
 

 

 
Components and Services 

 
Ivica Crnkovic*, Vikram Jamwal# 

*Mälardalen University, Department of Computer Science and Electronics 
PO Box 883, SE-721 23 Västerås, Sweden 

ivica.crnkovic@mdh.se 
#Kanwal Rekhi School of Information Technology,  

Kanwal Rekhi School of Information Technology, IIT Bombay, Mumbai. India 
vikram@it.iitb.ac.in 

 

1. Introduction 
 
This paper shortly summarise the working session 
“Components and Services” being held at WICSA 
2005 (Working International Conference on Software 
Engineering). Both components and services are 
strongly related to software architecture and with 
increased focus in research and practitioners’ 
communities. Both component-based and service-
oriented development use the same technologies and 
the same or similar principles in architecting of 
software systems. Still there have not been many 
interactions between the “components” and “services” 
communities. For this reason the events like this 
working session are very important to bring the 
communities together, to increase the mutual 
understanding, to exchange experience and to share 
solutions.  

The intention of this working session was 
highlight certain problems, challenges and possibly 
solutions from these two areas. 

The session was organised in the following way. 
First the selected papers have been shortly presented, 
followed by short discussion session. After this 
starting phase, the participants have in a discussion 
proposed different topics of interest for further 
discussion. The proposed topics have then been 
prioritised and the most interesting ones have been 
selected. The session continued with discussions of the 
selected topics, but also often referred to other topics. 
This paper gives a summary of the discussion, which 
have generated many new questions important for 
further research and practicesin these areas.  

The rest of the paper is organised as follows. 
Section two summarises the presentations of the 
papres. Section three lists the topics and questions 
proposed by the participants. Section four gives a 
summary of the discussions of the selected topics. 
Finally section five concludes the paper. 

2. Session Presentations 
 
The working session starts with the presentations of 
the following papers. 

 
• Rikard Land, Laurens, Stig Larsson, Ivica 

Crnkovic, Mälardalen University, Sweden and 
Eindhoven University of Technology: 
Architectural Concerns When Selecting an In-
House Integration Strategy Experiences from 
Industry 
Abstract. The paper considers merging of 
existing software systems which have been 
developed in-house, for different purposes. Over 
time, the systems have been evolved to contain 
more functionality, until a point where there is 
some overlap in functionality and purpose. A new 
system combining the functionality of the existing 
systems would improve the situation both from an 
economical and maintenance point of view, and 
from the point of view of users, marketing and 
customers. To investigate this problem and 
challenges of in-house integration, we carried out 
a multiple case study, consisting of nine 
integration projects in six organizations from 
different domains. The present paper investigates 
issues of importance to an industrial and focuses 
on how to select a high-level integration strategy. 
 

• Massimo Tivoli  and David Garlan,  University of 
L'Aquila and Carnegie Mellon University: 
Adaptor Synthesis for Protocol-enhanced 
Component Based Architectures 
Abstract. Correct assembly of software 
components is an important issue in Component 
Based Software Engineering. Composing a system 
from reusable components often introduces a set 
of problems related to communication and 
compatibility. In particular, one of the main 



 

 

problems in component assembly is that 
components may have incompatible interaction 
behaviour. In this paper, we address this problem 
using an architecture-based approach that can 
detect integration mismatches, and semi-
automatically synthesize a suitable adaptor, or 
glue code, to bridge them. 
 

• Frank Lüders, Daniel Flemström andAnders Wall, 
Mälardalen University and ABB Corporate 
Research: Software Component Services for 
Embedded Real-Time Systems 
Abstract. Component models usually define basic 
standards for component naming, interfacing, 
binding, etc., in addition to standardized sets of 
run-time services oriented towards the application 
domains they target. Unlike for desktop 
applications and distributed information systems, 
there has been no widespread use of software 
component models in the domain of realtime and 
embedded systems. The purpose of this position 
paper is to lay the groundwork for a software 
component model for embedded real-time 
systems, using the basic concepts of COM as the 
starting point. Our vision is to make component-
based software development an attractive option 
for embedded real-time systems by extending the 
basic model with services of general use for this 
application domain, much like COM+ extends 
COM with services for distributed information 
systems. 
 

• M. Hepner and   R. Gamble, University  of Tulsa, 
Establishing Connectors as Integration Services. 
Summary. The basis of the presented research is 
to manipulate and organize connectors to 
determine what goes inside the service boundary 
in the form of an integration service and what 
does not. The goals of minimizing integration 
service functions, limiting redundancy, and 
requiring consistency lead to enhancing the 
workflow specification of the business. 
 

The presentation session was concluded with 
discussions related to topics from the presentation.  

3. Topics of interest 
 
The following topics of interest have been 

crystallized in the discussion: 
• What are the characteristics of SOA and Web-

Services for Mobile and Distributed devices? 

• How do we extend the principles (functional and 
non-functional aspects) of components to 
embedded systems? 

• How to predict the consequences of 3-party 
component integration at the system level? 

• What are the implications of connectors on the 
system properties? 

• How do we generate an initial component 
configuration for Dynamic behaviour? 

• Related question - How do we get a software 
architecture that guarantees certain properties of a 
dynamic behaviour? 

• What are the similarities and differences in a 
Service Oriented and Component bases 
approaches?  

• How is software evolution affected in component 
based systems? 

• How are the binding mechanisms in software 
architecture and component implementations 
related? 

• How to translate legacy systems to Component 
Based System? 

 

4. Selected discussion topics 
 

4.1 Components for Embedded systems 
 

The main question was: How do we extend the 
principles (functional and non-functional aspects) of 
components to embedded systems?   
 
This main question has been break down into several 
subquestions: 
• How can we redefine aspects of embedded 

systems to fit those of components? 
• How do we include components with known 

functional and non-functional properties in 
embedded systems? 

• How does the component functional overhead 
influence performance and predictability of 
embedded systems? 

• How can we ensure some properties with 
dynamically uploading components? 

• How much dynamism can we allow while not 
loosing too much of predictability? 

• How much dynamism (which types) can be 
implemented with acceptable runtime overhead? 

• Could we use aspect oriented programming to 
separate functional and non-functional properties 
in case of embedded systems. 



 

 

• Did we need to be able to ad and remove 
dynamically non-functional services in case of 
RTES. 

• What impact does the variety of platforms for 
mobile devices have and how components can be 
used in those embedded systems? 

• How to balance the flexibility of CBSE with the 
dependability in realtime embedded systems? 

• How do we use component-based principles in 
combination with existing approach that target NF 
aspect? 

• What dynamism to use that allows good enough 
predictability? One approach can be to start from 
something that is predictable and build more and 
more dynamism. This way it might be easier task. 

• How do take knowledge from other systems and 
extend them to embedded component systems? 
General quality aspects can be applied to ES. 
Given the constraint on resources we need to do 
that quality evaluation / tradeoff analysis. Other 
aspect is reusability. 

• What techniques in other dynamic system can be 
extended or applied here (e.g. in agent systems)? 
The openness of communication in e.g. say multi-
agents, where the forces are combined a very 
unpredictable manner. Formalization of 
interaction protocols and goal-oriented approaches 
can provide the clue perhaps. 
 

4.2 Relation between system and 
component properties 

 
We want all dependencies to be known and we want to 
maintain black-box nature of component. Statically it 
is difficult. But we can observe dynamic behaviour. 
Component models specify for a component - what is 
required and what it delivers (provided). Perhaps 
prohibiting certain behaviour would be a good thing, 

but would it decrease dynamisms. One possible way it 
to list all interactions and then provide some sort of 
contracts. Component based representation might not 
be the right view for all kind of useful analysis. We 
also need to construct a view for analysis. 
 

4.3 Discussion on Component Binding  
 
In software architecture, it means connecting one 
component to another and has one non-ambiguous 
meaning here. Binding in known component systems 
is used more in sense of picking up the requisite 
component. The use of term 'binding' is not very clear 
and not very often used. We perhaps use the term 
'attach' more often. In component models it is much 
more permissive than that is allowed in architectural 
models.  
 
Can we have run-time architectures? What would be 
interesting is to look at extension of present 
component models like com to include the 
architectural elements. We may need several 
component models for different domains. Some 
commercial systems like COM have done very good 
lower level jobs like component life-cycles.  
Different position: Basic concepts in component 
models are and should be same. Only extensions are 
required for different domains.  
 

5. Acknowledgements 
 

We would like to thank all participants being involved 
in the discussions. Their contribution in pinpointing 
the problems, analysing the challenges and proposing 
the solutions made the working session not only 
exciting but also a source of inspiration for further 
research in these closely related areas.  
 

 
 

 


