
DESIGN FOR DETERMINISTIC MONITORING

OF DISTRIBUTED REAL-TIME SYSTEMS

5/9/00

 Henrik Thane

Mälardalen Real-Time Research Centre
www.mrtc.mdh.se

henrik.thane@mdh.se

ABSTRACT

In order to test, or debug, a system we must observe its run-time behavior and
deem how well the observations comply with the system requirements. There
are two significant differences between debugging and testing of software for
desktop computers and embedded real-time systems: (1) It is more difficult to
observe embedded computer systems, simply because they are embedded, and
that they thus have very few interfaces to the outside world, and (2) the actual
act of observing a real-time systems or distributed real-time system can change
their behavior.

Monitoring of sequential software is straightforward, but for distributed real-
time systems it is more complicated, since race conditions with respect to
order of access to shared resources occur naturally. Any intrusive observation,
or probing, of the distributed real-time system affects the timing and
consequently the outcome of the races.

In this paper we present a method for deterministic observations of single
tasking, multi-tasking, and distributed real-time systems. This includes a
description of what to observe, how to eliminate the disturbances caused by
the actual act of observing, how to correlate observations, and how to
reproduce them.

Keywords: Monitoring, testing, debugging, deterministic replay,
reproducibility, determinism, testability, distributed real-time systems.

2

1 INTRODUCTION

In order to dynamically verify a system, e.g., to test or debug it, we must observe its
run-time behavior and deem how well these observations comply with the system
requirements. Fundamental in all physical sciences, as well as in testing of software,
is the non-ambiguity, or determinism, of observations, and the ability to reproduce
observations. Of equal importance is that the actual act of observation does not
disturb, or intrude on, system behavior. If nonetheless the observations are intrusive
then it is imperative that their effect can be calculated and compensated for. If we
cannot, there are no guarantees that the observations are accurate or reproducible.

Race conditions with respect to order of access to shared resources occur naturally in
multi-tasking real-time systems. Different inputs to the racing tasks may lead to
different execution paths. These paths will in turn lead to different execution times
for the tasks, which depending on the design may lead to different orders of access to
the shared resources. As a consequence there may be different system behaviors if the
outcome of the operations on the shared resources depend on the ordering of
accesses.

Example 1-1.

Consider figures 1-1 and 1-2. Assume that two tasks A and B, use a shared
resource X, which they both do operations on, and that the resource X is protected
by a semaphore S. Task B has higher priority than task A. Depending on the
inputs, the execution time of task A will vary, which will result in different
accesses to the shared resource:

(1) Figure 1-1 illustrates a scenario, in which task B locks the semaphore,
and enters the critical region before task A. Task B then preempts A and
performs an operation on X. The new value of X is B(X). The entire
transaction will yield a value of X corresponding to A(B(X)).

(2) Figure 1-2 illustrates a different scenario, in which task A terminates
before task B is released, and thus performs an operation on X before B.
The new value of X is A(X). The entire transaction will yield a value of X
corresponding to B(A(X)).

If we now add a probe to task A, in order to test its behavior, we may extend its
execution time so that only scenario (1) is run. Consequently scenario (2) will
never be executed during run-time, and if B(A(X)) is erroneous due to e.g., an
error in task A, this will not be revealed during testing. If we later, after
satisfactory testing, remove the probe in task A, scenario (2) may occur again and
the erroneous calculation B(A(X)) may be executed, leading to a failure. This non-
deterministic effect of intrusively observing a system is called the probe-effect
[18][42] or the Heisenberg uncertainty in software [36][41].

3

t

Priority

4 10

Figure 1-2. The releases of tasks A and B - figure (a). Where B has higher
priority than task A. Due to shorter execution time task A starts and
terminates before task B is released. Figure (b) depicts the resulting
execution, where A precedes B.

B

A
t

Priority

4 10

Critical section

(a) (b)

AA B

t

Priority

4 10

Figure 1-1. The releases of tasks A and B - figure (a). Where task B has
higher priority than task A. Task B enters the critical section before A, when
A has its worst case execution time. Figure (b) depicts the resulting
execution, where A is preempted by B.

B

A
t

Priority

4 10

BA

Critical section

(a) (b)

A

4

Example 1-2.

Consider Figure 1-3 which depicts the execution orderings of tasks during the
Least Common Multiple (LCM) of the period times of the involved tasks A, B and
C, based on a schedule generated by a static off-line scheduler and where later
release time gives higher priority. Due to a varying execution time of task A, with
a best case execution time (BCET) of 2 and a worst case execution time (WCET)
of 6, we get three different scenarios, depicted in figures 1-3(a–c). As exemplified
below the execution of these different execution orderings will give different
results.

Assume in addition that all tasks call a common subroutine f(), that is by error
non-reentrant, and that the tasks A, B, and C execute the program code in Figure
1-4. Task A is also in error by assigning 7 to b, when it should be 10. A critical
point for the values computed by task A is indicated in the code for task A, by the
preemption point.

The values calculated for task A, depending on which scenario is run, would thus
be scenario (a) ans = 13 (correct), scenario (b) ans = 13 (correct), and scenario (c)
ans = 10 (erroneous).

Hypothesize now, that we add a probe to task A, in order to test its behavior, and
thus extend its execution time to always exceed its BCET. As a consequence
scenario (c) will never be executed during run-time, and the error in task A will
not be revealed during testing. If we later, after satisfactory testing, remove the
probe in task A, scenario (c) can occur again and task A will fail. Thus giving rise
to the probe effect.

Figure 1-3 Three different execution order scenarios.

A A A

B
C

2 4 6 8

A A

B
C

2 4 6 8 1010

A

B
C

2 4 6 8 10

(a) CA=6 (b) CA=4 (c) CA=2

Figure 1-4. The tasks A, B and C and the called function f()

int f(int a)
{

int sum;

sum =a+b;
return(sum);

}

Task A:
int b; /* global*/
int ans;

/*1st assignenment in prg. */
b=7; /* error*/
…
…
/* Preemption point */
…
…
/*last assignment in prg.*/
ans = f(3);

…

Task B:
...
int ans;
...
b=10;
ans = f(2);

…

Task C:
...
int ans;
...
b=10;
ans = f(5);

…

5

Besides race-conditions, and the occurrence of the probe-effect in DRTS, there is also
a difference between DRTS and sequential software with respect to control.
Achieving deterministic observations of regular sequential programs is easy because
in order to guarantee reproducibility we need only control the sequence of inputs and
the start conditions [42]. That is, given the same initial state and inputs, the sequential
program will deterministically produce the same output on repeated executions, even
in the presence of systematic faults [54], or in the presence of intrusive probes.
Reproducibility is essential when performing regression testing or cyclic debugging
[53][56], where the same test cases are run repeatedly with the intent to validate that
either an error correction had the desired effect, or simply to make it possible to find
the error when a failure has been observed [33], or to show that no new errors have
been introduced when correcting another error. However, trying to directly apply test
techniques for sequential programs on distributed real-time systems is bound to lead
to non-determinism and non-reproducibility, because control is only forced on the
inputs, disregarding the significance of order and timing of the executing and
communicating tasks.

Consequently, in order to facilitate reproducible monitoring of DRTS we must:

1. Reproduce the inputs with respect to contents, order, and timing

2. Reproduce the order and timing of the executing and communicating tasks.

3. Eliminate the probe-effect.

However, if deterministic monitoring is sufficient it is enough to only observe all
entities with respect to contents, order and timing. A system can be defined as
deterministic with respect to a certain set of behaviors if we can observe all necessary
and sufficient conditions for the set of behaviors to occur. As for sequential software,
it would be necessary to observe inputs and outputs in order to deterministically deem
if the outputs comply with the requirements. If the control flow of the sequential
program also depends on random number generators, we would have to observe these
also for determinism. For a multitasking real-time systems, it would be necessary to
observe contents, order and timing of all inputs, outputs, and executions of the
involved tasks in order to deterministically deem if the system fulfills its
requirements. For reproducibility however, it would also be necessary to control all
necessary and sufficient conditions for a set of behaviors to deterministically occur. A
system is partially reproducible if we can deterministically observe it but only control
some of the necessary and sufficient conditions.

Reproducibility is a necessity when debugging, when regression testing [53], or when
sufficient coverage during testing is sought [63][62][70].

Contributions

In this paper we present a software-based method for deterministic observations of
single tasking, multi-tasking, and distributed real-time systems. This includes a
description of what to observe, how to eliminate the disturbances caused by the
actual act of observing, how to correlate observations between nodes, and how to
reproduce the observations. We will give a taxonomy of different observation
techniques, and discuss where, how and when these techniques should be applied for
deterministic observations. We argue that it is essential to consider monitoring early
in the design process, in order to achieve efficient and deterministic observations.

6

2 THE SYSTEM MODEL
We assume a distributed system consisting of a set of nodes. Each node is a self
sufficient computing element with CPU, memory, network access, a local clock and
I/O units for sampling and actuation of an external process. We further assume the
existence of a global synchronized time base [14][26] with a known precision δ,
meaning that no two nodes in the system have local clocks differing by more than δ.

The software that runs on the distributed system consists of a set of concurrent tasks
and interrupt routines, communicating by message passing or via shared memory, all
governed by a real-time kernel. Tasks and interrupts may have functional and
temporal side effects due to preemption, message passing and shared memory.

We assume that there exists a set of observers, which can observe/monitor the system
behavior. These observers can be situated on different levels, ranging from dedicated
nodes, which eavesdrop on the network, to programming language statements inside
tasks that outputs significant information. These observers are fundamental for
monitoring, testing and debugging of real-time systems and distributed real-time
systems.

3 TERMINOLOGY
In this section we will introduce some basic vocabulary that we will be used in the
paper.

3.1 Fault, error, and failure
Definition. A failure is the nonperformance or inability of the system or component
to perform its intended function for a specified time under specified environmental
conditions [71]. That is, an input, X, to the component, O, yields an output, O(X),
non-compliant with the specification.

Definition. An error is a design flaw, or a deviation from a desired or intended state
[71]. That is, if we view the program as a state machine, an error (bug) is an
unwanted state. We can also view an error as a corrupted data state, caused by the
execution of an error (bug) but also due to e.g., physical electromagnetic radiation.

Definition. A fault is the adjudged (hypothesized) cause for an error [33]. Generally
a failure is a fault, but not vice versa, since a fault does not necessarily lead to a
failure.

The relation between the definitions of fault, error, and failure, is depicted in
Figure 3-1.

Fault Error FailureFailure Fault

Figure 3-1. Cause consequence diagram of fault, error and failure.

7

3.1.1 Systematic and physical failures
Failures are usually divided into two categories:

• Systematic failures which are caused by specification or design flaws, i.e.,
behaviors that do not comply with the goals of the intended, designed and
constructed system. Examples of contributing causes, are erroneous, ambiguous,
or incomplete specifications, as well as incorrect assumptions about the target
environment. Other examples are failures caused by design and implementation
faults. Wear, degradation, corrosion, etc. do not cause these types of failures, all
errors are built in from the beginning, and no new errors will be added after
deployment.

Definition. A systematic failure occurs if and only if:

1) the location of an error is executed in the program,

2) the execution of the error leads to an erroneous state, and

3) the erroneous state is propagated to the output.

This means, that if an error is not executed it will not cause a failure. If the effect
of the execution of the error (infection) is indistinguishable from a correct system
state it will not cause a failure. If the system’s state is infected but not propagated
to output there will be no failure.

• Physical failures which are the result of a violation upon the original design.
Environmental disturbances, wear or degradation over time may cause such
failures. Examples, are electromagnetic interference, alpha and beta radiation, etc.

Definition. A physical failure occurs if and only if:

1) the system state is corrupted or infected, and

2) the erroneous state is propagated to the output.

Fault-tolerance mechanisms usually try to prevent (1) by applying robust designs,
and (2) by applying redundancy, etc.

3.2 Failure modes
Depending on the architecture of the system we can assume different degrees, and
classes, of failure behavior. That is, certain types of failures are extremely improbable
(impossible) in some systems, while in other systems it is very likely that they occur.
For example, consider multitasking systems where we have to resolve access to
shared resources by means of mutual exclusion. One approach is to make use of
semaphores, and another to make use of separation in time. In the latter case deadlock
situations are impossible, while in the previous case deadlocks certainly are possible.
Using synchronization in time we thus eliminate an entire class of failures, and can
therefore during testing eliminate the search for them.

Components can fail in different ways and the manner in which they fail can be
categorized into failure modes. The failure modes are defined through the effects, as
perceived by the component user. We are going to present categories, i.e., failure
modes, (1 to 6) ranging from failure behavior that sequential programs, or single tasks
in solitude, can experience, to failure behavior that is only significant in multitasking,
distributed systems and real-time systems, where more than one task is competing for
the same resources, e.g., processing power, memory, computer network, etc.

8

Byzantine

Timing

Synchronization

Ordering

Sequential
failures

Figure 3-2. The relation between the
failure modes.

1. Sequential failure behavior (Clarke et. al. [10]):

• Control failures, e.g., selecting the wrong branch in an if-then-else statement.

• Value failures, e.g., assigning an incorrect value to a correct (intended)
variable.

• Addressing failures, e.g., assigning a correct (intended) value to an incorrect
variable.

• Termination failures, e.g., a loop statement failing to complete because the
termination condition is never satisfied.

• Input failures, e.g., receiving an (undetected) erroneous value from a sensor.

Multitasking and real-time failure behavior

2. Ordering failures, e.g., violations of precedence relations or mutual exclusion
relations.

3. Synchronization failures, i.e., ordering failures but also deadlocks.

4. Interleaving failures, e.g., unwanted side effects caused by non-reentrant code,
and shared data, in preemptively scheduled systems.

5. Timing failures. This failure mode yields a correct result (value), although the
procurement of the result is time-wise incorrect. For example, deadline violations,
too early start of task, incorrect period time, too much jitter, too many interrupts
(too short inter-arrival time between consecutive interrupt occurrences), etc.

6. Byzantine and arbitrary failures. This failure mode is characterized by a non-
assumption, meaning that there is no restriction what so ever with respect to
which effects the component user may perceive. Therefore, the failure mode has
been called malicious or fail-uncontrolled. This failure mode includes two-faced
behavior, i.e. a component can output “X is true” to one component user, and “X
is false” to another component user.

The above listed failure modes build up a hierarchy
where byzantine failures are based on the
weakest assumption (a non-assumption) on
the behavior of the components and the
infrastructure, and sequential failures are
based on the strongest assumptions.
Hence byzantine failures are the most
severe and sequential failures the least
severe failure mode. The byzantine failure
mode covers all failures classified as
timing failures, which in turn covers
synchronization failures, and so on (see
Figure 3-2).

9

The component user can also characterize the failure modes according to the point of
view. A distinction can be made between primary failures, secondary failures and
command failures (Leveson [71]):

• Primary failures

A primary failure is caused by an error in the software of the component so
that its output does not meet the specification. This class includes sequential
and byzantine failure modes, excluding sequential input failures.

• Secondary failures

A secondary failure occurs when the input to a component does not comply
with the specification. This can happen when the component is used in an
environment for which it is not designed, or when the output of a preceding
task does not comply with the specifications of a succeeding task’s input. This
class includes interleaving failures, sequential input failure modes, as well as
changed failure mode assumptions.

• Command failures

Command failures occur when a component delivers the correct result but at
the wrong time or in the wrong order. This class covers timing failures,
synchronization failures, ordering failures, as well as sequential termination
failures.

The persistence of failures

The persistence of failures can be categorized into three groups:

• Transient failures. Transient failures occur completely aperiodic, meaning
that we cannot bound their inter-arrival time. They can appear once, and then
never appear again. Typically, these types of failures are induced by
electromagnetic interference, or radiation, which may lead to corruption of
memory, or CPU registers – bit-flips. Transient failures are mostly physical
failures.

• Intermittent failures. The inter-arrival time of intermittent failures can be
bounded with a minimum and/or maximum inter-arrival time. These types of
failures typically take place when a component is on the verge of breaking
down, for example, due to a glitch in a switch. Examples from the software
world could be failures due to sporadic interrupts.

• Permanent failures. A permanent failure that occurs, stays until removed
(repaired). A permanent failure can be a damaged sensor, or typically for
software, a systematic failure – caused by an error in a program, which stays
there until removed.

3.3 Failure semantics
The above classification of failure modes is not restricted to individual instances of
failures, but can be used to classify the failure behavior of components, which is
called a component’s failure semantics [48].

• Failure semantics

A component exhibits a given failure semantic if the probability of failure modes,
which are not covered by the failure semantic, is sufficiently low.

10

If a given component is assumed to have synchronization failure semantics, then all
individual failures of the component should be synchronization-, ordering-, or
sequential failures. The possibility of more severe failures, like timing failures, should
be sufficiently low. The failure semantic is a probabilistic specification of the failure
modes a component may exhibit. The semantic has to be chosen in relation to the
application requirements. In other words, the failure semantics defines the most
severe failure mode a component should experience. Fault-tolerant systems are
designed with the assumption that any component that fails will do so according to a
given failure semantic. When we test a system we do so also with a certain failure
semantic in mind. That is, we look for failures of a certain kind. For plain sequential
programs we usually do not look for interleaving failures, or timing failures.
However, if the component will be used in a multitasking or real-time system we
certainly have to look for these types of failures.

3.4 Fault hypothesis
When a system is designed for fault-tolerance or when testing is performed it is
always based on a fault hypothesis, which is simply the assumption that the system
will behave according to a certain failure semantic.

This means that if a system is tested with a specific fault hypothesis, and a certain
confidence in its reliability is achieved (Figure 3-3), then if we later assume a more
severe fault hypothesis, the confidence in the achieved reliability decreases
(Figure 3-4). For example, if we have tested a system, which has memory protection,
and then remove the memory protection we cannot say anything about the achieved
reliability with respect to that fault hypothesis. Changes of this type typically give rise
to secondary failures.

Reliability

2 4 Hypothesis51 3

Figure 3-3. The achieved reliability for different fault hypothesis.

Reliability

2 4 Hypothesis51 3

Figure 3-4. The confidence in the reliability for more severe fault
hypothesis collapses when basic assumptions do not hold due to e.g.,
the removal of memory protection.

11

3.5 Determinism and reproducibility
Sequential programs are usually regarded as having deterministic behavior, that is,
given the same initial state and inputs, the sequential program will consistently
produce the same output on repeated executions, even in the presence of systematic
errors. For example,

Given that the parameters a and b were equal on repeated calls to SUM(a,b,c) then
the function would deterministically reproduce the sum of a and b – regardless of the
value of c.

The determinism of a system with respect to an observed behavior can be defined as:

Definition. Determinism. A system is defined as deterministic if an observed
behavior, P, is uniquely defined by an observed set of necessary and sufficient
parameters/conditions, O.

Definition. Partial Determinism. A system is defined as partially deterministic if an
observed behavior, P, is uniquely defined by a known set of necessary and sufficient
parameters/conditions, O, but the observations are limited to a subset of O.

The implication of the definition of determinism is that if we have a function
f(a, b, c) and the observed behavior, P, of this function is deterministically
determined by the necessary and sufficient conditions (or parameters) of a and b, then
we can execute the function f(a, b, c) an infinite number of times and
deterministically observe this behavior by observing the output of f and by observing
a and b. The value of c is of no significance because it is not necessary for P’s
determinism. If we can also control, not only observe, the values of a and b we can
also reproduce the observation of behavior P.

Definition. Reproducibility. A system is reproducible if it is deterministic with
respect to a behavior P, and if it is possible to control the entire set of necessary and
sufficient conditions, O.

Definition. Partial reproducibility. A system is partially reproducible if it is
deterministic with respect to a behavior P, and if it is possible to control a subset of
the necessary and sufficient conditions, O.

Hence, the relation is such that the property reproducibility is stronger than the
property determinism, i.e., if some observations are reproducible they are
deterministic, but not necessarily vice versa, thus:

Determinism ⊂ Partial reproducibility ⊂ Reproducibility

This is an important distinction to make, since the desired behavior, the fault
hypothesis and the infrastructure dictates how many conditions/variables/factors we
need to observe in order to guarantee determinism of observations, as well as how
many conditions we must control for reproducibility of observations.

int SUM(int a, int b, int c)
{

int s;
s = a+b;
printf(“c=%d\n”, c);
return(s);

}

12

4 MONITORING
Research on testing of shared memory multiprocessor systems and distributed
systems have been penetrated in some detail over the years. The focus has mainly
been on monitoring, i.e. gathering of run-time information for debugging [47][66][67]
and performance measurements [6].

The research issues have been:

• The intrusiveness (perturbation) of observations in software [18][36][42] and
how to eliminate the perturbations using special hardware [68].

• How to deterministically reproduce the observations using mechanisms in
software [12][35] [61] or mechanisms in hardware [68]

• The problem of defining a global state in distributed systems [16] using
logical clocks [7][32] or synchronized physical clocks [26][28][48].

However, the number of references on research regarding monitoring for testing and
debugging of single node real-time systems, and multiple node (distributed) real-time
systems, that consistently handle time, distribution, interrupts, clock synchronization,
and scheduling, dwindle fast (to zip).

The observational requirements for testing and debugging differ, in the amount and
type of information required. The quintessential difference comes from the fact that
testing is used for finding failures (or showing their absence), while debugging is used
for finding the errors that cause the failures. Another difference is that testing can
easily be automated, while debugging is essentially a manual task. For the verification
of safety-critical software (failure rates of 10-4 to 10-9 failures/hour) it is necessary
that the test process can be automated since the number of test cases required are
enormous [5][72].

For testing of sequential programs it is usually sufficient to monitor inputs, and
outputs via predefined interfaces of the programs, and based on that information
deem, according to the specification, if a test run was successful or not. For
(distributed) real-time systems we need also observe the timing and order of the
executing and communicating tasks, since the outputs depend on these variables, and
thus also the determinism of the observations.

To detect errors using debugging it is also necessary to monitor the internal behavior
of the programs with respect to intermediate computed values, internal variables, and
the control flow. For interactive debugging, in the classical sense of sequential
programs, it is required that the control flow can be altered via manual or conditional
breakpoints, or via traces, all in order to be able to increase the observability of the
program. Consequently, for debugging of (distributed) real-time systems, we need to
control the timing and order of the executing and communicating tasks, otherwise we
cannot achieve deterministic debugging. However, the problem of defining a global
state in distributed real-time systems, and break-pointing tasks on different nodes at
exactly the same time, is a serious obstacle when debugging. Either we need to send
stop or continue messages from one node to a set of other nodes with the problem of
nonzero communication latencies, or we have a priori agreed upon times when the
execution on the processors should be halted or resumed. In the latter case there is the
problem of non-perfectly synchronized clocks, so the tasks may not halt or resume
their execution at the same time. Most real-time systems are also driven by the

13

environment, so just because we breakpoint one task on one node, does not stop the
external process.

When monitoring a DRTS there are some fundamental questions that must be
answered:

• How to extract enough information from the system?

• How to eliminate the perturbations that the observations cause?

• How to correlate the observations, i.e., how to define a consistent global
state?

• How to reproduce the observations?

We are now going to address each of these questions in turn.

4.1 How to collect sufficient information
The amount of monitoring needed in order to collect sufficient information is
dependent on two basic factors:

• What is the fault hypothesis? That is, the more severe failure semantics, the
more information we need to store and process in order to achieve
deterministic observations. For sequential software it is sufficient to observe
inputs and outputs. For multi-tasking systems we need also observe task
execution orderings and their access to shared resources. For real-time
systems we further need to observe the timing of the tasks. However, if we
want to test a multitasking real-time system and assume sequential failure
semantics we need only test tasks in solitude, since we can regard each task as
a sequential program. The probability that the multitasking real-time system
will only exhibit sequential failure behavior in practice is not very high
though. It is therefore very important to chose a realistic fault-hypothesis and
observe the system based on that fault hypothesis.

• What is the a priori knowledge of the system with respect to its behavior and
attributes? The validity of the fault-hypothesis is based on the support that the
environment and the infrastructure (real-time kernel, hardware, etc.) give the
fault hypothesis.

Does the system have memory protection? How does the system synchronize
access to shared resources (time or semaphores)? Is the execution strategy
time-triggered or event-triggered?

For example, if the system is time-triggered and scheduled using e.g., strict
periodic fixed priority scheduling or static scheduling, we know that the
system will repeat its execution every LCM. For event-triggered systems we
have no such general limit and might have to observe and store copious
amounts of information.

14

4.1.1 Data flow, control flow, and resources
The actual information to be observed can be categorized into three groups:

• Data flow (internal and external)

• Control flow (execution and timing)

• Resources (memory and execution resources)

4.1.1.1 Data flow

• Inputs – determine for which input the task will execute, this is important if
the actual input is not provided by a test oracle, but rather by an external
process or an environment simulator.

• Outputs – what are the produced outputs via the predefined interfaces of the
task?

• Auxiliary outputs – output intermediately computed values, or program state,
which are not visible via the predefined interfaces. For sequential software
these are commonly implemented using e.g., assertions, or even using printf
statements in C. For distributed real-time systems the situation is more
complex and we need to define the type of data we additionally need.
Typically these are related to memory mapped I/O interfaces, for example
received messages over the network, readings of A/D converters, readings of
the local clock, etc. Because any additional outputs will require more
memory, communication bandwidth, and execution time, we need to take
these auxiliary outputs into account when designing and scheduling, in order
to avoid the probe-effect. These auxiliary outputs could also be
parameterized, i.e., we can during run-time switch between different auxiliary
outputs, given of course that this parameterization is designed in such a way
that the timing behavior is constant.

• Inter-node messages – Which are the messages that are passed between the
system nodes?

4.1.1.2 Control flow

• Inputs, outputs, auxiliary outputs, and inter-node messages. At what time and
in what order were the inputs received? At what time and in what order were
the outputs produced?

• Task switches – which, when, and in what order are tasks starting,
preempting, and finishing? We can make use of this information for deriving
the synchronization and execution orderings between tasks. We can also make
use of the timing information in order to deem if tasks start too early, too late,
finish too late or finish too early. We can further measure the periodicity of
the tasks and thus deem if jitter requirements are met. Making use of this
timing information we can also measure the execution times of the tasks.

• Interrupts – which, when, how long, and in what order are interrupts
interfering with tasks. Using this information we can judge how the interrupts
interfere with the execution of the tasks. We can thus measure if basic
assumptions of interrupt overhead are true.

15

• Real-time kernel overhead. What is the execution time of the real-time kernel.
What are the latencies due to interrupt disable, that is when the kernel needs
to perform atomic operations it usually disables all interference by interrupts,
for how long time can the kernel block all interrupts?

• Tick rate. The tick rate is the frequency at which the real-time kernel is
invoked, and at which new scheduling decisions are taken. However, the tick
rate can vary due to global clock synchronization. That is, the inter arrival
time between ticks might increase or decrease if the local clock is to slow or
to too fast compared to the global time base.

4.1.1.3 Resources

• Memory use – stack use, etc. How much of the memory is used by the tasks,
interrupt service routines, or the kernel?

• CPU utilization. How much of the CPU’s calculating power is used?

• Network utilization. How much of the networks bandwidth is used?

• The state of the real-time kernel: Which tasks are waiting for their turn to
execute (waiting queue, list, or table)? Which task is running? Which tasks
are blocked?

It is very important to deem which information is necessary for monitoring of the
system, because if you extract too much there will be a heavy performance and cost
penalty. If you extract too little, the precision of the observations will be too coarse or
simply non-deterministic for judging how and why the system behaved as it did. For
determinism there is a least necessary level of observability required, i.e., we need to
observe the necessary and sufficient parameters as defined in section 3.5. Any
additional (useful) information surpassing the level of necessity for determinism will
increase the precision of the observations. Think of inputs, and outputs for sequential
software as the least necessary level for determinism, while debugging provides a
higher level of observability (precision) since we can inspect the internal control flow
and the contents of the variables.

16

4.2 Elimination of perturbations
After a decision on what entities to observe we need to decide on how to eliminate
the probe-effect. There are basically three approaches (1) non-intrusive/passive
hardware, (2) intrusive software instrumentation, and a hybrid (3) where the software
instrumentation is minimized.

4.2.1 Hardware monitoring
A transparent non-intrusive approach towards monitoring, is the application of
special hardware, e.g. hardware that allows buss sniffing, or non-intrusive access to
memory via dual-port memories, etc., but also through the use of hardware CPU
emulators, (Lauterbach et al. [34]). Hardware monitoring has been applied for
performance measurements [4], execution monitoring of multiprocessor systems [38],
and real-time systems [39][47][68]. Since the monitoring hardware is interfaced to
the target system’s hardware via the CPU socket (emulator) or via the data and
address busses, it can observe the target system without interfering with its execution,
and thus not introduce any probe-effects. The drawbacks are that the monitoring
mechanisms must be very target specific and therefore very expensive, but also that
the observations will be on a very low level of detail, since only the external
interfaces of the microprocessors and shared resources such as dual-port memories,
can be monitored. The ever-increasing integration of functionality in current general-
purpose micro-controllers makes it correspondingly harder to observe the internal
behavior of the micro controllers/CPUs, due to cache memory, on-chip memory, etc.
Hardware monitoring must also be considered early in the design of the system since
monitoring mechanisms will be difficult to integrate when the rest of the hardware
configuration is set. Non-intrusive monitoring of distributed real-time systems also
requires that we have dedicated monitoring hardware on each node, and that the
nodes are interconnected via a dedicated monitoring network for data transfer and
synchronization, in order to avoid the probe-effect. We need also establish a globally
synchronized time base, relative which all observed events on the nodes can be
correlated otherwise there can be no guarantees of the consistency between
observations.

It can be argued that the cost for the monitoring hardware will only impact the
development budget, not the production cost, since the monitoring hardware can be
removed from the target system. Experience of software development has however
shown that maintainability is a necessity also after deployment. The non-portability,
the lack of scalability and the observations low level of detail severely limit the
viability of the hardware approach. The current trend of making application specific
hardware using FPGAs and VHDL [6] gives, however, an opportunity to conveniently
integrate non-intrusive monitoring mechanisms in the hardware for single node
systems.

4.2.2 Hybrid monitoring
In order to increase the level of abstraction and decrease the amount of information
recorded, hybrid approaches to monitoring have been suggested. “Triggers” are
implemented in software, which using a minimum number of instructions assists the
hardware in recording significant events. Software triggers do for example, write to
specific addresses that are memory mapped with the monitoring hardware, or use
special co-processor instructions. When the monitoring software writes to these

17

addresses the hardware records the data passed on the data bus of the processor.
Using this approach the limitations of hardware monitoring can be alleviated,
although the cost and non-portability issues still remain. The monitoring instructions
in the software must also be resource adequate, and remain in the target system in
order to avoid the probe-effect. Hybrid performance monitoring of distributed
systems have been covered by Haban et al. [22], and performance monitoring of
multiprocessor systems by Mink et al. [45][52][20].

4.2.3 Software monitoring
Historically, the contributing motivations for using hardware, and hybrid, monitoring
approaches have been the problem of predicting the perturbations caused by
instrumenting software [15]. That is, any instrumentation of the software will require
memory and execution time resources, while hardware can passively monitor the
system with no interference. For software instrumentation there will be a probe-
effect, if the probes are removed after satisfactory monitoring, or if the probes are
added to a system that has already been shown, e.g., using scheduling theory, to
always meet its deadlines. If the probes are not removed there will be a financial
penalty due to the dedicated resources (memory, processing, bandwidth, etc.) or they
might hamper the performance of the system.

In order to test and debug a system to satisfactory levels of reliability we
fundamentally need to observe the system, and by including instrumentation code in
the software (application and kernel), we can observe significantly more than possible
with hardware approaches. Software monitoring of real-time systems have been
covered by Chodrow et al [9], distributed systems by Joyce et al [24][44], and
distributed real-time systems by Tokuda et al [66][51]. In general it is necessary to
leave the software probes in the target system in order to eliminate the probe-effect. If
the target system is a real-time system, which can be scheduled e.g., using fixed
priority or static scheduling it is straightforward to analyze the effects that the probes
have on the system. Just make the probes part of the design, i.e., allocate execution
time and memory, and then make use of execution time analysis [50] and scheduling
theory [1][40][69]. For monitoring of distributed real-time systems we need also to
allocate communication bus bandwidth and account for the probes when making the
global schedule. We need also establish a global time-base in order to correlate
observations on different nodes.

18

4.2.3.1 Software probes
For software monitoring of distributed real-time systems we have identified the
following four different types of probes, depending on where they are implemented:

• Kernel-probes – System and kernel level probes, monitor task switches, interrupt
interference, etc. (Figure 4-1). These types of probes are typically not
programmable by the application designer, but rather given as an infrastructure by
the real-time kernel. In order to avoid the probe effect, these types of probes
should be left permanently in the kernel, their contributing overhead must also be
predictable, and minimized.

• Inline-probes – Are task level probes that add auxiliary outputs to the task they
instrument (Figure 4-2). These types of outputs are outputs that are regarded
necessary from a monitoring, testing or debugging perspective, rather than from a
functional application requirement perspective. As they are part of the application
code they will also be covered in the estimations, or measurements of the
execution times. This also means that we usually need to let them remain in the
target system in order to eliminate the probe effect

.

TASK
Recorder

Time stamps

Activation
System calls
Preemptions
Termination
Interrupt hits

RT-kernel
monitor

Figure 4-1. Kernel-probe mechanism.

….

….

 printf(“red alart”);

…

Figure 4-2. Inline- probe.

19

• Probe-tasks – Are tasks dedicated to collecting data from kernel-probes, inline-
probes and other probe-tasks. As depicted in the Figure 4-3, a dedicated probe-
task receives data from a set of tasks. All probe-tasks must be taken into account
when designing and scheduling the system. These types of probes need also
remain in the target system in order to avoid the probe effect. We will however
soon elaborate on this, and show that there are certain circumstances that allow
for these probes to be removed from the target system.

• Probe-nodes – Are dedicated nodes that collect data from probe-tasks and are
able to monitor communication busses (Figure 4-4). The probe-node can also
analyze the collected data for performance estimations or for testing and
debugging. These probe-nodes must also be taken into account when allocating
resources for the system since they will require communication bus bandwidth,
unless they passively eavesdrop on the network. These types of probes are
however easier to remove from the target system since they usually are self-
contained computing elements, and can thus be regarded as passively observing
hardware monitoring elements, and consequently they can be removed with
minimal interference.

Sample

Sample
1

Control
Actuate

Sample
2

Period = 5 ms Period = 30 ms

Probe

Figure 4-3. Probe-task receives data from other tasks.

Figure 4-4. Probe-node.

20

4.2.3.2 Resource allocation
The prerequisites for avoiding the probe-effect when using the above-defined probes
are the allocation of sufficient resources e.g., execution time, network bandwidth and
memory. It is not very plausible that these resources will “pop” up in the right place
during the test phase if they have not been taken into account during the design phase.

Eliminating the probes?

In most embedded systems the execution time (CPU speed) and memory are limited
resources, mostly due to large production volumes, where per unit cost reduction is of
significance. From an end-quality, and verification point of view, it is not hard to
motivate the extra cost for dedicated probes. That is, you fundamentally need the
probes for testing. If you do not have the probes you cannot assess the reliability, or
find the errors. Accidents have however, shown that having non-functional code in
the target system can be hazardous [71]. Some testing measures are sometimes also
deemed so hazardous that they must by all means be eliminated from the target
system. Examples include test procedures for train signaling systems, where the test
procedures actually change the state of the signals, and consequently could an
inadvertent execution of these procedures during runtime cause severe accidents.

So, is there any possibility for us to remove probes after satisfactory testing without
introducing the probe-effect? For some execution strategies, e.g., statically scheduled
real-time systems, probes can be removed without temporal side-effects if they are
situated within temporal firewalls [56]. That is, as long as we do not change the start
and completion times of tasks, and change their times of output (communication or
access to shared resources), we can remove the probes (Figure 4-5). The probes can
also be eliminated in fixed priority scheduled systems, if we make use of offsets and
thus erect temporal firewalls, or if the probes have lower priority than the rest of the
tasks in the system (Figure 4-6). In the latter case we must also guarantee that the
monitoring probes cannot ever block a higher priority task.

If it now would be possible to eliminate the probes, to what end could we use the
spare resources (memory and time)? If we remove the probes and thus decrease the
processor utilization, we could possibly use the spare resources for non-critical
activities (soft real-time tasks) [13]. However, how do we guarantee that the non-
critical software does not introduce new errors? In most micro-controllers we do not
have memory protection schemes, and consequently can a soft real-time task wreak
havoc in the memory space where the hard real-time tasks reside and operate. Could
we use a cheaper and slower processor? It is not very likely that we could use a
processor with different timing characteristics than the one tested, because all
execution times and scheduling are based on the timing specifics of the target

A B C

2 4 6 8 10

Figure 4-5. Probe task B can be
removed due to fixed release times
of A and C.

A A A

B
C

2 4 6 8 10

Figure 4-6. Low priority probe
task A can be removed without
side effects.

21

processor. That is, if we change the processor we need to reschedule the entire
system, and consequently retest the entire system again; thus gaining nothing.

Memory reduction

One possible benefit however, could be the reduction of memory use. If it can be
shown that the removal of probes will not change the functional behavior of the
system with respect to memory access, and memory side effects, and all the memory
used by the probes have been allocated in a specific address space, we could remove
this memory and thus save money.

4.3 Defining a global state
In order to correlate observations in the system we need to know their orderings, i.e.,
determine which observations are concurrent, and which precede and succeed a
particular event. In single node systems or tightly coupled multiprocessor systems
with a common clock this is not a problem, but for distributed systems without a
common clock this is a significant problem. An ordering on each node can be
established using the local clocks, but how can observations between nodes be
correlated?

One approach is to establish a causal ordering between observed events, using for
example logical clocks [32] derived from the messages passed between the nodes.
However, this is not a viable solution if tasks on different nodes work on a common
external process without exchanging messages, or when the duration between
observed events is of significance. In such cases we need to establish a total ordering
of the observed events in the system. This can be achieved by forming a synchronized
global time base [14][26]. That is, we keep all local clocks synchronized to a
specified precision δ, meaning that no two nodes in the system have local clocks
differing by more than δ.

Figure 4-7 illustrates the local ticks in a distributed system with three nodes, all with
tick rate Π, and synchronized to the precision δ. There is no point in having Π ≤ δ,
because the precision δ dictates the margin of error of clock readings, and thus a Π ≤
δ would result in overlaps of the δ intervals during which the synchronized local ticks
may occur [31].

Consider Figure 4-8, illustrating two external events that all three nodes can observe,
and which they all timestamp. Due to the sparse time base [28] and the precision δ,

Figure 4-7. The occurrence of local ticks on three nodes

δ δ

C1(t)
i+1i

i+1

i+1

i

i

Π

C2(t)

C3(t)

22

we end up with timestamps of the same event that differ by 1 time unit (i.e., Π) while
still complying with the precision of the global time base. This means that some
nodes will consider events to be concurrent (i.e., having identical time stamps), while
other nodes will assign distinct time stamps to the same events. This is illustrated in
Figure 4-8, where node 2 will give the events e1 and e2 identical time stamps, while
they will have difference 2 and 1 on nodes 1 and 3, respectively. That is, only events
separated by more than 2Π can be globally ordered. Due to the precision of the global
clock synchronization there is thus a smallest possible granule of time defined by 2δ
for deterministic ordering events in the system, since tick overlaps are not acceptable,
i.e., 2Π > 2δ. Consequently the ultimate precision of the global state, i.e., the
observed state, will be defined by the precision of the global clock synchronization.

4.4 Reproduction of observations
In order to reproduce observations we must bring about the exact same circumstances
as when the original observations were made. That is, for distributed real-time
systems we need to reproduce the inputs, and as the behavior of a distributed real-
time system depends on the orderings, and timing of the executing and
communicating tasks, we need also reproduce that behavior in order to reproduce
their outputs.

4.5 Reproducing inputs
For the reproduction of inputs it is common to use environment simulators [19][37].
The simulators are models of the surrounding environment, e.g., models of the
hardware, or the user and user interface, that can simulate the environment’s inputs
and interactions with the target system, with respect to contents, order and timing.

Classically, the environment simulators have not focused on reproducing inputs to the
system, but rather been necessities when the target hardware has not been available,
due to concurrent development, or when the application domain has been safety-
critical. For the verification of safety-critical systems it is necessary to produce very
rare scenarios (10-9 occurrences/hour) that would be extremely difficult (or even
dangerous) to produce even if the target system and target environment were
available to the testers [73][57]. Examples are space applications, weapons systems,
and medical treatment devices.

Figure 4-8. Effects of a sparse time base.

Event e2Event e1

C1(t)

C2(t)

C3(t)

δ δ

i

i

i

i+1

i+1

i+1

23

4.6 Reproduction of complete system behavior
When it comes to the reproduction of the state and outputs of single tasking RTS,
multitasking RTS and DRTS, with respect to the orderings, and timing of the
executing and communicating tasks, there are two approaches:

(1) Off-line replays, i.e., record the runtime behavior and examine it while
replaying it off-line.

(2) On-line reproduction, i.e., rerun the system while controlling all necessary
conditions.

4.6.1 Deterministic off-line replay
The first approach, on-line recording and off-line replay, is commonly referred
to as deterministic replay in the literature and is used for debugging. The basic
idea, is an equivalent of a tape recorder, or the black-box in airplanes, where
significant events are recorded over a period of time during run-time, and then
using this recording the systems behavior can be reproduced and examined off-
line. The examinations can be of finer detail than the events recorded. For
example, by recording the actual inputs to tasks we can off-line re-execute the
tasks using a debugger and examine the internal behavior to a finer degree of
detail than recorded. If we also record all synchronization and scheduling
events, i.e., the task switches, we can also off-line examine the actual real-time
behavior without having to run the system in real-time, and without
introducing any probe-effect. We can thus deterministically replay the task
executions, the task switches, and the system behavior over and over.

In a survey on the testability of distributed real-time systems Schütz [56] has
identified three issues related to deterministic replay in general, which we briefly
comment below:

Issue 1: One can only replay what has previously been observed, and no
guarantees that every significant system behavior will be observed accurately can
be provided. Since replay takes place at the machine code level the amount of
information required is usually large. All inputs and intermediate events, e.g.
messages, must be kept.

The amount and the necessary information required is of course a design issue,
but it is not true that all inputs and intermediate messages must be recorded. The
replay can as we have shown actually re-execute the tasks in the recorded event
history. Only those inputs and messages which are not re-calculated, or re-sent,
during the replay must be kept. This is specifically the case for RTS with periodic
tasks, where we can make use of the knowledge of the schedule (precedence
relations) and the duration before the schedule repeats it self (the LCM – the
Least Common Multiple of the task period times.) In systems where deterministic
replay has previously been employed, e.g., distributed systems [46] and
concurrent programming (ADA) [61] this has not been the case. The restrictions,
and predictability, inherent to scheduled RTS do therefore give us the great
advantage of only recording the data that is not recalculated during replay.

Issue 2: If a program has been modified (e.g., corrected) there are no guarantees
that the old event history is still valid.

24

If a program has been modified, the relative timing between racing tasks can
change and thus the recorded history will not be valid. The timing differences can
stem from a changed data flow, or that the actual execution time of the modified
task has changed. In such cases it is likely that a new recording must be made.
However, the probability of actually recording the sequence of events that pertain
to the modification may be very low. This is an issue for regression testing
[62][63], which we will discuss in section 4.6.2.

Issue 3: The recording can only be replayed on the same hardware as the
recording was made on.

The event history can only be replayed on the target hardware. This is true to
some extent, but should not be a problem if remote debugging is used. The replay
could also be performed on the host computer if we have a hardware simulator,
which could run the native instruction set of the target CPU. Another possibility
would be to identify the actual high-level language statements where task
switches or interrupts occurred, rather than trying to replay the exact machine
code instructions, which of course are machine dependent. In the latter case we of
course run into the problem of defining a unique state when differentiating
between e.g., iterations in loops.

Related work

There are a few descriptions of deterministic replay mechanisms (related to real-
time systems) in the literature:

• A deterministic replay method for concurrent Ada programs is presented by
Tai et al. [61]. They log the synchronization sequence (rendezvous) for a
concurrent program P with input X. The source code is then modified to
facilitate replay; forcing certain rendezvous so that P follows the same
synchronization sequence for X. This approach can reproduce the
synchronization orderings for concurrent Ada programs, but not the duration
between significant events, because the enforcement (changing the code) of
specific synchronization sequences introduces gross temporal probe-effects.
The replay scheme is thus not suited for real-time systems. Further, issues like
unwanted side effects caused by preempting tasks are not considered. The
granularity of the enforced rendezvous does not allow preemptions, or
interrupts for that matter, to be replayed. It is unclear how the method can be
extended to handle interrupts, and how it can be used in a distributed
environment.

• Tsai et al. present a hardware monitoring and replay mechanism for real-time
uniprocessors [68]. Their approach can replay significant events with respect
to order, access to time, and asynchronous interrupts. The motivation for the
hardware monitoring mechanism is to minimize the probe-effect, and thus
make it suitable for real-time systems. Although it does minimizes the probe-
effect, its overhead is not predictable, because their dual monitoring
processing unit causes unpredictable interference on the target system by
generating an interrupt for every event monitored [12]. They also record
excessive details of the target processors execution, e.g., a 6 byte immediate
AND instruction on a Motorola 68000 processor generates 265 bytes of
recorded data. Their approach can reproduce asynchronous interrupts only if
the target CPU has a dedicated hardware instruction counter. The used
hardware approach is inherently target specific, and hard to adapt to other

25

systems. The system is designed for single processor systems and has no
support for distributed real-time systems.

• The software-based approach HMON [12] is designed for the HARTS
distributed (real-time) system multiprocessor architecture [59]. A general-
purpose processor is dedicated to monitoring on each multiprocessor. The
monitor can observe the target processors via shared memory. The target
systems software is instrumented with monitoring routines, by means of
modifying system service calls, interrupt service routines, and making use of a
feature in the pSOS real-time kernel for monitoring task-switches. Shared
variable references can also be monitored, as can programmer defined
application specific events. The recorded events can then be replayed off-line
in a debugger. In contrast to the hardware supported instruction counter as
used by Tsai et al., they make use of a software based instructions counter, as
introduced by Mellor-Crummey et. al. [43]. In conjunction with the program
counter, the software instruction counter can be used to reproduce interrupt
interferences on the tasks. The paper does not elaborate on this issue. Using
the recorded event history, off-line debugging can be performed while still
having interrupts and task switches occurring at the same machine code
instruction as during run-time. Interrupt occurrences are guaranteed off-line
by inserting trap instructions at the recorded program counter value. The
paper lacks information on how they achieve a consistent global state, i.e.,
how the recorded events on different nodes can consistently be related to each
other. As they claim that their approach is suitable for distributed real-time
systems, the lack of a discussion concerning global time, clock
synchronization, and the ordering of events, diminish an otherwise interesting
approach. Their basic assumption about having a distributed system
consisting of multiprocessor nodes makes their software approach less
general. In fact, it makes it a hardware approach, because their target
architecture is a shared memory multiprocessor, and their basic assumptions
of non-interference are based on this shared memory and thus not applicable
to distributed uniprocessors.

26

4.6.2 On-line reproduction
To facilitate reproducible execution on-line we must identify which execution
orderings, or parts of execution orderings that can be enforced without
introducing any probe effect.

In order to reason about this we make some refinements on the original system
model in chapter 2. We assume that the software that runs on the distributed
system consists of a set of concurrent tasks, communicating by message passing.
Functionally related and cooperating tasks, e.g., sample-calculate-actuate loops in
control systems, are defined as transactions. The relationship between the
cooperating tasks with respect to precedence (execution order), interactions (data-
flow), and a period time typically define each transaction. The tasks are
distributed over the nodes, typically with transactions that span several nodes, and
with more than one task on each node. All synchronization is resolved before run-
time and therefore no action is needed to enforce synchronization in the actual
program code. Different release times and priorities guarantee mutual exclusion
and precedence. The distributed system is globally scheduled, which results in a
set of specific schedules for each node. At run-time we need only synchronize the
local clocks to fulfill the global schedule [25].

Task model

We assume a fairly general task model that includes both preemptive scheduling
of statically generated schedules [69] and fixed priority scheduling of strictly
periodic tasks [1][40]:

• The system contains a set of jobs J, i.e. invocations of tasks, which are
released in a time interval [t, t+TMAX], where TMAX is typically equal to the
Least Common Multiple (LCM) of the involved tasks period times, and t
is an idle point within the time interval [0, TMAX] were no job is
executing. The existence of such an idle point, t, simplifies the model
such that it prevents temporal interference between successive TMAX

intervals.

• Each job j∈ J has a release time rj, worst case execution time (WCETj),
best case execution time (BCETj), a deadline Dj and a priority pj. J
represents one instance of a recurring pattern of job executions with
period TMAX, i.e., job j will be released at time rj, rj+ TMAX, rj+ 2TMAX, etc.

• The system is preemptive and jobs may have identical release-times.

Related to the task model we assume that the tasks may have functional and
temporal side effects due to preemption, message passing and shared memory.
Furthermore, we assume that data is sent at the termination of the sending task
(not during its execution), and that received data is available when tasks start (and
is made private in an atomic first operation of the task) [13][29].

TASKRead(X) Write(X)

27

Figure 4-9. The resulting execution order
scenarios for the job set in Table 6-1.

(1) (2) (3) (4)

(5)

Table 4-1. A job set for a
schedule with a LCM of 400
ms.
Task r p WCET BCET

A 0 4 39 9
B 40 3 121 39
C 40 2 59 49
A 100 4 39 9
A 200 4 39 9
A 300 4 39 9
D 350 1 20 9

On-line reproducibility

From the perspective of a single transaction, reproducible behavior can be
achieved by controlling the execution times of preceding and preempting jobs that
belong to other transactions. This of course only works in its entirety, if we
adhere to ordering failure semantics, that the jobs have no unwanted functional
side effects via unspecified interfaces, otherwise we could miss such errors.
Control over the execution times in other transactions can easily be achieved by
incorporating delays in the jobs, or running dummies, as long as they stay within
each job’s execution time range [BCET, WCET].

For example, consider Figure 4-9, which illustrates the possible execution
orderings of the schedule in Table 4-1. Assume now that task C and A belong to
one transaction, and tasks B, D to another transaction. Assume further that task C
uses the last five samples provided by task A. With respect to tasks A and C we
can reproduce the different scenarios by running a dummy in place of task B. By
varying the
execution time of
the dummy we
can enforce the
different
scenarios.

[BBCET, BWCET]:

(1) [39,60)

(2) [60,60]

(3) [121,121]

(4) (60,121]

(5) (60,121]

For a longer
discussion on the
factors for on-line
reproducibility
and determinism
see Thane et al.
[63][62].

28

5 SUMMARY
We have in this paper presented a framework for monitoring single tasking, multi-
tasking, and distributed real-time systems. This includes a description of what to
observe, how to eliminate the disturbances caused by the actual act of observing (the
probe effect), how to correlate observations (how to define a global state), and how to
reproduce them. We have given a taxonomy of different observation techniques, and
where, how and when these techniques should be applied to obtain deterministic
observations. We have argued that it is essential to consider monitoring early in the
design process in order to achieve efficient and deterministic observations. Software
monitoring is also the preferable approach since it scales better than the hardware
approaches. Software monitoring can compared to hardware monitoring also observe
the system on many levels of abstraction while hardware monitoring is limited to
observation of low level details.

29

6 REFERENCES
[1] Audsley N. C., Burns A., Davis R. I., Tindell K. W. Fixed Priority Pre-emptive Scheduling: A

Historical Perspective. Real-Time Systems journal, Vol.8(2/3), March/May, Kluwer A.P.,
1995.

[2] Audsley N. C., Burns A., Richardson M.F., and Wellings A.J. Hard Real-Time Scheduling:
The Deadline Monotonic Approach. Proc. 8th IEEE Workshop on Real-Time Operating
Systems and Software, pp. 127-132, Atlanta, Georgia, May, 1991

[3] Beizer B. Software testing techniques. Van Nostrand Reinhold, 1990.
[4] Brantley W.C., MeAuliffe K.P. and Ngo T.A. RP3 performance monitoring hardware. In M.

Simmons, R. Koskela, and I. Bucher, eds. Instrumentation for Future Parallel Computing
Systems, pp. 35-45. Addison-Wesley, Reading, MA, 1989.

[5] Butler, R.W. and Finelli, G.B. The infeasibility of quantifying the reliability of life-critical
real-time software. IEEE Transactions on Software Engineering, (19): 3-12, January, 1993.

[6] Calvez J.P., and Pasquier O. Performance Monitoring and Assessment of Embedded HW/SW
Systems. Design Automation for Embedded Systems journal, 3:5-22, Kluwer A.P., 1998.

[7] Chandy K. M. and Lamport L. Distributed snapshots: Determining global states of distributed
systems. ACM Trans. On Computing Systems, 3(1):63-75, February 1985.

[8] Chen J. and Burns A. Asynchronous Data Sharing in Muliprocessor Real-Time Systems Using
Process Consensus. 10th Euromicro Workshop on Real-Time Systems, June 1998,

[9] Chodrow S.E, Jahanian F., and Donner M. Run-time monitoring of real-time systems. In Proc.
of IEEE 12th Real-Time Systems Symposium, San Antonio, TX, pp. 74-83, December 1991.

[10] Clarke S.J. and McDermid JA. Software fault trees and weakest preconditions: a comparison
and analysis. Software Engineering Journal. 8(4):225-236, 1993.

[11] DeMillo R. A., McCracken W.M., Martin R.J., and Passafiume J.F. Software Testing and
Evaluation. Benjamin/Cummings Publications. Co., 1987.

[12] Dodd P. S., Ravishankar C. V. Monitoring and debugging distributed real-time programs.
Software-practice and experience. Vol. 22(10), pp. 863-877, October 1992.

[13] Eriksson C., Mäki-Turja J., Post K., Gustafsson M., Gustafsson J., Sandström K., and Brorsson
E. An Overview of RTT: A design Framework for Real-Time Systems. Journal of Parallel and
Distributed Computing, vol. 36, pp. 66-80, Oct. 1996.

[14] Eriksson C., Thane H. and Gustafsson M. A Communication Protocol for Hard and Soft Real-
Time Systems. In the proceedings of the 8th Euromicro Real-Time Workshop, L'Aquila Italy,
June, 1996.

[15] Ferrari D. Consideration on the insularity of performance perturbations. IEEE Trans.
Software Engineering, SE-16(6):678-683, June, 1986.

[16] Fidge, C. Fundamentals of distributed system observation. IEEE Software, (13):77 – 83,
November, 1996.

[17] G J. Myers. The Art of Software Testing. John Wiley and Sons. New York 1979.
[18] Gait J. A Probe Effect in Concurrent Programs. Software – Practice and Experience,

16(3):225-233, Mars, 1986.
[19] Glass R. L. Real-time: The “lost world” of software debugging and testing. Communications

of the ACM, 23(5):264-271,May 1980.
[20] Gorlick M. M. The flight recorder: An architectural aid for system monitoring. In Proc. of

ACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, CA, pp. 175-183,
May 1991.

[21] Graham R. L. Bounds on Multiprocessing Timing Anomolies. SIAM journal of Applied
Mathematics, 17(2), March, 1969.

[22] Haban D. and Wybranietz D. A Hyrbid monitor for behavior and performance analysis of
distributed systems. IEEE Trans. Software Engineering, 16(2):197-211, February, 1990.

[23] Hetzel B.. The Complete Guide to Software Testing. 2nd edition. QED Information Sciences,
1988.

30

[24] Joyce J., Lomow G., Slind K., and Unger B. Monitoring distributed systems. ACM Trans. On
Computer Systems, 5(2):121-150, May 1987.

[25] Kopetz H. and Grünsteidl H. TTP - A Protocol for Fault-Tolerant Real-Time Systems. IEEE
Computer, January, 1994.

[26] Kopetz H. and Ochsenreiter W. Clock Synchronisation in Distributed Real-Time Systems.
IEEE Trans. Computers, 36(8):933-940, Aug. 1987.

[27] Kopetz H. and Reisinger J. The Non-Blocking Write Protocol NBW: A Solution to a Real-
Time Synchronization Problem. In Proceedings of he 14th Real-Time Systems Symposium, pp.
131-137, 1993.

[28] Kopetz H. Sparse time versus dense time in distributed real-time systems. In the proceedings
of the 12th International Conference on Distributed Computing Systems, pp. 460-467, 1992.

[29] Kopetz H., Damm A., Koza Ch., Mulazzani M., Schwabl W., Senft Ch., and Zainlinger R..
Distributed Fault-Tolerant Real-Time Systems: The MARS Approach. IEEE Micro, (9):25-40,
1989.

[30] Kopetz H.. Event-Triggered versus Time-Triggered Real-Time Systems. Lecture Notes in
Computer Science, vol. 563, Springer Verlag, Berlin, 1991.

[31] Kopetz, H. and Kim, K. Real-time temporal uncertainties in interactions among real-time
objects. Proceedings of the 9th IEEE Symposium on Reliable Distributed Systems, Huntsville,
AL, 1990.

[32] Lamport L. Time, clock, and the ordering of events in a distributed systems. Comm. Of ACM,
(21):558-565: July 1978.

[33] Laprie J.C. Dependability: Basic Concepts and Associated Terminology. Dependable
Computing and Fault-Tolerant Systems, vol. 5, Springer Verlag, 1992.

[34] Lauterbach emulators. Lauterbach GmbH Germany. http://www.lauterbach.com/.
[35] LeBlanc T. J. and Mellor-Crummey J. M. Debugging parallel programs with instant replay.

IEEE Trans. on Computers, C-36(4):471-482, April 1987.
[36] LeDoux C.H., and Parker D.S. Saving Traces for Ada Debugging. In the proceedings of Ada

int. conf. ACM, Cambridge University press, pp. 97-108, 1985.
[37] Lee J.Y., Kang K.C.,Kim G.J., Kim H.J. Form the missing piece in effective real-time system

specification and simulation. In proc. IEEE 4th Real-Time Technology and Applications
Symposium, pp.155 – 164, June 1998.

[38] Liu A.C. and Parthasarathi R. Hardware monitoring of a multiprocessor systems. IEEE Micro,
pp. 44-51, October 1989.

[39] Lozzerini B., Prete C. A., and Lopriore L. A programmable debugging aid for real-time
software development. IEEE Micro, 6(3):34-42, June 1986.

[40] Lui C. L. and Layland J. W.. Scheduling Algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20(1), 1973.

[41] Malony A. D., Reed D. A., and Wijshoff H. A. G. Performance measurement intrusion and
perturbation analysis. IEEE Trans. on Parallel and Distributed Systems 3(4):433-450, July
1992.

[42] McDowell C.E. and Hembold D.P. Debugging concurrent programs. ACM Computing
Surveys, 21(4), pp. 593-622, December 1989.

[43] Mellor-Crummey J. M. and LeBlanc T. J. A software instruction counter. In Proc. of 3d
International Conference on Architectural Support for Programming Languages and Operating
Systerns, Boston, pp. 78-86, April 1989

[44] Miller B.P., Macrander C., and Sechrest S. A distributed programs monitor for Berkeley
UNIX. Software Practice and Experience, 16(2):183-200, February 1986.

[45] Mink K., Carpenter R., Nacht G., and Roberts J. Multiprocessor performance measurement
instrumentation. IEEE Computer, 23(9):63-75, September 1990.

[46] Netzer R.H.B. and Xu Y. Replaying Distributed Programs Without Message Logging. In proc.
6th IEEE Int. Symposium on High Performance Distributed Computing. Pp. 137-147. August
1997.

31

[47] Plattner B. Real-time execution monitoring. IEEE Trans. Software Engineering, 10(6), pp.
756-764, Nov., 1984.

[48] Poledna S. Replica Determinism in Distributed Real-Time Systems: A Brief Survey. Real-
Times systems Journal, Kluwer A.P., (6):289-316, 1994.

[49] Powell D. Failure Mode Assumptions and Assumption Coverage: In Proc. 22nd International
Symposium on Fault-Tolerant Computing. IEEE Computer Society Press, pp.386-395, July,
1992.

[50] Puschner P. and Koza C. Calculating the maximum execution time of real-time programs.
Journal of Real-time systems, Kluwer A.P., 1(2):159-176, September, 1989.

[51] Raju S. C. V., Rajkumar R., and Jahanian F. Monitoring timing constraints in distributed real-
time systems. In Proc. of IEEE 13th Real-Time Systems Symposium, Phoenix, AZ, pp. 57-67,
December 1992.

[52] Reilly M. Instrumentation for application performance tuning: The M3l system. In Simmons
M., Koskela R., and Bucher I., eds. Instrumentation for Future Parallel Computing Systems,
pp. 143-158. Addison-Wesley, Reading, MA, 1989.

[53] Rothermel G. and Harrold M.J. Analyzing regression test selection techniques. IEEE trans.
Software Engineering. 8(22):529-551. August 1996.

[54] Rushby J., Formal Specification and Verification for Critical systems: Tools, Achievements,
and prospects. Advances in Ultra-Dependable Distributed Systems. IEEE Computer Society
Press. 1995. ISBN 0-8186-6287-5.

[55] Sandström K., Eriksson C., and Fohler G. Handling Interrupts with Static Scheduling in an
Automotive Vehicle Control System. In proceedings of the 5th Int. Conference on Real-Time
Computing Systems and Applications (RTCSA’98). October 1998, Japan.

[56] Schütz W. Fundamental Issues in Testing Distributed Real-Time Systems. Real-Time Systems
journal, vol. 7(2): 129-157, Kluwer A.P., 1994.

[57] Schütz W. Real-Time Simulation in the Distributed Real-Time System MARS. In proc.
European Simulation Multiconference 1990, Erlangen, BRD, June 1990.

[58] Shimeall T. J. and Leveson N. G. An empirical comparison of software fault-tolerance and
fault elimination. IEEE Transactions on Software Engineering, pp. 173-183, Feb. 1991.

[59] Shin K. G. HARTS: A distributed real-time architecture. IEEE Computer, 24(5), pp. 25-35,
May, 1991.

[60] Sommerville I. Software Engineering. Addison-Wesley, 1992. ISBN 0-201-56529-3.
[61] Tai K.C, Carver R.H., and Obaid E.E. Debugging concurrent Ada programs by deterministic

execution. IEEE transactions on software engineering. Vol. 17(1), pp. 45-63, January 1991.
[62] Thane H. and Hansson H. Handling Interrupts in Testing of Distributed Real-Time Systems. In

proc. Real-Time Computing Systems and Applications conference (RTCSA’99), Hong Kong,
December, 1999.

[63] Thane H. and Hansson H. Towards Systematic Testing of Distributed Real-Time Systems. Proc.
20th IEEE Real-Time Systems Symposium, Phoenix, Arizona, December 1999.

[64] Thane H. and Hansson H. Using Deterministic Replay for Debugging of Distributed Real-
Time Systems. In proceedings of the 12th Euromicro Conference on Real-Time Systems
(ECRTS’00), Stockholm, June 2000.

[65] Tindell K. W., Burns A., and Wellings A.J. Analysis of Hard Real-Time Communications.
Journal of Real-Time Systems, vol. 9(2), pp.147-171, September 1995.

[66] Tokuda H., Kotera M., and Mercer C.W. A Real-Time Monitor for a Distributed Real-Time
Operating System. In proc. of ACM Workshop on Parallel and Distributed Debugging,
Madison, WI, pp. 68-77, May, 1988.

[67] Tsai J.P., Bi Y.-D., Yang S., and Smith R.. Distributed Real-Time System: Monitoring,
Visualization, Debugging, and Analysis. Wiley-Interscience, 1996. ISBN 0-471-16007-5.

[68] Tsai J.P., Fang K.-Y., Chen H.-Y., and Bi Y.-D. A Noninterference Monitoring and Replay
Mechanism for Real-Time Software Testing and Debugging. IEEE Trans. on Software Eng.
vol. 16, pp. 897 - 916, 1990.

32

[69] Xu J. and Parnas D. Scheduling processes with release times, deadlines, precedence, and
exclusion, relations. IEEE Trans. on Software Eng. 16(3):360-369, 1990.

[70] Yang R-D and Chung C-G. Path analysis testing of concurrent programs. Information and
software technology. vol. 34(1), January 1992

[71] Leveson N. G. Safeware - System, Safety and Computers. Addison Wesley 1995. ISBN 0-201-
11972-2.

[72] Littlewood B. and Strigini L. Validation of Ultrahigh Dependability for Software-based
Systems. Com. ACM, 11(36):69-80, November 1993.

[73] Parnas D.L., van Schouwen J., and Kwan S.P. Evaluation of Safety-Critical Software.
Communication of the ACM, 6(33):636-648, June 1990.

