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Abstract: 
 
    When designing FPGA-based Ethernet connected 
embedded systems the priority and necessity of 
requirements such as cost, area, flexibility etc. varies for 
each system. Simplified for most systems, it can be stated 
that no extra functionality than required is desired. 
Hence, when designing a UDP/IP stack in an FPGA a 
single UDP/IP stack “template” design is not suitable to 
effectively realize the different embedded network system 
requirements.  
    We present three different UDP/IP stack cores, with 
different grades of parallelism and suited for various 
network demands. We show that the UDP/IP core area 
can be reduced to 1/3 of the original size with an 
appropriate implementation, accomplished by a trade-off 
between parallelism/latency and area. Furthermore 
guidelines are proposed on how to perform the trade-off 
between parallelism, area (cost), flexibility and 
functionality when designing an UDP/IP stack for 
compact embedded network systems. 
 
1 Introduction 
    Ethernet is a very popular and commonly used 
network standard when connecting to a Local Area 
Network (LAN) or the Internet. In the past, when 
connecting an embedded system to a LAN even just for 
simple point-to-point communication, it was necessary to 
use additional network circuits that had more 
functionality than required, which came at a high cost. 
Furthermore, a processor was needed to implement the 
network stack. Now, with the existing FPGA (Field-
Programmable Gate Array) technology it is feasible to 
implement an application-tailored subset of a UDP/IP 
(User Datagram Protocol/Internet Protocol) stack to 
achieve a straight-forward and cost-effective connection 
to a network.  
    Although the UDP/IP stacks can be configured for 
various numbers of network interfaces, this paper will 
focus on the Ethernet network protocol and local area 
networks.  
    A number of hardware UDP/IP stacks have already 
been realized. FPGA-based UDP/IP stacks for various 
networks, such as Ethernet [2][3], remote control 
applications [4], FireWire [5], and ATM [6], are described. 
    In [1] an analysis of the TCP/IP sub-functions are 
made and the work describes the performance-critical 

functions that can be accelerated in FPGAs, how these 
sub-functions may be implemented and what speed-up 
gains that can be achieved. 
    The specification and implementation of a TCP/IP 
stack core in a FPGA is presented in [7]. The design 
handles one communicating network node and uses 
external memory for storage. 
    [8] describes how a FPGA implementation of a 
TCP/UDP/IP stack core can be realized with Handel-C 
as input language. 
    It is clear when studying the related work that the 
focus is not on how to streamline an UDP/IP stack for 
various network demands. Instead a single representation 
is presented for each work. Our work presents three on-
chip streamlined stacks for different embedded network 
system requirements. This approach is not used in the 
related research areas.  
 
2 Background 
    This section covers the most important terms and 
methods used throughout the paper. 

2.1 OSI model 
    The Open Standards Interconnect (OSI) model is 
theoretical and is used to describe the behavior of a 
network and also to describe networking issues. The OSI 
model consists of seven layers and the layers are named 
(starting from the highest layer): Application-, 
Presentation-, Session-, Transport-, Network-, Link- and 
Physical Layer. From a TCP/UDP/IP viewpoint the 
Session- and Presentation Layers are often included in 
the Application Layer. The OSI layers are frequently 
referred in this paper, but are not further explained. In 
section 2.2 and 2.3 the used protocols are shortly 
explained. For a detailed description of the layers and 
protocols, see [9]. 

2.2 Network Level Protocols 
    The most important protocol at this level is the 
Internet Protocol (IP). IP attempts to deliver messages to 
the destination, which is selected by a unique IP address. 
    Internet Control Message Protocol (ICMP) is a 
network diagnostics protocol and is used to report 
problems with delivery of IP datagrams within an IP 
network. 
    Address Resolution Protocol (ARP) allows requests of 



the Medium Access Control (MAC) address from other 
nodes when only the IP address is known. 
    Reversed Address Resolution Protocol (RARP) is used 
to determine the node’s own IP address, often at 
initialization. It uses a mechanism similar to ARP, but 
here the MAC address of the host is the known 
parameter, and the IP address the requested. 

2.3 Transport Level Protocols 
    The most used Transport Layer protocol is the 
Transmission Control Protocol (TCP), which gives a 
connection-oriented communication with reliable data 
delivery, duplicate data suppression and flow control. 
    Another Transport Layer protocol is the User 
Datagram Protocol (UDP), which provides an unreliable 
and connectionless communication service. UDP is 
basically an interface for the packets sent by the network 
protocol IP. Hence, UDP does not give any delivery 
guarantees and do not provide error handling and 
retransmission of missing packets. However, UDP is 
very effective when TCP is not suited for the application 
needs, e.g. for real-time applications like audio and video 
or in applications where low latency and low delay is 
preferred over reliable data delivery. UDP may also be 
used as a carrier protocol in systems where the 
application itself includes the functionality for a reliable 
communication. 
 
3 UDP/IP stack implementation 
    The hardware UDP/IP stack cores that are described in 
this paper can be viewed as tailored subsets of the 
TCP/IP stack and one possible configuration is 
represented, related to the OSI model, as the shadowed 
area in Figure 1. 
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Figure 1. UDP/IP stack in OSI model layers, redrawn from [9]. 

    All three UDP/IP cores include the Transport Layer, 
the Network Layer and the Link Layer, which are 
entirely implemented in the FPGA. UDP is used for the 
Transport Layer. 
The Internet Protocol version 4 (IPv4) is used for the 
Network Layer, which gives a more area-effective design 
compared to the more recent IPv6 protocol. 
The Application Layer may be a software- or hardware 
application that communicates with the used UDP/IP 
core through the Transport Layer. By using a hardware 
user application in the FPGA the system performance 
can be boosted drastically. A software application can be 
implemented in a separate microprocessor chip 
alternatively as a soft- or hard processor in the FPGA 
(System-on-Chip).  
    The Transport-, Network- and Link Layers in the 
UDP/IP stack cores are designed using VHSIC Hardware 
Description Language (VHDL) as input. This means that 

the designs are not restricted to a specific FPGA 
technology. 
    The Physical Layer consists of an external Physical 
Layer Device (PHY) device that preferably handles an 
Ethernet connection at 10/100/1000 Mbps. Hence, a 
natural interface between the FPGA with the UDP/IP 
core and the PHY is to use a Media Independent 
Interface (MII) for 10/100 Mbps Ethernet and/or a 
Gigabit Media Independent Interface (GMII) for Gigabit 
Ethernet. These interfaces are similar to each other and 
are supported by the UDP/IP stack cores. If the network 
speed is changed the interface can be switched between 
MII- and GMII mode without re-configuring the FPGA. 

 
Figure 2. Block diagram of the UDP/IP cores. 

    All three UDP/IP stack implementations use the same 
basic design structure, which can be viewed in Figure 2.  
The designs consist of three clock domains; one system 
clock used for control purposes, one receive clock and 
one transmit clock. A short description of each common 
block follows: 
    Receiver: Manages incoming packets. The Receiver 
will check for a new packet (preamble from Ethernet 
PHY). Once a new packet is detected the packet will be 
saved byte-wise to the Receiver RAM (rx_ram). Each 
byte is also sent to the CRC checker, which 
progressively calculates the checksum. When the end of 
frame is signaled from the Ethernet PHY the CRC check 
will be completed and the destination MAC-address will 
be verified. Only MAC-addresses that matches the core’s 
MAC-address and broadcast MAC-addresses are 
accepted. If the packet check fails the packet will be 
rejected.  
    CRC checker/generator: These blocks are identical 
and progressively calculate the Cyclic Redundancy 
Check (CRC). It uses the CRC32 polynomial for 
Ethernet. The polynomial is shown below: 
X32 + x26 + x23 + x22 + x16 + x12 + x11 + 
x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1. 
    Receiver RAM: The Receiver RAM temporarily 
stores the entire received packet, i.e including the whole 
frame with Ethernet header, IP header etc. Packets with 
incorrect MAC-addresses will be filtered out in the 
Receiver and are not stored in the Receiver RAM.  
    ROM: To reduce the gate count the designs contain 
elements that are considered as static in the transmitted 
Ethernet frame. These elements are stored in a ROM and 
examples of the static IP header elements are: protocol 
type, version, header length, differential services, 
fragmentation flags and fragment offset. 



    Packet Composer/Interpreter: These are the main 
control blocks, which are closely related to each other. 
The blocks checks that the incoming packet is valid, 
manages UDP packets in both directions, manages ARP 
requests, generates ARP responses, manages ICMP 
requests and generates ICMP responses. The UDP 
checksum will always be calculated for transmitted 
packets by the Packet Composer. For this work the 
Packet Interpreter is configured to check the UDP 
checksum on incoming packets. However, this feature is 
optional and may be turned off to further reduce gate 
count. The checksum calculation is based on a 16-bit 
two’s complement adder and is executed in parallel with 
the data copy to the Transmitter- or Receiver RAM from 
the Application Layer respectively from the Receiver. 
    ARP lookup table: Contains IP- and MAC-addresses 
for up to 4 simultaneous network nodes with a FIFO 
priority queue of the entries. 
    Transmitter RAM: The Transmitter RAM 
temporarily stores the entire packet, i.e including the 
whole frame with Ethernet header, IP-header etc., which 
shall be transmitted. 
    Transmitter: The Transmitter will check for a send 
flag from one of the packet types (UDP, ARP, RARP or 
ICMP). At the beginning, preamble is sent, where the 
last nibble is a start of frame delimiter. The Transmitter 
then reads data from the Transmitter RAM and puts out 
the transmit packet to the PHY data bus and sets control 
signals. Each byte is sent to the CRC generator, which 
progressively calculates the CRC. When the packet end 
is reached the calculated 32-bit CRC is sent.  
 
    Both the RAMs are implemented as double-ported 
FPGA Block RAMs, which works as separators to the 
clock domains. A maximum of two packets can be stored 
simultaneously. Communication statistics, such as UDP 
length errors and UDP checksum errors of received 
packets, can optionally be implemented and 
communicated to the Application Layer. A simple 
handshake interface is implemented as interface to the 
application. 
    The embedded network architecture is closely 
connected to the intended function of the system and also 
directly affects the UDP/IP core implementation. We 
will address the need for several variants of the UDP/IP 
core by giving three network architecture examples in 
sections 3.1 to 3.3.  

3.1  “Minimum” UDP/IP core 
    In this type of network the hardware application is 
assumed to be either transmit-intensive or receive-
intensive. One example of such an application is a data 
acquisition system where at least one hardware node is 
connected to a sensor. Raw data from the sensor is pre-
processed, e.g. digital filtering, in the FPGA and then 
transmitted to a central unit in the network. For this 
small point-to-point network architecture category we 
propose a “minimum” UDP/IP core that utilizes logic 
sharing of the Packet Composer and Packet Interpreter 
parts of the design (i.e. less parallelism). The core is able 
to transmit and receive packets simultaneously, but since 
the control logic is shared between the transmit- and 
receive side in the design, thus dependent of each other, 

the operation may be expressed as a hybrid between half-
duplex and full-duplex mode. In this type of network 
system the Application Layer can be implemented 
directly in hardware and thus omitting the need for an 
external (or an on-chip) CPU. Furthermore, the hardware 
UDP/IP stack can use a fix IP-address for the central unit 
and also exclude the ARP/RARP/ICMP functionality in 
the core. This gives a very area-effective design, at the 
expense of flexibility.  

3.2 “Medium” UDP/IP core 
    For this implementation the network architecture 
requires full-duplex operation. Several nodes must be 
able to communicate, in both directions, with the 
hardware UDP/IP stack. The “Medium” core is based on 
the “Minimum” implementation, but to attain higher 
flexibility the Packet Interpreter and Packet Composer 
are configured to process simultaneously. Furthermore 
ARP functionality is included, allowing the core to 
request the MAC address from other nodes when only 
the IP address of its neighbours is known. The core will 
also respond to ARP requests from neighbouring nodes. 
An ARP table will simultaneously handle the MAC- and 
IP addresses of 4 nodes. ICMP response functionality is 
included as well, which responds to ping requests with a 
fixed ICMP length and data. This core is suitable as a 
trade-off between the “Minimum” and “Advanced” 
implementation to achieve the most effective design. 

3.3 “Advanced” UDP/IP core 
    For this implementation the embedded network system 
requires a connection with a reliable communication link 
for frames containing control data as well as a fast data 
communication UDP link. The network speed is 1000 
Mbps in full-duplex mode and the Ethernet frame length 
must be maximized. Here an “Advanced” UDP/IP core is 
presented that uses the “Medium” implementation and 
additionally also manages Gigabit Ethernet and an 
Ethernet frame length of 1518 bytes (Ethernet Jumbo 
frames are not yet supported by the core). A TCP 
“channel” is incorporated with UDP as a carrier protocol, 
enabling slow but reliable TCP/IP communication 
handled by an external (or on-chip) application, see 
Figure 3.  
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Figure 3. Advanced network architecture. 

 



    Due to the longer supported packet length this 
implementation requires two extra Block RAMs 
compared to the other two designs. The impressive 
performance for pure UDP data is ~957 Mbps in both 
directions when excluding overhead, such as Ethernet 
preamble, UDP/IP headers, CRC and Ethernet interframe 
gap, in the calculation. The overall performance is, of 
course, dependent of the latency at the Application 
Layer. Refer to Table 1 for a comparison of features and 
synthesis results for the three cores. 
 
4 Evaluation and Discussion 
    Hardware embedded system design requires decisions 
regarding simplifications, parallelization and trade-off 
between functionality and performance/area. At least the 
following issues must be taken into account when 
designing an UDP/IP core: Allowed logic utilization, 
network speed, number of simultaneous communicating 
network nodes, packet loss limit, supported protocols, 
duplex mode and packet size.  
Table 1. Comparison of the implementations. 

Spartan-3, xc3s200-4ft256 
 “Minimum” “Medium” “Advanced” 
Xilinx Slices 517 1022 1584 
Xilinx BRAMs 3 3 5 
Fmax (MHz) 90,7 60,3 105,6 
Length (bytes) * 256 256 1518 
Duplex mode Full ** Full Full 
Speed (Mbps) 10/100 10/100 10/100/1000 
ARP No 4 entries 4 entries 
RARP No No Yes 
ICMP No Yes Yes 
TCP “channel” No No Yes 
Flexibility Low Medium High 
* Ethernet preamble not included, ** Refer to section 3.1 
  
   As seen in Table 1 the “Minimum” core 
implementation only occupies approximately 1/3 of the 
area compared to the “Advanced” representation. 
Additionally for the “Minimum” core, the Application 
Level is easier to implement in hardware, giving a 
compact on-chip solution. For many point-to-point 
embedded network systems this area saving is definitely 
a vital factor when choosing the most cost-effective 
FPGA chip. However, the “Minimum” implementation 
has less performance, is not that reliable and requires 
more adaptation of the entire network system. All cores 
have been verified successfully in real hardware and the 
“Medium” and “Advanced” versions have both been 
incorporated in industrial projects. 
    As a guideline we recommend to start with a flexible 
“Advanced” UDP/IP solution and rationalize the design 
to an implementation that still fulfils the network system 
demands. Major area savings are achieved by reducing 
the supported packet size, excluding protocols and 
decrease the allowed network speed, but if the goal is a 
“Minimum” core static IP addresses and parallelization 
of sub-functions, such as checksum calculations, will 
further contribute to the area reduction. For efficiency 
the VHDL design should be parameterized to the highest 
possible degree to simplify these changes. 
 
5 Conclusion 
    This paper shows the necessity of multiple 
representations of hardware UDP/IP stack cores. We 

present three core versions, all successfully implemented 
and verified in hardware, which exploit different network 
system characteristics. The “Minimum” core is preferred 
for point-to-point networks and allows a simple 
application that offers a cost-effective on-chip solution. 
The “Advanced” solution gives a reliable, high 
performance and flexible core suited for general-purpose 
networks. The “Medium” representation is used as a 
trade-off between the “Minimum” and “Advanced” core 
to achieve an effective design mainly for networks with a 
small number of communicating nodes. In many 
systems, that utilize an FPGA, the ambition is to fit the 
design in a cost-effective device and consequently area 
constraints are of high priority. As shown, the UDP/IP 
core area can be reduced to 1/3 of the original size by 
adapting the design to the network system requirements. 
This adaptation is accomplished by a parallelism/latency 
vs. area/cost trade-off. The FPGA technology makes the 
adaptation easy and the primary function in the chip is 
not unnecessary affected by excessively area consuming 
Ethernet connectivity logic.  
    We suggest that the UDP/IP stack should be 
customized when specifying the entire embedded 
network system, starting from a flexible solution and 
trimming down the core to fulfill the requirements of the 
embedded network system that is being designed.  
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