
Scalable Architecture for Real-Time Applications, SARA

Lennart Lindh, Tommy Klevin and Johan Furunäs, e-mail: llh@mdh.se, tkn@mdh.se, jfs@mdh.se
Department of Computer Engineering (IDT), Mälardalens Real-Time Center (MRTC)

Mälardalens University, Sweden

Abstract
The lifecycle for industrial applications are becoming shorter, the application complexity
increase, performance is to low, fault tolerance is required, reuse of component is desired and
the developer require strong verification tools for cut down the verification phase. As the
problem increases in respect of longer development time and higher quality requirements from
the customer, it becomes increasingly important to examine flexible and scalable parallel
processing for complex real-time systems. This is the motivation for running the research
project SARA (Scaleable Architecture for Real-Time Applications). The first SARA system is
now running with a vision system connected to an industrial robot (ABB Robot).
This paper defines today’s problems, discusses the state of the art, presents the research
project SARA, and presents some results and conclusions from the first implementation.

1. Introduction
In the last decade, the complexity of real-
time systems has increased. The systems
must nearly always have their
hardware/software architecture redesigned
to increase their performance, get better
fault tolerance, etc. New powerful
processors alone are not sufficient to
achieve high performance and flexibility of
the control systems (real-time systems).
The gap between the processor
performance and the application needs is
increased. The performance increase of
60% per year of the processors is
decreased of the latency decrease from the
memory of only 7% per year[Hennessy95].
Today it is usually the inadequate
performance of the real-time system, the
inflexibility of changing the
hardware/software architecture, the
complexity of the solutions and the weak
debugging tools for verification, that cause
time to market problems.

2. Problem motivation and State-of-the-
Art
Most Hardware/Software architectural
implementations of complex control system
designs are carried out by a number of
static coupled processor units, integrated

on a PCB or on a separate PCB with a
standard bus.
It is motivated to develop static coupled
processors systems, since the performance
requirement from the application is
growing faster than the processor
developer can accomplish.

Local RAM

CPU 1 I/O
I/O

Buffer
RAM

I/O
Local RAM

CPU 2 I/O

Local RAM

CPU 3 I/O
Buffer
RAM

Figure 1: Static coupled multi-processor
system

The problem with static coupled system:
• Statically designed PCB (Printed

Circuit Board) is not a flexible solution.
• Processors are often communicating via

dual port memory (buffer). The
communication and synchronisation are
not trivial problems and often put a
heavy load on the processor.

• The software architecture is statically
divided into different processors, often
with different software developing
paradigms, for example a signal
processor and a RISC processor.

Page 2

This makes the design process of the whole
system very complex.

The first multi-processor systems date back
to the sixties. Now multi-processor systems
have reached less expansive systems such
as workstations (for example [SUN]) and
PCs). Such systems are not always suitable
for real-time systems, as they are not
sufficiently safe, reliable, predictable, cost
effective, etc. Research into real-time
multi-processor systems is in progress in
such projects as: MARS [Kopertz91]
(Maintainable Real-Time System) in
Austria, RTU [Lindh95] in Sweden and
SPRING [Stancovic] in USA. SPRING
indicates that a dynamic real-time system
can be built as a multi-processor system,
while MARS presents a statically
distributed system for safety applications.
RTU has proved that complex functions
can be implemented in multi-parallel
hardware. It can be used as a complex
controller of a multi-processor system with
a speed increase in the order of 300 % (or
more) for the real-time service in the kernel
[Molesky90].

A trend towards MIMD (multiple
instruction multiple data) multi-processor
architectures has been observed during
recent years. Multi-processing benefits
include increased flexibility and lower
cost/performance factor.

3. The SARA Approach
The new approach is defined by the
following design goals:
1. Efficiency, Performance and flexibility,
 High performance is one of the most
important goals in a multi-processor
system.

 To achieve a high performance the system
must be based on state-of-the-art,
commercial, standard microprocessors,
busses, and different hardware accelerators
etc. Unfortunately, this means that cache,
pipeline, etc represent predictability

problems. Deterministic high performance
processor architecture is possible to
develop, but it is difficult to compete with
the big processor companies.
A architecture for Processor Scalability is a
flexible way to increase the performance for
the application. The architecture should be
a scaleable open system with no theoretical
limit [Dal94]. A node can consist of
hundreds of processors and can be
hierarchically structured. The system can be
configured as a mix of loose and hard
coupled system. There is a need for an
"intelligent" scheduling algorithm, that can
take into account time cost for overhead
time, such as task switch, data transferring,
priority, resource allocation, etc, and also
control the prefetching of data
([Furunäs97] and [Stärner96]).

2. Predictability,
 The software and hardware should be
partly predictable. In a complex system,
often 80-90 % of the tasks have soft
deadlines (non-critical) and 10 % have hard
deadlines (critical tasks).
3. Observability and controllability
 The verification allocate 50-75% of the
hole development time. Easy debugging
and performance monitoring is also a
important goal to reduce the development
time. It should be possible to verify the
behavioural and the time requirements in a
computer model, without the hardware
[98Mohammed].
4. Low Hardware and Software Overhead

(simplifications),
 The non-productive software and hardware
should be minimized [Lawson98]. Simple
solutions are important aspects when the
design decisions are taken. The base system
and the hardware platform should be as
simple and small as possible.
5. Component oriented design,
 Component design is one important goal
for decreasing the development time. The
system should easily handle components,
i.e. software or hardware components. The
design paradigm will rest on an object-
based software/hardware design and a

Page 3

priority inheritance based communication
protocol. To reuse different interface
standards, an "adapter" in hardware or
software is used.
6. Fault Tolerance
Many real-time applications are safety
critical. They must function at least partially
under severe disturbance conditions
[Kopertz91]. Reliability and a high degree
of availability are crucial in meeting today’s
quality requirements. In addition, software
reliability and robustness with respect to
third-party software are required. Problems
as overload and failures must be handled in
an dynamic, adaptive way.

4. System Architecture of SARA
The system architecture support a simple
design paradigm and a simple verification
environment.
The system is divided into application, base
system and hardware platform.
The application is designed with an object-
based approach. The object is divided into
three base classes; shared, server and base
object. The base system is a collections of a
communication/synchronization system for
the application (IPC), verification/analyze
system and resource/time handling (RTU).
The base system is implemented both in
hardware and software classes.

Local RAM

CPU 1 I/O

RTU
Bus

Arbitrator I/O
Global
RAM

Local RAM

CPU 2 I/O

Local RAM

CPU 3 I/O

Figure 2: Block diagram of the system

The hardware architecture is divided into
local CPU board, bus arbitrator, global
RAM, I/O and an RTU. The RTU is a
hardware object in the base system.

RTU - a class in the base system
Many real time control systems use an
application, which is controlled by a real
time operating system for executing

processes. To improve the performance of
a real time control system, the processor
clock frequency can be increased.
Sometimes this is not sufficient and so a co-
processor can be used instead. The co-
processor (we call it an RTU) is not a
standard processor, but a special purpose
hardware performing real time operating
system functions. Different real time
operating system functions have
successfully been implemented into
hardware the last 10 years. The scheduling
algorithms of the RTU are preemptive,
non-preemptive or mixed. When the RTU
uses preemptive scheduling, it uses an
interrupt to signal the application processor
to start a context switch. The scheduler
algorithm of the RTU can also load
balance processors (more information
about RTU see [Lindh95]).

IPC - a class in the base system
The application software (task or server
class) connects to an IPC bus, it can be
seen as a virtual bus. The IPC bus contains
32 slots and each slot has 32 messages in a
queue. A slot can be owned by a task (we
call it a server object). The slot of the
processors can be allocated in two ways:
1) One slot is allocated to one processor
2) One slot is allocated to two or more

processors, which means it is scheduled
between the processors.

Task 1

Task 2 Task N

IPC-bus

Free slot

Message
Queues

Slots

Figure 3: The IPC bus model.

In the IPC bus model (see fig. 3), slots are
RTOS resources that can be allocated by
tasks. Each slot consists of a message
queue, which holds the priority of messages
and references to the messages, stored in a
message buffer. Every message has a

Page 4

priority, which is set by the sender. The
messages in the queues are sorted by their
priority or in FIFO order. A task can inherit
its priority from the messages (to avoid
priority inversion). A sender task can use
time-out constraints on full queues, and a
receiver task can do the same on empty
queues, e.g. a receiver task can be set to
wait a specified time for a message.

There are four message-types. These are:
• Asynchrony messages.
• Synchrony messages.
• Broadcast messages.
• Multicast messages.

The system is implemented in both
software and hardware. Some parts are
implemented in software to achieve higher
performance and/or to attain a simpler
solution.

6. Hardware Architecture
The hardware platform in the SARA-
system is a Compact PCI (CPCI)
[PICMG97] system with eight slots that
can hold CPU-boards. In a CPCI system,
there is always a special 'system-slot'. This
slot has a special CPU-board that handles
the arbitration, clock-distribution, etc on
the backplane. All other slots have 'non-
system boards'. The CPCI architecture fits
well into the idea of a flexible and scalable
system. The basic idea of having a scalable
hardware platform is that it is easy to add
more CPU power when needed. A
traditional system is usually made up of a
design that is static. Consequently, it is not
possible to do any changes to it unless it is
redesigned.
In a CPCI-system more CPU-power can be
added just by inserting more CPU boards.
Boards can even be inserted and deleted
with the power on (hot swap). In a CPCI
system, all CPUs have a local memory and
no special global memory. If a global
memory is needed, a global area can be
defined on any CPU board. In the SARA-
system, global memory resides on the

system board. The global memory is used
for Task Control Blocks (TCB), global
variables and stacks. The code for tasks is
stored in the local memory. All boards in
the system have a copy of the task code.
This means that a task can be executed
anywhere in the system. The decision where
a task will be executed is taken by the
RTU.

Figure 4:Picture of a RTU-PMC board

There are two kinds of PCI-busses in the
system. All boards in the system have a
local PCI bus and all boards are connected
to the CPCI backplane. The local PCI bus
is connected to the CPCI bus on the
backplane through a PCI-PCI bridge. The
system board has a transparent bridge,
while non-system boards have a non-
transparent bridge. The transparent bridge
makes an address on one side of the bridge
appear as the same address on the other
side. The non-transparent bridge can remap
an address from one side of the bridge to
another address on the other side. The
advantage of non-transparent bridges is that
address collisions can be avoided on the
backplane and that all boards can use its full
address-range on the local PCI bus.

Xilinx
XC4085XL

PLX9080

Local bus

PCI
bus

Bus-InterfaceReal Time Unit

PMC-slotInternal bus-protocol

Local bus-PCI bus
Bridge

EPROM for configuration
of the RTU and businterface

SROM for some pre-
configuration of the Bridge

Figure 4: RTU-PMC block diagram

Page 5

In the SARA-system, the Real Time Unit is
attached to the local PCI bus on the board
in the system slot. When the RTU signals
task-switch, it will generate an interrupt to
the CPU that will perform the task-switch.
As the RTU is attached to the local PCI-
bus on the system-board, all signals will
appear on the backplane as well (through
the transparent PCI-PCI bridge). Interrupts
are normally generated through the four
interrupt- lines (INTA-D) that are available
on the backplane. However, if more than
four boards are inserted, some boards must
share interrupts which may cause latencies.
The solution to this, in the SARA-system,
is to use a 'doorbell' register. This register is
implemented in the non-transparent bridge.
It is 16 bits wide and when any bit is set in
the register, it will cause an interrupt to its
local processor. When the RTU wants to
signal task switch, it generates a write-cycle
from the local PCI bus where it is hosted,
through the PCI-PCI bridge [DEC21554
HW Ref Man] to the CPCI-bus and the
doorbell-register it wants to access. All
doorbell registers have a unique address.
By using these doorbell registers, the
problem of shared interrupts is avoided.
Another advantage is that it is possible to
send 216 different interrupts. Interrupts to
the system-board are generated by INTA.
As this board is the only user of this
interrupt, there are no problems with
latency. The only latency that has to be
considered, when the doorbell registers are
used, is the time it will take to perform the
write-cycle.

CPU

PCI-PCI
Bridge

Bridge

MemCPUMemMem CPU

BridgeBridge

PCI-PCI
Bridge

PCI-PCI
Bridge

System Board

Non System Boards

...
Local bus to
PCI bridge

RTU
PMC
Board

Local PCI-Bus

Transparent Bridge

Non transparent
Bridge

Doorbell
Register

CompactPCI-Bus

Global
Memory

Figure5: Block diagram of SARA-System

Conclusions
A static multiprocessor system is often
complex and it is costly to redesign the
system, compared with a flexible
multiprocessor system.

The IPC communication interface is a very
attractive solution, it is very easy to write
interface and to make connections between
the concurrent objects. In addition, the
priority inheritance of messages solves the
inversion problems. The hardware support
makes the IPC protocol predictable and
gives short response time. Today some
parts is still implemented in software, but in
the next version it will be in hardware
which makes the response time and time
gap between the best and worst case
smaller. Also standard components with
other interfaces than IPC, can be
instantiated with an adapter between the
slot and the new component. We will also
try to integrate old systems with the SARA
concept, for example a conventional real-
time operating system.

When one critical function is implemented
into a hardware unit, the response time and
time gap between the best and worst
execution time decrease. As an example,
the period time for clock tick is one
microsecond for the hardware accelerator
(RTU) and that is about 1000 times faster
than software solutions.

Today programming languages for real-
time applications must also provide the
flexibility to express various timing
requirements. Database and artificial
intelligence are systems that probably will
be more common in complex systems.

Future expansions and works:
• Expand SARA concept to hierarchical

processor systems (more than 20
processors).

• Cache analyze, today we use two level
caches. Some parts of the system can be

Page 6

using cash consistent protocol and
others cannot.

• Debugging tools for multiprocessor
system (hardware/software probes,
tracing, logging etc).

• Change the scheduling algorithm to
take into account busloads and cost of
task switch.

• Prefetching mechanisms for task start
and communication.

• Computer models of the system, to
analyze behavioral of different
situations.

• Analyze tools, to help the system
designer to tune in the system for best
utilization.

• Different software/hardware verification
tools.

• A new scheduling algorithm for critical
tasks.

Acknowledgements
These projects are sponsored by KK-
Foundation, internal founding by
Mälardalen’s University College, ABB
Robotics and Ericsson Utvecklings AB.

References
[Lawson98] Harold W. Lawson, "Salvation from System Complexity," Computer, Vol. 31, No. 2, February, 1998, pp. 118-
120.
[Lindh95] LLindh, J Starner and J Furunäs, From Single to Multiprocessor Real-Time Kernels in Hardware, IEEE Real-
Time Technology and Applications Symposium, Chicago, May 15 - 17, 1995
[Molesky90] L. D. Molesky, K. Ramamritham, C. Shen, J. A. Stankovic, G. Zlokapa, ”Implementing a Predictable Real-
Time Multiprocessor Kernel - The Spring Kernel”, 1990
[Stancovic] J. Stancovic and K. Ramamritham. Hard Real-Time Systems. ISBN 0-8186-0819-6, pages 371-382
- J. Stancovic, D. Niehaus and K. Ramamritham. Spring net: An Architecture For High Performance, Predictable and
Distributed Computing. Computer Science Department, University of Massachusetts.
[Kopertz91] H.Kopertz, R. Zainlinger, G. Fohler, H. Kantz, P Puschner, W. Shutz. Institute fur Technische Informatic,
Technische Universität Wien, Treitlstr. 3/182 A-1040 Vienna, Austria. An Engineering Approch to Hard Real-Time System
Design
[98Mohammed] M. El Shobaki, "Verification of Embedded Real-Time Systems Using Hardware/Software Co-simulation",
In Proceeding Vol I of the 24th Euromicro Conference pp. 46-50, Västerås, Sweden, August 1998. [Dal94] M. Dal Cin, W.
Hohl,.... Architecture and Realization of Modular Expandable Multiprocessor System MEMSY, First Intl. Conf on
Massively Parallel Computing Systems (MPCS’94), Ischia, Maj 2-6, IEEE 1994, pp. 7-15, 1994
[Furunäs97] J. Furunäs, J. Adomat, L. Lindh, J. Stärner, P. Vörös,”A Prototype for Interprocess Communication Support, in
Hardware”, 9th Euromicro Workshop on Real-Time Systems, 11 - 13 June, 1997, Toledo, Spain.
[Stärner96] Real-Time Scheduler in Hardware, Johan Stärner, Johakim Adomat, Johan Furunäs och Lennart Lindh,
Euromicro Conf'96 Prague.
[PICMG97] PCI Industrial Computers Manufacturers Group CompactPCI Specification Revision 2.1
[DEC21554 HW Ref Man] Digital Semiconductor 21554 PCI-to-PCI Bridge for Embedded Applications. Hardware
Reference Manual.
[Hennessy95] John L. Hennessy and David A. Patterson , Computer Architecture: A Quantitative Approach, Second Edition
1995, ISBN 1-55860-329-8

