
Component-based Development Process and Component Lifecycle

Ivica Crnkovic1, Michel Chaudron2, Stig Larsson3
1Mälardalen University, Department of Computer Science and Electronics, Sweden

2Eindhoven University of Technology, Dept. of Mathematics and Computing Science, The
Netherlands

3ABB, Corporate Research, Sweden
1ivica.crnkovic@mdh.se, 2 m.r.v.chaudron@TUE.nl, 3stig.larsson@mdh.se

Abstract

The process of component- and component-based

system development differs in many significant ways
from the “classical” development process of software
systems. The main difference is in the separation of the
development process of components from the
development process of systems. This fact has a
significant impact on the development process. Since
the component-based approach is a relatively young
approach in software engineering, the main emphasis
in the area has been in development of technologies,
while process modeling is still an unexplored area.
This paper analyses the basic characteristics of the
component-based approach and its impact on the
development process and lifecycle models. The generic
lifecycle of component-based systems and the lifecycle
of components are discussed, and the different types of
development processes are discussed in detail:
architecture-driven component development, product-
line development and COTS-based development.
Finally a short case study illustrates the principles and
specifics of component-based processes.

1. Introduction

There exist many models for software development
processes and lifecycles. Most of them are specified
considering some specific, often non-technical goals,
such as quality, predictability, dependability, or
flexibility, and are often independent of technology.
Examples of such models are different sequential
models such as Waterfall or V model, or iterative
modules such as spiral model, or different agile
methods, or standard and de-facto standards such as
ISO 9000, or CMMI. These models are usually
specified in general terms and they require tailoring for
particular projects. Some development processes and
life-cycle models have their origins in a technology or
in a particular approach. A very characteristic example
is Object-Oriented Development (OOD) which
emprises both technologies and processes. RUP
(Rational Unified Process) has a clear influence of
OOD.

Component-based software engineering (CBSE), as
a young discipline is still focused on technology issues:
modeling, system specifications and design, and
implementation. There is no established component-
based development process. Yet many principles of
component-based development (CBD) have significant
influence on the development- and maintenance
process and require considerable modifications of
standard development processes.

This paper discusses specifics of the component-
based approach and its impact on component-based
development processes and we illustrate this by
discussing adaptations of a specific process model. In
continuation we identify and discuss three different
types of component-based development processes: (i)
Architecture-driven component development, (ii)
Product-line development and (iii) COTS-based
development. Finally we present a case study from
industry which clearly shows a paradigm shift from a
process with an emphasis on programming to emphasis
on requirements and component management, and tests
and verification activities. The rest of the paper is
organized as follows. Section two provides a general
framework of lifecycle processes. Section three
presents the basic principles of CBD and their impact
on lifecycle processes. Section four discusses three
different approaches and processes in CBD. Section
five discusses some of the approaches through a case
study. Finally the last section concludes the paper and
gives directions for further research.

2. Lifecycle Process Models for Software
Systems

Every product, including software products, has a
lifecycle [1]. Although lifecycles of different products
may be very different, they can be described by a set of
phases or stages that are common for all lifecycles. The
phases represent the major product lifecycle periods
and they are related to the state of the product.

Figure 1 shows a frequently encountered example

of products lifecycle phases [1]: concept, development,
production, utilization and retirement.

Figure 1: Generic Product Lifecycle

Software products have a slightly different

lifecycle: typically the production phase can be
neglected as a separate phase as the production
activities are considerably smaller than other activities.
Also, since software is easy to change (although the
consequences of a change may be severe and may
require a lot of effort) it is often developed and
released in different versions. This allows concurrent
operation and development. The model from Rajlich
and Bennett [2] takes into consideration these
characteristics, and defines the software lifecycle
slightly different from the product lifecycle model: The
concept phase, including the initial design and
development, is called initial development. The
production phase is omitted since it is assumed to be a
part of a development phase. The utilization phase
including further development is actually a series of
evolution- and servicing cycles. Finally the retirement
phase is divided into a phase-out and close-down
phase.

During the initial development phase the first
functioning version of the product is developed from
scratch to satisfy initial requirements. During the
evolution phase the quality and functionality of the
product is iteratively extended. At certain intervals new
versions of the product are released and delivered to
the customers. In the servicing phase only minor
defects in the product are repaired. The phase-out
phase the product is still used but not serviced any
more. Finally during the close-down phase the product
is withdrawn from the market: either replaced by
another product or disposed.

Very often development organizations perform the
same activities in the initial development phase as in
each evolution cycle. In this way, an existing software
product will evolve into a next version by repeating the
same sequence of phases - although probably with
different emphasis. These activities grouped together
define a software development lifecycle [3]. Not all
software development lifecycle models are suitable for
all types of software systems. Usually large systems
which include many stakeholders and whose
development lasts a long period prefer using sequential
models. Systems which use new technologies, which
are smaller, and to which the time-to market is

important, usually explore evolutionary models. These
models are more flexible and can show results much
earlier than sequential models.

How well these models suit the development of
component-based systems is an open question. Can
they be applied directly or is some adoption required to
match the principles of component-based approach?
Let us discuss that in the following sections.
3. Component-based approach

The main idea of the component-based approach is
building systems from already existing components.
This assumption has several consequences for the
system lifecycle;
− Separation of development processes. The

development processes of component-based
systems are separated from development processes
of the components; the components should already
have been developed and possibly have been used
in other products when the system development
process starts.

− A new process: Component Assessment. A new,
possibly separated process, finding and evaluating
the components appears. Component assessment
(finding and evaluation) can be a part of the main
process, but many advantages are gained if the
process is performed separately. The result of the
process is a repository of components that includes
components’ specifications, descriptions,
documented tests, and the executable components
themselves.

− Changes in the activities in the development
processes. The activities in the component-based
development processes are different from the
activities in non-component-based approach. For
the system-level process, the emphasis will be on
finding the proper components and verifying them.
For the component-level process, design for reuse
will be the main concern.

To illustrate the specifics of the component-based
development processes we shall use the Waterfall
model - the simplest one – as a reference. However, the
illustration can relatively simply also be applied to
other development processes. Figure 2 shows the main
activities of the Waterfall model: Requirements
Specification, Analysis & Design, Implementation,
Test, Release and Maintenance.

The primary idea of the component-based approach
is to (re)use the existing components instead of
implementing them whenever possible. For this reason
already in the requirements and design phases the
availability of existing components must be
considered.

Concept Development Production Utilization RetirementConcept Development Production Utilization Retirement

Figure 2: Component-based Waterfall Software
product lifecycle

The implementation phase will include less coding

(in an ideal case no coding) for implementing
functions, and focus more on selection of available
components, and if necessary their adaptation to the
requirements and design specification. The required
functionality that is not provided by any existing
component must be implemented, and in a component-
based approach the relevant stakeholders (for example
the project manager, the organization management,
system architects) will consider whether these new
functions will be implemented in the form of new
components that can be reused later. An inevitable part
of the implementation of a component-based system is
the glue-code which connects the components, enables
their intercommunication and if necessary solves
possible mismatching. In the ideal case, glue code can
be generated automatically; otherwise it has to be
developed in addition to the components that are
selected.

Figure 2 still shows a simplified and an idealized
process. Its assumption is that the components selected
and used are sufficiently close to the units identified in
the design process, so that the selection and adaptation
process require (significantly) less effort than the
components implementation. Further, the figure shows
only the process related to the system development –
not to the supporting processes: Assessment of
components and the component-development process.
Actually, there might be many parallel component
development processes. These processes are depicted
in Figure 3.

Figure 3: Parallel processes of component-based
development

The processes shown in Figure 3 can be performed

independently of each other, but certainly there are
activities that bridges these processes: Which
components will be a subject for searching, what type
of verification is required, which verified components
do exist – these are similar questions as staring points
of the component assessments which is initiated from
the system development process. Similarly, the
questions such as which functions will be provided by
the components being developed, which requirements
will be posed on the components, for which type of
systems these components will be used, are related to
the component requirements. How these “crosscutting”
activities will be implemented, and how these
processes will be integrated, depends on type of
component-based process. This will be discussed in the
section 4.

First, we shall discuss the activities of each process.

3.1 Component-based system development
process

We shall shortly discuss the activities shown in
figures 2 and 3.

Requirements Phase

In a non-component-based approach a requirements
specification is an input for development of the system.
In a component-based approach this is somewhat
different; the requirements specification will also
consider the availability of existing components; the
requirements should correlate to the assortment of the

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Verify

Store

System
Development

Component
Assessment

Component
Development

Select

Find

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Verify

Store

System
Development

Component
Assessment

Component
Development

Select

Find

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Glue-coding

Test

Release

Maintenance

Selection

Adaptation

Implementation

Development
of

new
components

Integration

Selection of the
component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

Requirements

Design

Glue-coding

Test

Release

Maintenance

Selection

Adaptation

Implementation

Development
of

new
components

Integration

Selection of the
component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

components, i.e. the requirements specification is not
only input to the further development, but also a result
of the design and implementation decisions.

Analysis & Design Phase

The design phase of component-based systems
follows the same pattern as a design phase of software
in general; it starts with a system analysis and a
conceptual design providing the system overall
architecture and continues with the detailed design.
From the system architecture, the architectural
components will be identified. These components are
not necessarily the same as the implementation
components but they should be identified and specified
in a detailed design as assemblies of the existing
components. Again, as in the requirements process, a
tradeoff between desired design and a possible design
using the existing components must be analyzed. In
addition to this, there will be many assumptions that
must be taken into consideration: For example, it must
be decided which component model(s) will be used,
which will have impact on the architectural framework
as well as on certain system quality properties.

Implementation Phase

As shown in Figure 2, the implementation activities
only partially consist of coding – actually the more
pure a component-based approach is achieved, the less
coding will be present. The main emphasis is put on
component selection and its integration into the
system. This process can require additional efforts.
First the selection process should ensure that
appropriate components have been selected with
respect to their functional and extra-functional
properties. This requires verification of the component
specification, or testing of some of the component’s
properties that are important but not documented.
Second, it is a well known fact [4] that even if isolated
components function correct, an assembly of them may
fail, due to invisible dependencies and relationships
between them, such as shared data shared resources.
This requires that components integrated in assemblies
are tested before they are integrated into the system.

The adaptation of components may be required in
order to avoid architectural mismatches (such as
incompatible interfaces), or to ensure particular
properties of the components or the system. There are
several known adaptation techniques, such as
parameterized interface, wrappers and adapters.

Integration Phase

In a non-component-based development process the
integration phase includes activities that build the
systems from the incoming parts. The integration phase
does not include “creative” activities in the sense of

creating new functions by production of new code, and
for this reason it is desired to automate and rationalize
the process as much as possible. The phase is however
very important as it is the “moment of truth”; many
problems become visible due to architectural
mismatches of the incoming components, or due to
unwanted behaviour of different extra-functional
properties on the system level. That is why the
integration phase is tightly connected to the system test
phase in which the system functions and extra-
functional properties are verified.

In a component-based approach many integration
parameters are determined by the choice of component
technology, and component selection. The component
technology standardizes the architectural frameworks,
reuses architectural patterns, and usually provides
means for efficient integration. For this reason the
integration process should be more straightforward and
less error-prone. This holds when considering
architectural mismatch of the components, but the
verification of extra-functional properties (in particular
emerging properties, i.e. properties that are not visible
on component level, but exist on the system level),
remains complex and is in many cases as difficult as
for non-component-based systems.

Since system functions are not exclusively realized
by components alone but often by a set of components,
verification of these functions requires that the
components are integrated before the entire system is
built. For this reason the integration phase for
component-based systems development is spreading to
earlier phases: implementation, design and even into
the requirements phase.

Test Phase

In CBD a need for component verification is
apparent since the system developers typically have no
control over component quality, component functions,
etc., as the component could have been developed in
another project with other purposes. The tests
performed in isolated components are usually not
enough since their behaviour can be different in the
assemblies and in other environments [5]. The
component test is actually performed at many different
times: though individual assessment, when integrated
in an assembly or subsystem, and when deployed
(integrated) into the systems (see Figure 4).
Release Phase

The release phase includes packaging of the
software in forms suitable for delivery and installation.
The CBD release phase is not significantly different
from a “classical” integration.

Maintenance Phase
In everyday life one of the patterns of products

maintenance is: Repair the product by replacing the
malfunctioning component. The objective of the
component-based approach for software is similar: A
system should be maintained by replacement of
components. The characteristics of physical (hardware)
components is however different from software
components. While hardware components can be
exposed to a process of degradation in functionality
and quality, software components do not degrade in
this manner. In principle there should be no need for
their change. However, experience shows the opposite:
Lehman’s well known law [5] says: "The entropy of a
system increases with time unless specific work is
executed to maintain or reduce it.” – i.e. the software
system will degrade if not maintained. The reason is
not the degradation of the software itself but because of
the changes of the environment the software operates
in. Even if a system functions properly, as time goes
by, it has to be maintained. The approach of CBD is to
provide maintenance by replacing old components by
new components or by adding new components into
the systems. The paradigm of the maintenance process
is similar to this for the development: Find a proper
component, test it, adopt it if necessary, and integrate it
into the system (see Figure 4).

Figure 4: Integration and test in several phases of the
CBD process

3.2 Component assessment

While development of component-based systems
significantly decreases the detailed design and
implementation efforts during the system development,
it requires additional efforts in other activities. For

example instead of implementing required functions,
developers have to search for components that provide
such functionality. Further they must verify that the
selected components i) provide (or approximate) the
desired functionality, and ii) that the components can
successfully be integrated with other components. The
consequence can be that not the best components (i.e.
components that provide the “best functions”) can be
selected, but the components that fit together.

To make the system development process efficient
(i.e. to achieve better time-to-market) many assessment
activities can be performed independently and
separately from the system development.

A generic assessment process includes the
following activities:

Find – Find, from an unlimited component space,
the components that might provide the required
functionality. This functionality can be a part of the
system being developed, or of a system (or systems)
plan to be developed.

Select – The candidate components found, are
compared and ranked. A component that is most
suitable for the given requirements and constraints is
selected. The ranking of components should be
maintained throughout system development such that
alternatives for a function can quickly be found.

Verify – Verification is part of component
selection. The first level of verification includes testing
functional and certain extra-functional properties of a
component in isolation. A second level of verification
includes testing the component in combination with
other components integrated in an assembly.

Store – when a component is assumed to be a good
candidate for the current and/or future applications, it
is stored in a component repository. The repository
should not only include the component itself, but also
additional information (metadata) that can be useful in
further exploitation of the component. Examples of
such data are: measured results of component
performance, known problems, response time, tests
passed and tests results.

These activities in the component assessment

process are not necessary performed in the order as
shown. Depending on different architectural
approaches (see section 4) some activities will be more
important and will require more efforts, while some
other will be very small or non-existing. For example,
if a company uses only internally developed
components, the “find” activity will not be significant
as the components are stored in internal repositories.

Requirements

Design

Glue-coding

Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation
of new

components

Integration

Selection of
component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

Components
Integration Components

Integration

Components and
Assemblies test Components

and
Assemblies

test

Requirements

Design

Glue-coding

Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation
of new

components

Integration

Selection of
component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

Components
Integration Components

Integration

Components and
Assemblies test Components

and
Assemblies

test

3.3 Component development process
The component development process is in many

respects similar to system development; requirements
must be captured, analyzed and defined, the component
must be designed, implemented, verified, validated and
delivered. When building a new component,
developers will reuse other components and will use
similar procedures of component evaluation as for
system development. There is however a significant
difference: components are intended for reuse in
(many) different products, many of them yet to be
designed. The consequences of these facts are the
following:

There is greater difficulty in managing
requirements; Greater efforts are needed to develop
reusable units; Greater efforts are needed for providing
component specifications and additional material that
help developers/consumers of the components.

We highlight here the specific characteristics of
activities of a component development and
maintenance process.

Requirements Phase

Requirements specification and analysis is a
combination of a top-down and bottom-up process.
The requirements elicitation should be the result of the
requirements specification on the system level.
However, since the components are built also for
future, not yet existing, or even not planned systems,
the system requirements are not necessary identified.
For this reason the process of capturing and identifying
requirements is more complex, it should address ranges
of requirements and the possible reusability.
Reusability is related to generality, thus the generally
of the components should be addressed explicitly.

Analysis & Design Phase

The input to the design phase in the component
development process comes from system design,
system constraints and system concerns. Since such
systems do not necessary exist, or are even not yet
planned, the component designer must make many
assumptions about the system. Many assumptions and
constraints will be determined by selecting a
component technology. This determines, for example,
possible component interactions, certain solutions built
in the technology (like transactions or security
mechanisms), and assumptions of the system resources
(like scheduling policies). For this reason, it is most
likely that at design time (or earlier) a component
model and a component technology that implements
that model must be chosen.

For a component to be reusable, it must be designed
in a more general way than a component tailored for a
unique situation. Components intended to be reused

require adaptability. This will increase the size and
complexity of the components. At the same time they
must be concrete and simple enough to serve particular
requirements in an efficient way. This requires more
design and development effort. According to some
experiences, developing a reusable component requires
three to four times more resources than developing a
component which serves a specific purpose [6].

Implementation Phase

Implementation of components is determined very
much by the component technology selected.
Component technology provides support in
programming languages, automation of component
compositions, can include many services and provide
many solutions that are important for the application
domain. Good examples of such support are
transactions management, database management,
security, or interoperability support for distributed
systems provided by component technologies such as
.NET, J2EE, or COM+. Object-oriented languages are
suitable for implementation of components since they
provide mechanisms that efficiently support concepts
of CBD. Examples of these elements are the Interface-
concept in Java or virtual classes in C++.

Integration Phase

Components are built to be easily integrated into
systems. For this reason integration considerations
must be continuously in focus. Further integration with
other components in an assembly, in order to provide a
particular service, or generate a unit of test, is also
possible. Actually the integration activities may be
performed frequently – for example for test purposes.
Usually component technology provides good support
for components integration, and integration is being
performed on daily basis.

Test Phase

Test activates are of particular importance because
of two reasons. (i) The component should be very
carefully tested since its usage and environment
context is not obvious. No specific conditions should
be taken for granted, but extensive tests and different
techniques of verification should be performed. (ii) It is
highly desirable that the tests and test results are
documented and delivered together with the
component to system developers.
Release Phase

Release and delivery of the components are the
phase where (assemblies of) components are packaged
into packages that are suitable for distribution and
installation. Such a package will not only include the
executable components, but also additional information
and assets (meta-date that specifies different properties,

additional documentation, test procedures and test
results, etc.).

Maintenance Phase

A specific issue of maintenance in component-
based systems is the relation components-system. If a
bug in a component is fixed, the question is, to which
systems a new version of the components should be
delivered. Who will be responsible for the update: the
system of the component producer? Further, there is
also a questions who will be responsible for component
maintenance; is this a responsibility of the component
producer, or the system producer? Is it supposed that
the component producers have the obligation to fix the
bugs and support its update in the (possibly) numerous
systems, or that they can provide support with
additional payment, or they do not provide any support
at all. Even more difficult problems can be related to
so-called “blame analysis”. The problem is related to a
manifestation of a fault and the origin of the fault itself.
An error can be detected in one component, but the
reason can be placed in another. For example due to a
high frequency of input in component A, the
component A required more CPU time, so that
component B does not complete its execution during
the interval assumed by Component C which provides
a time-out error, and a user of the component C gets
the impression that an answer from Component C was
not delivered. The first analysis shows that he problem
is in the component C, then B, then A, and finally in
the input to A. The questions is who performs this
analysis if the producers of components A, B and C are
not the same. Such situations can be regulated by
contracts between the producers and consumers of the
components, but this requires additional efforts, and in
many cases it is not possible at all.

These examples show that maintenance activities
can be much more extensive that expected. For this
reason it is important that the component producers
build up a strategy on how to perform maintenance and
take corresponding action to ensure the realization of
this strategy. For example, the component producers
might decide to provide maintenance support and then
it is important that they reproduce the context in with
the error was manifested.

4 Different architectural approaches in
component-based development

The industrial practice has established several
approaches in using component-based development.
These approaches, while possibly similar in using
component technology, can have quite different
processes, and different solutions on the architectural
level. Let us look to three approaches, all component-

based, but with quite different assumptions, goals and
consequently processes.

− Architecture-driven component development
− Product-line development
− COTS-based development.
Architect-driven component development, described

in more details in [7], uses a top-down approach;
components are identified as architectural elements and
as a means to achieve a good design. Components are
not primary developed for reuse, but to fit into the
specified architectures. Component-based technologies
are used, but this is mainly because of the extensive
support of component technology for modelling and
specification, for easier implementations, for the
possibility of using standard service of a component
technology. The main characteristic of these
components is composability, while reusability and
time-to-market issues are of less concern. The parallel
development processes shown on Figure 3 are reduced
to two semi-parallel processes – system development
and component development (see Figure 5).

Figure 5. Architecture-driven component development
process

Product-line development aims to enable efficient
development of many variants of product, or family of
products. Product-line development has a strategy to
achieve a large commercial diversity (i.e. producing
many variants and many models of products) with a
minimal technical diversity at minimal costs. These

Requirements

Test

Release

Maintenance

Implementation

Integration

System
Development

Component
Development

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Design

Requirements

Test

Release

Maintenance

Implementation

Integration

System
Development

Component
Development

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Design

approaches are heavily architecture-driven, as the
architectural solution should provide the most
important characteristics of the systems. Within a
given architecture (so called reference or platform
architecture) component-based approach plays a
crucial role – it enables reuse of components, and
efficient integration process. So here composability,
reusability and time-to-market are equally important.
What is characteristic for product line is that the
architectural solutions have direct impact on the
component model. The component model must comply
with the pre-defined reference architecture. Indeed in
practice we can see that many companies have
developed their own component model that suits their
proprietary architecture. A second characteristic of
product-line architecture (as a result of the time-to-
market requirement) is a high degree of parallelism of
the component development process and product
development process and a combination of a top-down
and bottom-up procedures. Referring to Figure 4 we
can see that all three processes (system development,
component assessment and component development)
exist, but somewhat changed.

Figure 6. Product-line development

COTS-based development assumes that component

development processes are completely separated from
the system development process. The strongest concern
is time-to-market from the component consumer point
of view, and reusability from the component developer
point of view. While the COTS approach gives an
instant value of new functionality, (a lack of)
composability may cause a problem if the COTS
components do not comply to a component model, if

the semantics are not clear or if architectural properties
of the components are not properly and adequately
documented. For COTS-based development,
component assessment plays a much more important
role than in the previous two approaches. Of al three
approaches discussed here, Figure 4 most closely
presents the COTS-based approach.

Which of these approaches are best, or most CBD-
specific? There is no definitive answer. While COTS-
based development looks like the most inherited to
CBD approach, and by this the most promising, the
practice in last decade has not shown big successes; on
the other hand, after a surge of enthusiasm in both
industry and research, the COTS components market
has decreased and does not show revolutionary
improvement. One of the reasons for that is that it is
difficult to achieve reusability by being very general,
effective, simple and at the same time provide
attractive functionality. Furthermore, there are
problems of trustworthiness (who can guarantee that
the component is correct?), component verification and
certification. The product line approach has been
successful in many domains and its combination with
CBD is a promising approach. Possible threats are
increasing costs for development and maintenance of
the component technologies developed internally. This
includes compilers, debuggers, and in integrated
development environments. In some cases the
internally developed component technologies are
replaced by the widely-used general-purpose
component technologies, while keeping the overall
product-line approach.

5. Case study in product-line development

To illustrate a product-line architecture process we
discuss a process model used in a large international
company in consumer electronics. The development
divisions of the company are placed in four different
countries and they produce numerous products with
different variants and models. The company has
adopted a component-based development approach
using a product-line architecture. The component
model and its supporting development tools are
developed internally. The main reason for this are the
specific requirements of the application domain: low
resource usage, high availability, and soft real-time
requirements.

The component model follows the basic principles
of CBSE: The components are specified by interfaces
which distinguish “require” from “provide” interfaces.
In addition to functional specification, the interface
includes additional information; the interaction
protocols, the timeliness properties, and the memory
usage. The component model enables a smooth

Requirements

Test

Release

Maintenance

Implementation

Integration

Verify

Store

System
Development

Component
Assessment

Component
Development

SelectRequirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Design

Requirements

Test

Release

Maintenance

Implementation

Integration

Verify

Store

System
Development

Component
Assessment

Component
Development

SelectRequirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Design

evolution of the components as it allows existence of
multiple interfaces. The model has a specific
characteristic; it allows hierarchical compositions: a
composite component can be treated as a single
component and can again be further integrated in other
components. Components are also developed
internally, but their development is separated from the
development of the products.

The product-line architecture identifies the basic
architectural framework. The product architecture is a
layered architecture which includes (i) operating
system, (ii) the component framework which is an
intermediate level between domain-specific services
and operating, (iii) core components which are
included in all product variants, and (iv) application
components that are different for different product
variants. Complementary to this horizontal layering
there is a vertical structuring in the form of
subsystems. Subsystems are also related to the
organizational structures; they are responsible for
development and maintenance of particular
components.

In the overall process there area three sets of the
independent parallel processes: (i) An overall
architecture and platform development process
responsible for delivering new platforms and basic
components, (ii) Subsystem development processes
which deliver a set of components that provide
different services, and (iii) the product development
process which is basically an integration process. This
process arrangement makes it possible to deliver new
products every six months, while the development of
subsystem components takes typically between 12 and
18 months. The specifics of these projects are that all
deliverables have the same form. A deliverable is a
software package defined as a component. The overall
process that includes parallel development projects
which deliverables are components and products is
shown on Figure 7.

The development processes in our case is mainly of
an evolutionary model. The platform, the subsystems
and the products are developed in several iterations
until the desired functionality and quality is achieved.
This requires synchronizations of iterations.
Although the overall development and production is
successful, the company faces several challenges. The
most serious problem is late discovery of errors: The
causes of errors are interface- or architectural
mismatches or insufficient specifications of semantics
of the components. Also the problems related to
encapsulation of a service in components often occur;
due to functional overlaps, or some requirements that
affect the architecture, it is difficult to decide in which
components a particular function will be implemented.

Figure 7. Products and components development
processes

All these problems point out that it is difficult to

perform the processes completely independently;
negotiation between different subsystems and
agreements about many technical details between
different teams are necessary. For these reasons
continuous coordination is necessary between
development projects developing components and
products. This reflects to the project and company
organization. The following stakeholders have special
roles in the projects:
− The system architect and management have

overall responsibilities for requirements, policies,
product line architecture, products visions, and
long term goals.

− The project architect has a responsibility for the
overall project which results in a line of products.
He/she coordinates the architectural design of the
product family and subsystems.

− The test and quality-assurance (QA) managers
have similar role in their domains: to ensure
coordination and compatibility of tests and quality
processes.

− The subsystem architects are responsible for the
designs of their subsystems and coordinate the
design decisions with the project architect and
architects of other subsystems.

− Each subsystem has a test team and a QA manager
whose responsibility is the quality of the delivered
subsystem components.

− An integration team is responsible for the delivery
of a project and is represented by a product
architect and QA- and test managers who
coordinate the activities with other projects.

Reference architecture development

Subsystems development

Product development

Reference architecture development

Subsystems development

Product development

We can observe that the project teams have many
“non-productive” stakeholders. This is in line with the
component-based approach – more efforts must be put
on overall architecture and test, and less on the
implementation itself.

5. Conclusion and future work

In this paper we have described different phases of
component-based system life cycle. These phases are
described in a framework of a particular process
model, but similar principles are valid for any other
development processes. The main characteristic of
component-base development processes is a separation
(and parallelization) of system development from
component development. This separation has a
consequence on other activities: Programming issues
(low-level design, coding) are less emphasized, while
verification processes and infrastructural management
requires significantly more efforts. We have seen that
a component-based approach does not only require
different expertise but also organizational changes in
an enterprise.

This paper is a starting point for further research
which is needed to establish principles of component-
based processes. The work will continue in two
parallel, but strongly related issues; (i) The goal of the
first initiative is to specify an ideal (and yet realistic)
life cycle process model for component-based systems.

The starting point of the research are component-
based approaches itself, their technological
characteristics and the possibilities they provide; (ii)
The goal of the second initiative is to adopt and
integration of different development processes and life-
cycle models and methods (such as agile methods,

iterative and incremental processes) with component-
based procedures. The work will combine analytical
and experimental approaches including extensive case
studies.

6. References

[1] ISO/IEC 15288, System Engineering - System
Life Cycle Processes, First Edition, ISO/IEC, 2002
[2] Rajlich, Bennett. A Staged Model for the Software
Life Cycle. IEEE Computer, July 2000
[3] Kruchten, Philippe. A Rational Development
Process, Crosstalk, July 1996
[4] Kurt Wallnau, “Dispelling the Myth of
Component Evaluation” in Ivica Crnkovic and Magnus
Larsson (editors), “Building Reliable Component-
Based Software Systems”, Artech House Publisher,
2002
[5] M M Lehman, Feedback in the Software
Evolution Process, Keynote Address, CSR Eleventh
Annual Workshop on Software Evolution: Models and
Metrics. Dublin, 7 - 9th Sept. 1994, Workshop Proc.,
Information and Software Technology, sp. is. on
Software Maintenance, v. 38, n. 11, 1996, Elsevier,
1996, pp. 681 – 686
[6] Szyperski C., Component Software Beyond
Object-Oriented Programming, Addison-Wesley,
1998.
[7] I. Crnkovic and M. Larsson, CBSE – Building
Reliable Component-based Systems, Artech House,
2003

