
An analysis of FPGA-based UDP/IP stack
parallelism for embedded Ethernet connectivity

Andreas Löfgren Lucas Lodesten Stefan Sjöholm

Department of Computer Science and Electronics, Mälardalen University, Västerås, Sweden
RealFast Hardware Consulting AB, andreas.lofgren@realfast.se

Hans Hansson
Department of Computer Science and Electronics, Mälardalen University, Västerås, Sweden,

hans.hansson@mdh.se

Abstract:

 When designing FPGA-based Ethernet connected
embedded systems the priority and necessity of
requirements such as cost, area, flexibility etc. varies for
each system. Simplified for most systems, it can be stated
that no extra functionality than required is desired.
Hence, when designing a UDP/IP stack in an FPGA a
single UDP/IP stack “template” design is not suitable to
effectively realize the different embedded network system
requirements.
 We present three different UDP/IP stack cores, with
different grades of parallelism and suited for various
network demands. We show that the UDP/IP core area
can be reduced to 1/3 of the original size with an
appropriate implementation, accomplished by a trade-off
between parallelism/latency and area. Furthermore
guidelines are proposed on how to perform the trade-off
between parallelism, area (cost), flexibility and
functionality when designing an UDP/IP stack for
compact embedded network systems.

1 Introduction
 Ethernet is a very popular and commonly used
network standard when connecting to a Local Area
Network (LAN) or the Internet. In the past, when
connecting an embedded system to a LAN even just for
simple point-to-point communication, it was necessary to
use additional network circuits that had more
functionality than required, which came at a high cost.
Furthermore, a processor was needed to implement the
network stack. Now, with the existing FPGA (Field-
Programmable Gate Array) technology it is feasible to
implement an application-tailored subset of a UDP/IP
(User Datagram Protocol/Internet Protocol) stack to
achieve a straight-forward and cost-effective connection
to a network.
 Although the UDP/IP stacks can be configured for
various numbers of network interfaces, this paper will
focus on the Ethernet network protocol and local area
networks.
 A number of hardware UDP/IP stacks have already
been realized. FPGA-based UDP/IP stacks for various
networks, such as Ethernet [2][3], remote control
applications [4], FireWire [5], and ATM [6], are described.
 In [1] an analysis of the TCP/IP sub-functions are
made and the work describes the performance-critical

functions that can be accelerated in FPGAs, how these
sub-functions may be implemented and what speed-up
gains that can be achieved.
 The specification and implementation of a TCP/IP
stack core in a FPGA is presented in [7]. The design
handles one communicating network node and uses
external memory for storage.
 [8] describes how a FPGA implementation of a
TCP/UDP/IP stack core can be realized with Handel-C
as input language.
 It is clear when studying the related work that the
focus is not on how to streamline an UDP/IP stack for
various network demands. Instead a single representation
is presented for each work. Our work presents three on-
chip streamlined stacks for different embedded network
system requirements. This approach is not used in the
related research areas.

2 Background
 This section covers the most important terms and
methods used throughout the paper.

2.1 OSI model
 The Open Standards Interconnect (OSI) model is
theoretical and is used to describe the behavior of a
network and also to describe networking issues. The OSI
model consists of seven layers and the layers are named
(starting from the highest layer): Application-,
Presentation-, Session-, Transport-, Network-, Link- and
Physical Layer. From a TCP/UDP/IP viewpoint the
Session- and Presentation Layers are often included in
the Application Layer. The OSI layers are frequently
referred in this paper, but are not further explained. In
section 2.2 and 2.3 the used protocols are shortly
explained. For a detailed description of the layers and
protocols, see [9].

2.2 Network Level Protocols
 The most important protocol at this level is the
Internet Protocol (IP). IP attempts to deliver messages to
the destination, which is selected by a unique IP address.
 Internet Control Message Protocol (ICMP) is a
network diagnostics protocol and is used to report
problems with delivery of IP datagrams within an IP
network.
 Address Resolution Protocol (ARP) allows requests of

the Medium Access Control (MAC) address from other
nodes when only the IP address is known.
 Reversed Address Resolution Protocol (RARP) is used
to determine the node’s own IP address, often at
initialization. It uses a mechanism similar to ARP, but
here the MAC address of the host is the known
parameter, and the IP address the requested.

2.3 Transport Level Protocols
 The most used Transport Layer protocol is the
Transmission Control Protocol (TCP), which gives a
connection-oriented communication with reliable data
delivery, duplicate data suppression and flow control.
 Another Transport Layer protocol is the User
Datagram Protocol (UDP), which provides an unreliable
and connectionless communication service. UDP is
basically an interface for the packets sent by the network
protocol IP. Hence, UDP does not give any delivery
guarantees and do not provide error handling and
retransmission of missing packets. However, UDP is
very effective when TCP is not suited for the application
needs, e.g. for real-time applications like audio and video
or in applications where low latency and low delay is
preferred over reliable data delivery. UDP may also be
used as a carrier protocol in systems where the
application itself includes the functionality for a reliable
communication.

3 UDP/IP stack implementation
 The hardware UDP/IP stack cores that are described in
this paper can be viewed as tailored subsets of the
TCP/IP stack and one possible configuration is
represented, related to the OSI model, as the shadowed
area in Figure 1.

HTTP Telnet FTP DNS ...

TCP UDP

ICMP IGMP IP

Network Interface (e.g. Ethernet)

ARP RARP

Transmission Medium

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Figure 1. UDP/IP stack in OSI model layers, redrawn from [9].

 All three UDP/IP cores include the Transport Layer,
the Network Layer and the Link Layer, which are
entirely implemented in the FPGA. UDP is used for the
Transport Layer.
The Internet Protocol version 4 (IPv4) is used for the
Network Layer, which gives a more area-effective design
compared to the more recent IPv6 protocol.
The Application Layer may be a software- or hardware
application that communicates with the used UDP/IP
core through the Transport Layer. By using a hardware
user application in the FPGA the system performance
can be boosted drastically. A software application can be
implemented in a separate microprocessor chip
alternatively as a soft- or hard processor in the FPGA
(System-on-Chip).
 The Transport-, Network- and Link Layers in the
UDP/IP stack cores are designed using VHSIC Hardware
Description Language (VHDL) as input. This means that

the designs are not restricted to a specific FPGA
technology.
 The Physical Layer consists of an external Physical
Layer Device (PHY) device that preferably handles an
Ethernet connection at 10/100/1000 Mbps. Hence, a
natural interface between the FPGA with the UDP/IP
core and the PHY is to use a Media Independent
Interface (MII) for 10/100 Mbps Ethernet and/or a
Gigabit Media Independent Interface (GMII) for Gigabit
Ethernet. These interfaces are similar to each other and
are supported by the UDP/IP stack cores. If the network
speed is changed the interface can be switched between
MII- and GMII mode without re-configuring the FPGA.

Figure 2. Block diagram of the UDP/IP cores.

 All three UDP/IP stack implementations use the same
basic design structure, which can be viewed in Figure 2.
The designs consist of three clock domains; one system
clock used for control purposes, one receive clock and
one transmit clock. A short description of each common
block follows:
 Receiver: Manages incoming packets. The Receiver
will check for a new packet (preamble from Ethernet
PHY). Once a new packet is detected the packet will be
saved byte-wise to the Receiver RAM (rx_ram). Each
byte is also sent to the CRC checker, which
progressively calculates the checksum. When the end of
frame is signaled from the Ethernet PHY the CRC check
will be completed and the destination MAC-address will
be verified. Only MAC-addresses that matches the core’s
MAC-address and broadcast MAC-addresses are
accepted. If the packet check fails the packet will be
rejected.
 CRC checker/generator: These blocks are identical
and progressively calculate the Cyclic Redundancy
Check (CRC). It uses the CRC32 polynomial for
Ethernet. The polynomial is shown below:
X32 + x26 + x23 + x22 + x16 + x12 + x11 +
x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1.
 Receiver RAM: The Receiver RAM temporarily
stores the entire received packet, i.e including the whole
frame with Ethernet header, IP header etc. Packets with
incorrect MAC-addresses will be filtered out in the
Receiver and are not stored in the Receiver RAM.
 ROM: To reduce the gate count the designs contain
elements that are considered as static in the transmitted
Ethernet frame. These elements are stored in a ROM and
examples of the static IP header elements are: protocol
type, version, header length, differential services,
fragmentation flags and fragment offset.

 Packet Composer/Interpreter: These are the main
control blocks, which are closely related to each other.
The blocks checks that the incoming packet is valid,
manages UDP packets in both directions, manages ARP
requests, generates ARP responses, manages ICMP
requests and generates ICMP responses. The UDP
checksum will always be calculated for transmitted
packets by the Packet Composer. For this work the
Packet Interpreter is configured to check the UDP
checksum on incoming packets. However, this feature is
optional and may be turned off to further reduce gate
count. The checksum calculation is based on a 16-bit
two’s complement adder and is executed in parallel with
the data copy to the Transmitter- or Receiver RAM from
the Application Layer respectively from the Receiver.
 ARP lookup table: Contains IP- and MAC-addresses
for up to 4 simultaneous network nodes with a FIFO
priority queue of the entries.
 Transmitter RAM: The Transmitter RAM
temporarily stores the entire packet, i.e including the
whole frame with Ethernet header, IP-header etc., which
shall be transmitted.
 Transmitter: The Transmitter will check for a send
flag from one of the packet types (UDP, ARP, RARP or
ICMP). At the beginning, preamble is sent, where the
last nibble is a start of frame delimiter. The Transmitter
then reads data from the Transmitter RAM and puts out
the transmit packet to the PHY data bus and sets control
signals. Each byte is sent to the CRC generator, which
progressively calculates the CRC. When the packet end
is reached the calculated 32-bit CRC is sent.

 Both the RAMs are implemented as double-ported
FPGA Block RAMs, which works as separators to the
clock domains. A maximum of two packets can be stored
simultaneously. Communication statistics, such as UDP
length errors and UDP checksum errors of received
packets, can optionally be implemented and
communicated to the Application Layer. A simple
handshake interface is implemented as interface to the
application.
 The embedded network architecture is closely
connected to the intended function of the system and also
directly affects the UDP/IP core implementation. We
will address the need for several variants of the UDP/IP
core by giving three network architecture examples in
sections 3.1 to 3.3.

3.1 “Minimum” UDP/IP core
 In this type of network the hardware application is
assumed to be either transmit-intensive or receive-
intensive. One example of such an application is a data
acquisition system where at least one hardware node is
connected to a sensor. Raw data from the sensor is pre-
processed, e.g. digital filtering, in the FPGA and then
transmitted to a central unit in the network. For this
small point-to-point network architecture category we
propose a “minimum” UDP/IP core that utilizes logic
sharing of the Packet Composer and Packet Interpreter
parts of the design (i.e. less parallelism). The core is able
to transmit and receive packets simultaneously, but since
the control logic is shared between the transmit- and
receive side in the design, thus dependent of each other,

the operation may be expressed as a hybrid between half-
duplex and full-duplex mode. In this type of network
system the Application Layer can be implemented
directly in hardware and thus omitting the need for an
external (or an on-chip) CPU. Furthermore, the hardware
UDP/IP stack can use a fix IP-address for the central unit
and also exclude the ARP/RARP/ICMP functionality in
the core. This gives a very area-effective design, at the
expense of flexibility.

3.2 “Medium” UDP/IP core
 For this implementation the network architecture
requires full-duplex operation. Several nodes must be
able to communicate, in both directions, with the
hardware UDP/IP stack. The “Medium” core is based on
the “Minimum” implementation, but to attain higher
flexibility the Packet Interpreter and Packet Composer
are configured to process simultaneously. Furthermore
ARP functionality is included, allowing the core to
request the MAC address from other nodes when only
the IP address of its neighbours is known. The core will
also respond to ARP requests from neighbouring nodes.
An ARP table will simultaneously handle the MAC- and
IP addresses of 4 nodes. ICMP response functionality is
included as well, which responds to ping requests with a
fixed ICMP length and data. This core is suitable as a
trade-off between the “Minimum” and “Advanced”
implementation to achieve the most effective design.

3.3 “Advanced” UDP/IP core
 For this implementation the embedded network system
requires a connection with a reliable communication link
for frames containing control data as well as a fast data
communication UDP link. The network speed is 1000
Mbps in full-duplex mode and the Ethernet frame length
must be maximized. Here an “Advanced” UDP/IP core is
presented that uses the “Medium” implementation and
additionally also manages Gigabit Ethernet and an
Ethernet frame length of 1518 bytes (Ethernet Jumbo
frames are not yet supported by the core). A TCP
“channel” is incorporated with UDP as a carrier protocol,
enabling slow but reliable TCP/IP communication
handled by an external (or on-chip) application, see
Figure 3.

API

APPLICATION

CPU

Ethernet

PHY

IP / ICMP / ARP / RARP

Ethernet

FPGA

UDP

APPLICATION

API

T
C

P

Figure 3. Advanced network architecture.

 Due to the longer supported packet length this
implementation requires two extra Block RAMs
compared to the other two designs. The impressive
performance for pure UDP data is ~957 Mbps in both
directions when excluding overhead, such as Ethernet
preamble, UDP/IP headers, CRC and Ethernet interframe
gap, in the calculation. The overall performance is, of
course, dependent of the latency at the Application
Layer. Refer to Table 1 for a comparison of features and
synthesis results for the three cores.

4 Evaluation and Discussion
 Hardware embedded system design requires decisions
regarding simplifications, parallelization and trade-off
between functionality and performance/area. At least the
following issues must be taken into account when
designing an UDP/IP core: Allowed logic utilization,
network speed, number of simultaneous communicating
network nodes, packet loss limit, supported protocols,
duplex mode and packet size.
Table 1. Comparison of the implementations.

Spartan-3, xc3s200-4ft256
 “Minimum” “Medium” “Advanced”
Xilinx Slices 517 1022 1584
Xilinx BRAMs 3 3 5
Fmax (MHz) 90,7 60,3 105,6
Length (bytes) * 256 256 1518
Duplex mode Full ** Full Full
Speed (Mbps) 10/100 10/100 10/100/1000
ARP No 4 entries 4 entries
RARP No No Yes
ICMP No Yes Yes
TCP “channel” No No Yes
Flexibility Low Medium High
* Ethernet preamble not included, ** Refer to section 3.1

 As seen in Table 1 the “Minimum” core
implementation only occupies approximately 1/3 of the
area compared to the “Advanced” representation.
Additionally for the “Minimum” core, the Application
Level is easier to implement in hardware, giving a
compact on-chip solution. For many point-to-point
embedded network systems this area saving is definitely
a vital factor when choosing the most cost-effective
FPGA chip. However, the “Minimum” implementation
has less performance, is not that reliable and requires
more adaptation of the entire network system. All cores
have been verified successfully in real hardware and the
“Medium” and “Advanced” versions have both been
incorporated in industrial projects.
 As a guideline we recommend to start with a flexible
“Advanced” UDP/IP solution and rationalize the design
to an implementation that still fulfils the network system
demands. Major area savings are achieved by reducing
the supported packet size, excluding protocols and
decrease the allowed network speed, but if the goal is a
“Minimum” core static IP addresses and parallelization
of sub-functions, such as checksum calculations, will
further contribute to the area reduction. For efficiency
the VHDL design should be parameterized to the highest
possible degree to simplify these changes.

5 Conclusion
 This paper shows the necessity of multiple
representations of hardware UDP/IP stack cores. We

present three core versions, all successfully implemented
and verified in hardware, which exploit different network
system characteristics. The “Minimum” core is preferred
for point-to-point networks and allows a simple
application that offers a cost-effective on-chip solution.
The “Advanced” solution gives a reliable, high
performance and flexible core suited for general-purpose
networks. The “Medium” representation is used as a
trade-off between the “Minimum” and “Advanced” core
to achieve an effective design mainly for networks with a
small number of communicating nodes. In many
systems, that utilize an FPGA, the ambition is to fit the
design in a cost-effective device and consequently area
constraints are of high priority. As shown, the UDP/IP
core area can be reduced to 1/3 of the original size by
adapting the design to the network system requirements.
This adaptation is accomplished by a parallelism/latency
vs. area/cost trade-off. The FPGA technology makes the
adaptation easy and the primary function in the chip is
not unnecessary affected by excessively area consuming
Ethernet connectivity logic.
 We suggest that the UDP/IP stack should be
customized when specifying the entire embedded
network system, starting from a flexible solution and
trimming down the core to fulfill the requirements of the
embedded network system that is being designed.

6 References

[1] Designing TCP/IP Functions In FPGAs

by Weidong Lu, MSc Thesis, Code number CE-MS-
2003-09

[2] Internet Connected FPGAs
by H Fallside, M J S Smith, Field-Programmable Custom
Computing Machines, 2000 IEEE Symposium on , 17-19
April 2000 Pages:289 – 290

[3] Implementation of UDP/IP Protocol on FPGA and Its
Performance Evaluation
by K Morita, K Abe, IPSJ General Conf. Special5, pages
157–158

[4] Specification of TinyIPv6 Protocol Stack for Remote
Control and Its Implementation on FPGA
by Y Izuhara, K Morita, T Tateoka, K Abe, IPSJ Journal,
Vol.43, No.11, pp.3540-3548, 2002

[5] Hardware Design and Implementation of IP-over-1394
Protocol Stack and Its Evaluation
by M Yusairi, B Abu, K Abe, Technical Report of IPSJ,
Vol.IAC2002, No.5, pp.51-58, Mar. 2003

[6] Protocol Wrappers for Layered Network Packet
Processing in Reconfigurable Hardware
by F Braun, B Abu, J Lockwood, M Waldvogel, Micro,
IEEE ,Volume: 22 , Issue: 1 , Jan.-Feb. 2002
Pages:66 – 74

[7] Design and Implementation of a TCP/IP Core for
Reconfigurable Logic
by Christophoros Kachris, Technical University of Crete

[8] Rapid Development of Reconfigurable Systems
by S. P. G. Chappell, IEEE 12th International Workshop
on Rapid System Prototyping, Monterey California, June
2001

[9] TCP/IP Tutorial and Technical Overview (7th Edition)
by Adolfo Rodriguez, John Gatrell, John Karas, Roland
Peschke (ISBN: 0130676101).

http://csdl.computer.org/comp/proceedings/rsp/2001/1206/00/1206toc.htm
http://csdl.computer.org/comp/proceedings/rsp/2001/1206/00/1206toc.htm

