
Scalable Architecture for Real-Time Applications
And

Use of bus-monitoring

Tommy Klevin and Lennart Lindh
Department of Computer Engineering (IDT), Mälardalens Real-Time Center (MRTC)

Mälardalens University, Sweden
E-mail: tkn@mdh.se, llh@mdh.se

Abstract
The lifecycle for industrial applications are becoming
shorter, the application complexity increases,
performance is to low, fault tolerance is required, reuse
of components is desired and the developer require
strong verification tools to cut down the verification
phase. As the problem increases with respect of longer
development time and higher quality requirements from
the customer, it becomes increasingly important to
examine flexible and scalable parallel processing for
complex real-time systems. This is the motivation for
running the research project SARA (Scalable
Architecture for Real-Time Applications). The first SARA
system is now running with a vision system connected to
an industrial robot (ABB Robot).
The system-busses are important resources in a
computer-system. Today there are no methods to monitor
busload during runtime, in this paper we discuss a
simple method of how to do this.

Keywords: real-time kernel, real-time system,
architecture, bus monitor and multiprocessor systems

1. Introduction

In the last decade, the complexity of real-time systems has
increased. The systems must nearly always have their
hardware/software architecture redesigned to increase
their performance, get better fault tolerance, etc. New
powerful processors alone are not sufficient to achieve
high performance and flexibility of the control systems
(real-time systems).
Today it is usually the inadequate performance of the
real-time system, the inflexibility of changing the
hardware/software architecture, the complexity of the
solutions and the weak debugging tools for verification
that causes time to market problems.

One bottleneck in computer systems today is the
performance of the busses in the system. If the operating
system could get information about actual busload it
would help the operating system to schedule tasks more
efficiently.

Multi-processor systems like SARA tend to be very
complex and therefore it is hard to understand how
transactions during runtime will affect the system. As the
real-time kernel, named Real Time Unit (RTU) [1] in
SARA, keeps information about all tasks we have a
suggestion to add a new parameter that would give the
kernel information about the busload in the system. We
belive this parameter could help the scheduler to utilize
the system resources better.

2. Problem motivation and state-of-the-art

Most Hardware/Software architectural implementations of
complex control system designs are carried out by a
number of static coupled processor units, integrated on a
PCB (Printed Circuit Board) or on a separate PCB with a
standard bus and dual port RAM.
SARA (Scalable Architecture for Real-Time
Applications) is a dynamic coupled processor system
(flexible processor system) and is not dependent on the
PCB (Printed Circuit Board) or on the software
architecture. There is always a limit of what a dynamic
system can handle. If a system is building on a parallel
bus, the bus will be the bottleneck when to many
processors are connected to it.

The definition of a static coupled processor system is;
changes of the system requirement needs a redesign of the
application software, of the PCB and a major change of
software communication and synchronization between the
processors. A change of the requirement for a dynamic

coupled processor system can be redesigned without any
changes on the PCB or in the software for tasks,
communication and/or synchronization.

It is not motivated to develop static coupled processors
systems, since the performance requirement from the
application is growing faster than the processor developer
can accomplish.

Local RAM

CPU 1 I/O
I/O

Buffer
RAM

I/O
Local RAM

CPU 2 I/O

Local RAM

CPU 3 I/O
Buffer
RAM

Figure 1: Static coupled multi-processor system

The problem with static coupled systems:
• Statically designed PCB (Printed Circuit Board) is

not a flexible solution.
• Processors are often communicating via dual port

memory (buffer). The communication and
synchronization are not trivial problems and often put
a heavy load on the processor.

• The software architecture is statically divided into
different processors, often with different software
developing paradigms, for example a signal processor
and a RISC processor.

Research into real-time multi-processor systems is in
progress in such projects as: MARS [2] (Maintainable
Real-Time System) in Austria, RTU [1] in Sweden and
SPRING [3] in USA. SPRING indicates that a dynamic
real-time system can be built as a multi-processor system,
while MARS presents a statically distributed system for
safety critical applications. RTU has proved that complex
functions can be implemented in multi-parallel hardware.
It can be used as a complex controller of a multi-
processor system with a speed increase in the order of 300
% (or more) for the real-time service in the kernel [4].

A trend towards MIMD (multiple instruction multiple
data) multi-processor architectures has been observed
during recent years. Multi-processing benefits include
increased flexibility and lower cost/performance factor.

3. System Architecture of SARA

The system architecture supports a simple design
paradigm and a simple verification environment.

SARA is divided into application, base system and
hardware platform.
Applications is designed with an object-based approach.
Objects is divided into three base classes; shared, server
and base object. The base system is a collection of a
communication/synchronization system for the
application (IPC), verification/analyze system and
resource/time handling (RTU). The base system is
implemented both in hardware and software classes.
The hardware architecture is divided into local CPU
board, bus arbitrator, global RAM, I/O and an RTU. The
RTU is a hardware object in the base system.

RTU - a class in the base system
Many real time control systems use an application, which
is controlled by a real-time operating system for executing
processes. To improve the performance of a real time
control system, the processor clock frequency can be
increased. Sometimes this is not sufficient and a co-
processor can be used instead. The co-processor (we call it
an RTU) is not a standard processor, but a special purpose
hardware performing real time operating system
functions. Different real time operating system functions
have successfully been implemented into hardware the
last 10 years. The scheduling algorithms of the RTU are
preemptive, non-preemptive or mixed. When the RTU
uses preemptive scheduling, it uses an interrupt to signal
the application processor to start a context switch. The
scheduler algorithm of the RTU can also load balance
processors (more information about RTU see [1]).

The diagram below is the result of a benchmarktest where
a commercial RTOS was compared to the RTU. The
diagram shows the administrative load, i.e. the time spent
in the kernel. As the diagram shows the RTU adds no
such load while the commercial RTOS has an
administrative load of 32% with 1ms clocktick and <5%
with 32ms clocktick.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Tick time (%)

Commercial RTOS 32ms tick

Commercial RTOS 1ms tick

RTU 1 CPU

RTU 2 CPUs

Figure 2: Kernel workload of commercial RTOS and RTU

 IPC - a class in the base system
The application software (task or server class) connects to
an IPC bus, it can be seen as a virtual bus. The IPC bus

contains 32 slots and each slot can handle 32 messages in
a queue. A slot can be owned by a task (we call it a server
object). The slot of the processors can be allocated in two
ways:
1) One slot is allocated to one processor
2) One slot is allocated to two or more processors,

which means it is scheduled between the processors.

Task 1

Task 2 Task N

IPC-bus

Free slot

Message
Queues

Slots

Figure 3: The IPC bus model.

In the IPC bus model (see fig.3), slots are RTOS resources
that can be allocated by tasks. Each slot consists of a
message queue, which holds the priority of messages and
references to the messages, stored in a message buffer.
Every message has a priority, which is set by the sender.
The messages in the queues are sorted by their priority or
in FIFO order. A task can inherit its priority from the
messages (to avoid priority inversion). A sender task can
use time-out constraints on full queues, and a receiver
task can do the same on empty queues, e.g. a receiver task
can be set to wait a specified time for a message.

There are four message-types. These are:
• Asynchronous messages.
• Synchronous messages.
• Broadcast messages.
• Multicast messages.

The system is implemented in both software and
hardware, see figure 4. Some parts are implemented in
hardware to achieve higher performance and/or to attain a
simpler solution.

Application
Software

Operating
System

(software)

Processors
(hardware)

Processors
(hardware)

RTU
(hardware)

Operating
System

(software)

Application
Software

Conventional
Solution

Coprocessor (RTU)
Solution

Figure 4: Overview of software and hardware
implementations in SARA

4. Hardware Architecture of SARA

The hardware platform in the SARA- system is a
Compact PCI system (CPCI) [5] with eight slots. In these
slots CPU-boards can be inserted. A CPCI-system has two
kinds of boards. In the first slot there is always a ‘system-
board’ while the other slots holds ‘non-system boards’.
The system-board handles arbitration, clock-distribution,
etc on the backplane. In SARA it is possible to use 1-8
CPU-boards. Minimum requirement is one board, the
system-board. If more CPU-power is needed up to seven
non-system boards can be inserted. In SARA all CPUs
have a local memory and there is no special global
memory. If global memory is needed, a global area can be
defined on any CPU board. In the SARA-system, global
memory resides on the system board. As the architecture
allows tasks to migrate between CPUs global memory is
used for Task Control Blocks (TCB) etc for these tasks.
Tasks can be allocated to a certain CPU as well and in
this case the TCB is stored in local memory.

Figure 5:Picture of an RTU-PMC board

All boards in the system have a local PCI bus and all
boards are connected to the CPCI backplane.

The Real Time Unit is attached to the local PCI bus on
the board in the system slot from where it can
communicate with all CPUs in the system.

CPU

PCI-PCI
Bridge

Bridge

MemCPUMemMem CPU

BridgeBridge

PCI-PCI
Bridge

PCI-PCI
Bridge

System Board

Non System Boards

...
Local bus to
PCI bridge

RTU
PMC
Board

Local PCI-Bus

Transparent Bridge

Non transparent
Bridge

Doorbell
Register

CompactPCI-Bus

Global
Memory

Figure 6: Block diagram of SARA-System

5. Use of bus monitoring

The present implementation is a PCI-bus monitor
implemented in an FPGA (Field Programable Gate
Array). To measure the load on the PCI-bus only a few
signals has to be involved. The monitor listens to the
signals FRAME, IRDY, DEVSEL and TRDY on the PCI-
bus [6]. A combination of these signals makes it possible
to decide the utilization of the bus. In the present
implementation these signals are sampled during 50000
clock-cycles at 33MHz. When a sample is complete an
interrupt is generated to a PC and the result is transferred
via the parallel port. The load is presented on the display
in percentage (0-100%) .

Busmonitors available on the market are used to debug
hardware and software while the bus-monitor in this
article is supposed be integrated in a system to measure
bus-load in runtime.

The goal with monitoring the busses is to get a better
control and observability of the system. To obtain this, the
information from the monitors has to be integrated with
the scheduler in the system. We believe that this
information can be used to make the resource utilization
more efficient.

Figure 7: Monitors sending load info to
Real-time scheduler

Conclusions
A static multiprocessor system is often complex and it is
costly to redesign the system, compared with a flexible
multiprocessor system like SARA.

The IPC communication interface is a very attractive
solution; it is very easy to write interface and to make
connections between the concurrent objects. In addition,
the priority inheritance of messages solves the inversion
problems.

When one critical function is implemented into a
hardware unit, the response time and time gap between
the best and worst execution time decreases. As an
example, the period time for clock tick is one
microsecond for the hardware accelerator (RTU) and that
is about 1000 times faster than software solutions.

Simple bus-monitors can easily be implemented in a
system and the actual bus-utilization can either be sent to
a PC-display or the information can be sent to the
operating system and be used in the scheduling algorithm.

Future expansions and works:
We have plans to integrate the information about the bus-
load into the RTU.
Today most of the IPC-communication is implemented in
software. To get higher performance and more predictable
IPC all primitives will be implemented in hardware. The
only software needed will be the interface to the IPC-
calls.

Acknowledgements
These projects are sponsored by KK-Foundation, internal
founding by Mälardalen’s University College, ABB
Robotics and Ericsson Utvecklings AB.

References
[1] LLindh, J Starner and J Furunäs, From Single to
Multiprocessor Real-Time Kernels in Hardware, IEEE Real-
Time Technology and Applications Symposium, Chicago, May
15 - 17, 1995
[2] H.Kopertz, R. Zainlinger, G. Fohler, H. Kantz, P Puschner,
W. Shutz. Institute fur Technische Informatic, Technische
Universität Wien, Treitlstr. 3/182 A-1040 Vienna, Austria. An
Engineering Approch to Hard Real-Time 1991
System Design
[3] J. Stancovic and K. Ramamritham. Hard Real-Time
Systems. ISBN 0-8186-0819-6, pages 371-382
- J. Stancovic, D. Niehaus and K. Ramamritham. Spring net: An
Architecture For High Performance, Predictable and Distributed
Computing. Computer Science Department, University of
Massachusetts.
[4] L. D. Molesky, K. Ramamritham, C. Shen, J. A. Stankovic,
G. Zlokapa, ”Implementing a Predictable Real-Time
Multiprocessor Kernel - The Spring Kernel”, 1990
[Lawson98] Harold W. Lawson, "Salvation from System
Complexity," Computer, Vol. 31, No. 2, February, 1998, pp.
118-120.
[5] PCI Industrial Computers Manufacturers Group CompactPCI
Specification Revision 2.1
[6]Periferal Component Interconnect Specification 2.1

CPU

Mem

PCI-PCI
Bridge

Local Bus

Local PCI-Bus

Monitors

Non System Slot n

CPU

Mem

PCI-PCI
Bridge

System Slot

RTU

CPCI-Bus

Monitor

Bus-load
to kernel

