptions, and
all corresponding states representing the new number of preemptions
achieved by the new task attributes, and the cost to pay.

Bibliography

[1] L. Abeni and G. Buttazzo. Integrating Multimedia Applications
in Hard Real-Time Systems. InIn Proceedings of International
Real-Time Systems Symposium, 1998.

[2] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN Proto-
col: Why and How.IEEE Transactions on Industrial Electronics,
49(6), Dec 2002.

[3] N. Audsley, K. Tindell, and A. Burns. The end of the line for static
cyclic scheduling? InProceedings 5th Euromicro Workshop on
Real-Time Systems, pages 36–41, Oulu, Finland, June 1993.

[4] N. Audsley, K. Tindell, and A. Burns. The End Of The Line For
Static Cyclic Scheduling? InProceedings of the Fifth Euromicro
Workshop on Real-Time Systems, pages 36–41, 1993.

[5] N.C. Audsley. Optimal Priority Assignment and Feasibility of
Static Priority Tasks With Arbitrary Start Times. Technical report,
Departament of Computer Science, University of York, 1991.

[6] Sanjoy Baruah, Joel Goossens, and Giuseppe Lipari. Implement-
ing Constant-Bandwidth Servers upon Multiprocessor Platforms.
In Proceedings of the IEEE International Real-Time and Em-
bedded Technology and Applications Symposium, pages 154–163,
Sep. 2002.

129

130 Bibliography

[7] Sanjoy Baruah and Giuseppe Lipari. Executing Aperiodic Jobs in
a Multiprocessor Constant-Bandwidth Server Implementation. In
Euromicro Conference on Real-Time Systems, Jun. 2004.

[8] I. J. Bate.Scheduling and Timing Analysis for Safety Critical Real-
Time Systems. PhD thesis, University of York - Department of
computer Science, UK, Nov. 1998.

[9] A. Burns, K. Tindell, and A. Wellings. Effective analysis for en-
gineering real-time fixed priority schedulers.IEEE Trans. on Soft-
ware Engineering, 21(5):475–80, May 1995.

[10] G. Buttazzo. Rate monotonic vs. EDF: Judgment day. InProc. 3rd
ACM International Conference on Embedded Software, Philade-
phia, USA, Oct 2003.

[11] G. Buttazzo and J. Stankovic. Red: A robust earliest deadline
scheduling algorithm. InProceedings of 3rd International Work-
shop on Responsive Computing Systems, 1993.

[12] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. ARINC
Scheduling: Problem Definition. InProceedings of Real-Time Sys-
tems Symposium, pages 165–169, 1994.

[13] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of
real-time tasks under precedence constraints.Real-Time Systems
Journal, 2(3):181–194, Sept. 1990.

[14] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in
fixed priority pre-emptive systems. InProceddings of the Real-
Time Symposium, pages 222–231, Dec. 1993.

[15] R. Dobrin and G. Fohler. Implementing off-line message schedul-
ing on controller area network (CAN). InProceedings of the 8th
IEEE Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2001), Nice, France, Oct. 2001.

Bibliography 131

[16] Radu Dobrin, Gerhard Fohler, and Peter Puschner. Translating
off-line schedules into task attributes for fixed priority scheduling.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium,
London, UK, Dec. 2001.

[17] J. Echagüe, I. Ripol, and A Crespo. Hard real-time preemptively
scheduling with high context switch cost. InProcedings of the 7th
Euromicro Workshop on Real-Time Systems, Odense, Denmark,
Mar. 1995.

[18] G. Fohler. Flexibility in Statically Scheduled Real-Time Systems.
PhD thesis, Technische Universität Wien, Austria, Wien, Österre-
ich, April 1994.

[19] G. Fohler. Joint scheduling of distributed complex periodic and
hard aperiodic tasks in statically scheduled systems. InProceed-
ings of the 16th Real-Time Systems Symposium, Pisa, Italy, Dec.
1995.

[20] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time
Requirements with Resource-Based Calibration of Periodic Pro-
cesses.IEEE Transactions on Software Engineering, 21(7), July
1995.

[21] M. Gonzalez Harbour and J.P. Lehoczky. Fixed Priority Schedul-
ing of Periodic Task Sets with Varying Execution Priority. InPro-
ceedings of Real-Time Systems Symposium, pages 116–128, Dec.
1991.

[22] K. Jeffay and D.L. Stone. Accounting for interrupt handling costs
in dynamic priority task systems. InProceedings of Real-Time
Systems Symposium, pages 212–221, Dec. 1993.

[23] M. Joseph and P. Pandya. Finding response times in a real-time
system.The Computer Journal, 29(J5):390–395, 1986.

132 Bibliography

[24] Daniel I. Katcher, Hiroshi Arakawa, and Jay K. Strosnider. Engi-
neering and analysis of fixed priority schedulers.Software Engi-
neering, 19(9):920–934, 1993.

[25] Saehwa Kim, Seongsoo Hong, and Tae-Hyung Kim. Integrat-
ing real-time synchronization schemes into preemption threshold
scheduling. InProc. 5th IEEE International Symposium on Object-
oriented Real-time Distributed Computing, Crystal City, VA, USA,
Apr. 2002.

[26] Saehwa Kim, Seongsoo Hong, and Tae-Hyung Kim. Perfecting
preemption threshold scheduling for object-oriented real-time sys-
tem design: From the perspective of real-time synchronization. In
Proc. Languages, Compilers, and Tools for Embedded Systems,
Berlin, Germany, Jun. 2002.

[27] H. Kopetz. Sparse time versus dense time in distributed real time
systems. In Proc. of the Second Int. Workshop on Responsice
Comp. Sys., Saitama, Japan, Oct. 1992.

[28] H. Kopetz. Why Time-Triggered Architectures will Succeed in
Large Hard Real-Time Systems. InProceedings of the Fifth IEEE
Computer Society Workshop on Future Trends of Distributed Com-
puting Systems, pages 2–9, 1995.

[29] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G. Pospischil,
P. Puschner, J. Reisinger, R. Schlatterbeck, W. Schütz, A. Vr-
choticky, and R. Zainlinger. The distributed, fault-tolerant real-
time operating system MARS.IEEE Operating Systems Newslet-
ter, 6(1), 1992.

[30] H. Kopetz and G. Grunsteidl. TTP - a Protocol for Fault-Tolerant
Real-Time Systems.Computer, 27(1):14–23, 1994.

[31] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyne Min,
Rhan Ha, Seongsoo Hong, Chang Yun Park, Minsuk Lee, and
Chong San Kim. Analysis of cache-related preemption delay in

Bibliography 133

fixed-priority preemtive scheduling.IEEE Transactions on Com-
puters, 47(6):700–713, June 1998.

[32] Chang-Gun Lee, Kwangpo Lee, Joosun Hahn, Yang-Min Seo,
Sang Lyul Min, Rhan Ha, Seongsoo Hong, Chang Yun Park,
Minsuk Lee, and Chong Sang Kim. Bounding cache-related
preemption delay for real-time systems.Software Engineering,
27(9):805–826, Sep. 2001.

[33] G. Leen and D. Heffernan. Time-Triggered Controller Area Net-
work. Computing and Control Engineering, 2001.

[34] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. InProceddings of the Real-Time Systems Sym-
posium, pages 201–212, Dec. 1990.

[35] J.P. Lehoczky and Sandra Ramos-Thuel. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive sys-
tems. InProceddings of the Real-Time Systems Symposium, pages
110–123, Dec. 1992.

[36] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environments. InProceddings of
the Real-Time Symposium, pages 261–270, 1987.

[37] J.Y-T. Leung and J. Whitehead. On the Complexity of Fixed-
Priority Scheduling of Periodic, Real-Time Tasks.Performance
Evaluation, 2(4):237–250, Dec. 1982.

[38] C.L. Liu and J.W. Layland. Scheduling algorithms for multipro-
gramming in hard real-time environment.Journ. of the ACM, 20,
1, Jan. 1973.

[39] C. D. Locke. Software architecture for hard real-time applications:
Cyclic executives vs. fixed priority executives.Real Time Systems,
4(1):37–54, March 1992.

134 Bibliography

[40] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham. Jitter
Compensation for Real-Time Control Systems. InProceedings of
the 22nd IEEE Real-Time Systems Symposium, Dec 2001.

[41] M. Di Natale. Scheduling the CAN Bus with Earliest Deadline
Techniques. InProceedings of the 21st IEEE Real-Time Systems
Symposium, pages 259–268, Dec 2000.

[42] J.C. Palencia and M. Gonzalez Harbour. Schedulability Analysis
for Tasks with Static and Dynamic Offsets. InProceedings of 19th
IEEE Real-Time Systems Symposium, pages 26–37, 1998.

[43] J.C. Palencia and M. Gonzalez Harbour. Exploiting Precedence
Relations in the Schedulability Analysis of Distributed Real-Time
Systems. InProceedings of 20th IEEE Real-Time Systems Sympo-
sium, 1999.

[44] K. Ramamritham and J. Stankovic. Scheduling algorithms and
operating systems support for real-time systems.IEEE, 82(1):55–
67, Jan. 1994.

[45] Kristian Sandström.Enforcing Temporal Constraints in Embed-
ded Control Systems. PhD thesis, Royal Institute of Technology,
Sweden, Apr. 2002.

[46] J. Schneider. Cache and pipeline sensitive fixed priority scheduling
for preemptive real-time systems, 2000.

[47] D. Seto, J.P. Lehoczky, and L. Sha. Task Period Selection and
Schedulability in Real-Time Systems. InProceedings of Real-
Time Systems Symposium, pages 188–198, 1998.

[48] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Pro-
tocols: an Approach to Real-Time Synchronization.IEEE Trans-
actions on Computer, 39(9):1175–1185, Sept 1990.

[49] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for
hard real-time systems.Real-Time Systems Journal, 1(1):27–60,
June 1989.

Bibliography 135

[50] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling
for Hard Real-Time Tasks.The Journal of Real-Time Systems,
1989.

[51] M. Spuri and G.C. Buttazzo. Scheduling Aperiodic Tasks in Dy-
namic Priority Systems.The Journal of Real-Time Systems, March
1996.

[52] J. A. Stankovic and K. Ramamritham.IEEE Tutorial: Hard Real-
Time Systems. IEEE Computer Society Press, Washington, D.C.,
USA, 1988.

[53] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New
Paradigm for Real-Time Operating Systems.IEEE Software, May
1991.

[54] T. Tia, W.S. Liu, and M. Shankar. Algorithms and optimality
of scheduling aperiodic requests in fixed-priority preemptive sys-
tems.Journal of Real-Time Systems, 1995.

[55] K. Tindell. Adding Time Offsets to Schedulability Analysis. Tech-
nical report, Departament of Computer Science, University of
York, January 1994.

[56] K. Tindell, A. Burns, and A.J. Wellings. Calculating Controller
Area Network (CAN) message response times.Contr. Eng. Prac-
tice, 3(8):1163–1169, 1995.

[57] K. Tindell, H. Hansson, and A.J. Wellings. Analizing Real-Time
Communications: Controller Area Network (CAN). InProceed-
ings of Real-Time Systems Symposium, pages 259–263, Dec. 1994.

[58] K.W. Tindell. Adding time-offsets to schedulability analysis, inter-
nal report, university of york, computer science dept, ycs-94-221.

[59] M. Torngren. Fundamentals of implementing real-time control ap-
plications in distributed computer systems.to appear in Real-Time
Systems, 1997.

136 Bibliography

[60] TTP-OS: Time-Triggered Operating System with TTP Support.

[61] Y. Wang and M. Saksena. Scheduling fixed priority tasks with pre-
emption threshold. InIn Proceedings, IEEE International Confer-
ence on Real-Time Computing Systems and Applications, Decem-
ber 1999, Dec. 1999.

[62] J. Xu and D. L. Parnas. Priority Scheduling versus Pre-run-time
Scheduling.Real-Time Systems, 2000.

[63] K.M. Zuberi and K.G. Shin. Scheduling Messages on Controller
Area Network for Real-Time CIM Applications.IEEE Transac-
tions on Robotics and Automation, 13(2):310–314, Apr. 1997.

Populärvetenskaplig svensk
sammanfattning

"Combining Off-line Schedule Construction and Fixed Priority
Scheduling in Real-Time Computer Systems"

Datorer har blivit lika vanliga i samhället under de senaste 10 åren
som vanliga mikrovågsugnar i hemmet. Förutom hem-PC som numera
finns i nästan alla hushåll, är nästan all elekronik i hemmet (till exempel
dvd-spelaren eller tv apparaten) eller i bilen, datorstyrt. I de enklaste
fallen består dessa system av en dator och ett antal datorprogram som
körs på den.

I och med att dessa system blir allt mer avancerade så ökar kraven på
datorns effektivitet också, till exempel hur många program kan köras på
samma dator samtidigt, medan priserna på den färdiga produkten måste
hållas så låga som möjligt för att kunna anpassas till marknaden.

Vissa program i ett datorstyrt system är viktigare än andra att de
utförs korrekt med avseende på både funktionalitet och tid. I bilar, till
exempel, är det ytterst viktigt att datorprogrammen som styr airbagen
eller bromsarna alltid fungerar som de ska, medan cd-växlaren inte är
så kritiskt för passagerarnas säkerhet. Både airbagen och cd-växlaren
måste reagera på externa händelser (krock eller tryck på play knappen).
Medan airbagen måste aktiveras inom en viss tidsintervall, dvs, inte före
en krock, men inte för sent efter en krock heller, så spelar det ingen
större roll om det tar en halv sekund extra mellan tiden man trycker på

137

138 Populärvetenskaplig svensk sammanfattning

play knappen på cd:n och tiden när låten börjar spelas upp. Alla dessa
system måste kunna koexistera utan att påverka varandra på ett negativt
sätt, dvs, om cd-växlaren slutar fungera, får det inte påverka bromsarnas
funktionalitet.

I vissa system, är grunddesignen gjort på så sätt att det är svårt att
lägga till ytterligare funktionalitet, oftast i form av nya datorprogram.
Om man, till exempel, vill lägga till ett anti-sladd system i en bil, som
kommer att styras av bil datorn, så måste man kunna vara säker på att
resten av programmen som körs på samma dator, i synnerhet de kritiska
delarna (till ex. airbag), fortfarande kommer att fungera felfritt.

Å andra sidan, ju mera program man lägger till i systemet, desto
svårare blir det för datorn att hantera dem. Detta leder oftast till be-
hovet att förnya datorn till en kraftigare modell som ska lätt hantera de
gamla programmen. Samtidigt så måste man fortfarande säkerställa att
programmen fungerar korrekt. Att garantera att det nya systemet som
består av en ny dator och de gamla programmen uppfyller kraven på
korrekt funktionalitet, kan vara ett väldigt svår uppgift.

I det här arbetet, vi förseslår metoder som gör det möjligt och lätt att
utföra ovannämda uppgifter, dvs, att utöka funktionaliteten i befintliga
datorsystem eller att uppgradera systemen medan den kritiska beteendet
garanteras. Samtidigt, introducerar vi metoder for att förbättra efek-
tiviteten i befintliga datorstyrda system som används i dagens läge i, till
exempel, bil och flygindustrin.

