
Evaluation of a Tool for Supporting Software Component
Services in Embedded Real-Time Systems

Frank Lüders and Ivica Crnkovic
Mälardalen University

Dept. of Computer Science and Electronics
PO Box 883, SE-721 23 Västerås, Sweden

+46 21 {15 17 28, 10 31 83}

{frank.luders, ivica.crnkovic}@mdh.se

Per Runeson
Lund University

Dept. of Communication Systems
PO Box 118, SE-221 00 Lund, Sweden

+46 46 222 93 25

per.runeson@telecom.lth.se

ABSTRACT
The use of software component models has become popular in the
development of desktop applications and distributed information
systems. The most successful models incorporate support for run-
time services of general use in their intended application domains.
There has been no widespread use of such models in the
development of embedded real-time systems and much research is
currently directed at defining new component models for this
domain. We have explored the alternative approach of extending
a mainstream component model with run-time services for
embedded real-time systems. A prototype tool has been developed
that generates code for a number of such services. To evaluate
this tool, we have conducted a multiple-case study, where four
teams of students were given the same development task. Two
teams were given the tool while the remaining two were not. This
paper describes the design of the study and our initial analysis of
the results.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
modules and interfaces, object-oriented design methods,
Microsoft Windows.

D.2.9 [Software Engineering]: Management – productivity.

C.3 [Special-Purpose and Application-Based Systems]: real-
time and embedded systems.

General Terms
Design, Economics, Experimentation, Human Factors.

Keywords
Software Component Services, Microsoft Component Object
Model.

1. INTRODUCTION
The use of software component models has become popular over
the last decade, in particular in the development of desktop
applications and distributed information systems. The most
successful component models in these domains include JavaBeans
[1] and ActiveX [2] for desktop applications and Enterprise
JavaBeans (EJB) [3] and COM+ [4] for information systems. In
addition to basic standards for naming, interfacing, binding, etc.,
these models also define standardized sets of run-time services
oriented towards the application domains they target. This
concept is generally termed software component services [5].
Software component models have not been widely used in the
development of real-time and embedded systems. It is generally
assumed that this is due to the special requirements such systems
have to meet, in particular with respect to timing predictability
and limited use of resources. Much research has been directed
towards defining new component models for real-time and
embedded systems, typically focusing on relatively small and
statically configured systems. Most of the published research
proposes models based on source code components and targeting
relatively narrow application domains. Examples of such models
include Koala for consumer electronics [6] and SaveCCM for
vehicle control systems [7].
An alternative approach is to strive for a component model for
embedded real-time systems based on binary components and
targeting a broader domain of applications, similarly to the
domain targeted by a typical real-time operating system. In our
previous work we have explored the possibility of using a
mainstream component model as the starting point and extending
it with software component services for embedded real-time
systems [8]. Specifically, we have investigated the use of the
Component Object Model (COM) [9] with the real-time operating
system Windows CE [10] and developed a prototype tool that
generates code for a number of services.
To evaluate the usefulness of the prototype tool, we have
conducted a multiple-case study where four development projects
were run in parallel. Two of these used the tool and two did not.
Before describing the study, we briefly present the prototype tool
and its rationale in Section 2. Section 3 describes the design of the
case study, Section 4 discusses the process of data collection in
more detail, and Section 5 presents our initial analysis of the
results. Some related work is briefly reviewed in Section 6 while
Section 7 presents conclusions and our plans for future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SERPS'06, October 18-19, 2006, Umeå, Sweden.

2. BACKGROUND
Software component models like EJB and COM+ include support
for various services that are generally useful in the domain of
distributed information systems. Examples of such services
include transaction control, data persistence, and security. Our
focus here is on services that address common challenges in
embedded real-time systems, including logging, synchronization,
and timing control. Although the sets of services are different, the
principles used to provide the run-time services are similar in
many respects.
A prototype tool for supporting software component services in
embedded real time systems was presented in [8]. The tool adds
services to COM components on Windows CE through the use of
proxy objects that intercept method calls. Figure 1 illustrates the
use of a proxy object that provides a simple logging service. The
object C2 implements an interface IC2 for which one wishes to
apply a logging service. A proxy object that also implements IC2
is placed between C2 and a client that uses the operations exposed
through IC2. The operations implemented by the proxy forward
all invocations to the corresponding operations in C2 in addition
to writing information about each invocation to some logging
medium.

Figure 1. A logging service proxy.

The tool takes as inputs a component specification along with
specifications of desired services and generates source code for a
proxy object. Component specifications may be in the form of
Interface Definition Language (IDL) files or their binary
equivalent Type Library (TLB) files. Desired services are either
specified in a separate file using an XML-based format or in the
tool’s graphical user interface, described further below. Access to
component source code is not required. Based on these inputs, the
tool generates a complete set of files that can be used with
Microsoft eMbedded Visual C++ to build a COM component
implementing the proxy objects (i.e., the proxies are themselves
COM objects). This process is depicted in Figure 2.
This use of proxy objects for interception is inspired by COM+.
However, rather than to generate proxies at run-time, they are
generated and compiled on a host computer and downloaded to
the embedded system along with the application components.
This process may occur when the software is initially downloaded
to the system or as part of dynamic reconfiguration of a system
that supports this. In the latter case, one can imagine updating or

adding proxies without updating or adding any application
components. The current version of the tool only generates proxy
code and does not address the registration and run-time
instantiation of components. This means that the client code must
instantiate each proxy along with the affected COM object and set
up the necessary connection between them.

Compile

ReadRead

IC2

C2_ProxyIProxy

IUnknown

C2_Proxy

C2
.IDL
.TLB

C2_Proxy
.CPP

.H

Applica
tion.
XML

Wizard/Code
Generator

IUnknown

C2

IC2

Figure 2. Proxy object generation.

Figure 3 shows the graphical user interface of the tool. After a
TLB or IDL file has been loaded all COM classes defined in the
file are listed. Checking the box to the left of a COM class causes
a proxy for that class to be generated when the button at the
bottom of the tool is pressed. Under each COM class, the
interfaces implemented by the class is listed and, under each
interface, the operations implemented by the interface. In
addition, the available services are listed with their names set in
brackets. Checking the box to the left of a service causes code to
be generated that provides the service for the element under
which the service is listed. In the current version of the tool, a
service for cyclic execution may only be specified for the
IPassiveController interface while all other services may only be
specified for individual operations. The IPassiveController
interface is described further below.
Checking the logging service results in a proxy that logs each
invocation of the affected operations. The timing service causes
the proxy to measure the execution time of the operation and
write it to the log at each invocation (if timing is checked but not
logging, execution times will be measured but not saved). The
synchronization service means that each invocation of the
operation will be synchronized with all other invocations of all
other operations on the proxy object for which the
synchronization service is checked. The only synchronization
policy currently supported is mutual exclusion.
The timeout service has a numeric parameter. When this service is
selected (by clicking the name rather than the box) as in Figure 3,
an input field marked Milliseconds is visible near the bottom of
the tool. Checking the service results in a proxy where
invocations of the operation always terminate within the specified
number of milliseconds. In the case that the object behind the
proxy does not complete the execution of the operation within this
time, the proxy forcefully terminates the execution and returns en
error code.

Figure 3. User interface of the prototype tool.

The cyclic execution service is particularly suited for components
that implement process controllers [11]. If this service is checked,
the proxy will implement an interface called IActiveController
instead of IPassiveController. Both interfaces share a common set
of operations for accessing control parameters, including the
controller’s set point. IActiveController includes operations for
setting the period and threading priority of the cyclic execution.
IPassiveController includes one operation for updating the
controller’s output and one for updating the its internal state. The
proxy invokes both these operations cyclically and the latter is
synchronized with the operations for accessing control
parameters.

3. CASE STUDY DESIGN
In order to evaluate the tool support, we launched an empirical
study. The study is conducted using a multiple-case study design
[12]. We prefer considering it a case study rather than an
experiment, since from an experimental point of view, it is a
quasi-experimental “post-test non-equivalent groups design”
according to Robson’s terminology [13, pp. 133-146]. We
observe four different project teams, solving the same problem
with two different sets of working conditions – access to tool or
not. We measure their results in quantitative terms of time
consumption, problem reporting and a qualitative analysis of their
technical solutions. We can not distinguish quantitatively between
the effects of the tool and the teams’ capabilities, but seen as a

case study, we may find indications and opinions regarding the
value and contribution of the tool.
The study was conducted in the context of a project assignment
for third year students in computer science that runs over 10
weeks with 50% workload –corresponding to 7.5 standard
European credit units. There were 30 students, who were divided
into four project teams of seven or eight members. During the
early phases of the projects, some students dropped of from the
course, such that the team sizes varied from five to eight
members.
The assignment of the projects was to develop a component-based
application to be run under Windows CE on a PC connected to
two water tanks where the water level can be controlled by
individual pumps. A requirement was that the software should
include a component implementing a PID controller [11] able to
control the pumps. The controller had to sample the current water
level and update the pump voltage in a timely fashion. It should
furthermore be possible to change the desired water level and
control parameters during the operation of the controller in a
thread-safe manner.
The detailed requirements of each project were elicited by the
project teams through negotiation with a course instructor acting
as customer. Thus, the requirements were not identical. Over the
course of the projects, some changes in the requirements were
introduced by the customer. This was in part based on each
team’s achievements to avoid the task being too simple for some
teams. In addition, two of the teams were given the additional
requirement that they should use the prototype tool to implement
multithreading, synchronization, and logging of process data,
The design used for the study is summarized as follows:

1. The subjects were divided into four teams by the course
instructors with the intention of making the teams as
equal as possible.

2. The team capabilities were assessed based on the
earliest phases of the projects – requirements capture
and user interface prototyping. We found that two teams
were “strong” and two teams were “weak”.

3. All four teams were given (almost) the same task –
implementation of the control system for a water tank.
One strong and one weak team were given access to the
tool, while the other two teams were not.

4. Data was collected during the course of the project from
time sheets and weekly project reports, and the project
deliverables were assessed – a project description,
project final report, design description and code.

The case study teams are summarized in Table 1.

Table 1. Case study design overview.

 Tool support No tool support

Strong team Team 1 Team 2

Weak team Team 3 Team 4

Threats to the validity of a case study may be grouped into three
categories; reactivity, respondent bias and researcher bias [13,
p.172]. Reactivity means that the studied phenomenon behaves

differently due to the fact that it is observed. The studied context
is clearly artificial and observed in a teaching context, but all four
teams are observed in the same way. Respondent bias means the
risk that the respondents act based on expectations. The tool
evaluation is a minor part of the study, and hence it is not clear to
them what is expected. Further, the triangulation using both
quantitative and qualitative measurements reduces the bias.
Researcher bias means the risk that the researchers only see the
positive signs pro their proposed tool. This is addressed by
involving a third author for peer debriefing and negative case
analysis. Triangulation also reduces researcher bias.

4. DATA COLLECTION
Each of the four project teams were charged with delivering a
number of documents during the course of the project. In addition,
the status of each project was presented orally at weekly meetings
with a steering group, consisting of two course instructors for
each project. Among the information collected was the number of
working hours for each team member and activity. Table 2
summarizes the reported working hours per activity for each
group in number of hours as well as in percent of the total.

Table 2. Reported working hours.

Activity Team 1 Team 2 Team 3 Team 4
Project
management

80 h
6%

37 h
3%

131 h
12%

120 h
17%

Configuration
management

40 h
3%

23 h
2%

64 h
6%

40 h
6%

Requirements
management

400 h
28%

210 h
20%

78 h
7%

70 h
10%

Software
design

280 h
19%

160 h
15%

131 h
12%

80 h
11%

Software
coding

480 h
33%

345 h
32%

290 h
26%

220 h
31%

Software
testing

160 h
11%

160 h
15%

115 h
10%

131 h
18%

Other activities 0 h
0%

130 h
12%

300 h
27%

60 h
8%

Total

1440 h
100 %

1065 h
100 %

1109 h
100 %

721 h
100 %

Obviously, each team was also expected to deliver a number of
software components. At the end of the project, the executable
software was demonstrated with the target equipment and all
components – including source code – were delivered. Since the
tool under evaluation is primarily intended to help with the
implementation of cyclic execution and synchronization, we
inspected the source code of all teams with respect to thread
safety and timeliness. More specifically we studied the controller
component and its relation to other components to determine if
the following criteria were met:

• A timing mechanism is used to ensure that the control
loop executes with the correct cycle time.

• A synchronization mechanism is used to prevent set-
points and control parameters from being written by the
application while they are being read by the control
loop.

The properties of each team’s controller component are
summarized in Table 3 and described in more detail below.

Team 1 had used the prototype tool and the cyclic execution
service to generate a proxy that ensured correct timing of the
control loop. Team 3 also used the tool to generate a proxy for the
controller, but had failed to select the cyclic execution. Instead
they had manually written code to execute the control loop in a
separate thread, as had Teams 2 and 4, who did not use the tool at
all. These three teams had all used appropriate timing mechanisms
correctly.

Table 3. Control loop properties.

 Team 1 Team 2 Team 3 Team 4
Timely Yes Yes Yes Yes
Thread safe No No No No

Although Team 1 had used the tool with the cyclic execution
service, they had failed to ensure thread safe execution of the
control loop. As described in Section 2, the interface
IPassiveController contains one operation for updating the
controller output and one for updating its internal state, and only
the latter is synchronized with other operations. Team 1’s
component was not thread safe, because the first operation
updates the output as well as the internal state, while the
implementation of the latter operation was left empty.

Of the remaining three teams, who had not used the cyclic
execution service, Teams 2 and 3 had not used any
synchronization mechanism at all in neither the control loop nor
the operations for accessing the controller’s data. Team 4 had
used a mutual exclusion mechanism in the control loop but not in
the other operations; the mechanism had been used in such a way
that the control loops for the two water tanks were (quite
unnecessarily) synchronized with each other. Consequently, none
of these controller components are thread safe either.

5. ANALYSIS
Based on the collected data, described in the previous section, we
have performed a preliminary analysis to see whether there are
any indications that the different conditions for the four project
teams – i.e. use of tool or not – has resulted in any significant
differences in the projects’ results. The analysis is somewhat
complicated by the fact that Team 3, who used the tool, failed to
use the cyclic execution service. Thus, with respect to
implementation of the cyclic execution of the control loop, this
team should be considered as not having used the tool, as
indicated in Table 4.

Table 4. Overview of teams with respect to cyclic execution of

the control loop.

 Tool support No tool support

Strong team Team 1 Team 2

Weak team Teams 3 and 4

The reported worked hours for the four teams, summarized in
Table 1, reveals no correlation between the use of the tool and the

number of worked hours for the different activities. This is true
both for the absolute number of hours as well as the percentages
of the worked hours spent on the different activities. In particular,
there are no significant differences with respect to the relative
amount of work required for software coding. This can probably
be attributed, at least in part, to the fact that the amount of code
generated by the tool constitutes relatively small portions of the
total amount of the code produced by the projects. Thus, a more
detailed investigation of the working hours related to those parts
of the software where the tool is most effective – i.e. the
implementation of the control loop with multithreading and
synchronization – would be desirable.

The properties of the four teams’ controller components
summarized in Table 3 shows a success rate of zero when it
comes to thread safe execution of the control loops. Before
analyzing this further, it should be pointed out that the subjects
did not have prior knowledge of neither real-time systems in
general nor computer-based control systems in particular.
Although the necessity of using some synchronization mechanism
to ensure thread safety was pointed out by the instructors at the
start of the project, it seams that this was not made sufficiently
clear, as at least two of the teams completely neglected to address
the issue. This is not an unexpected mistake from someone
without experience in concurrent system development, in
particular since the error only occasionally results in failure and is
likely to go undetected by testing.

Of the two teams whose control loops included some
synchronization mechanism Team 1 had used the tool to generate
the synchronization code. The fact that the team had only
implemented the operation intended to update the controller
output prior to synchronization may be an indication that they too
did not realize the need for synchronization, although an
alternative scenario is that they were mistaken and believed that
synchronization was provided. In any case, this observation
shows that the way we have chosen to implement the tool to rely
on two operations for updating the output and internal state
respectively, is a potential source of error. This potential could
easily be eliminated at the cost of removing the ability to generate
the controller output in a way that is guarantied not to be blocked
by threads of lower priority. Another possible improvement may
be to rename the operations from UpdateOutput and UpdateState
to reflect that the former operation do not support thread safety.

Team 4 seems to have attempted to ensure thread safe execution
of the control loop by using a mutual exclusion mechanism. The
attempt failed because other operations that may update the
controller’s state did not use the same mechanism. A possible
interpretation of this observation is that the team erroneously
assumed that using the mechanism, called critical section in
Windows CE, would prevent the thread executing the control loop
from conflicting with any other threads in the system.

6. RELATED WORK
The major source of inspiration for our approach and the
prototype tool presented in this paper is COM+ [4], which is
Microsoft's extension of their own COM model with services for
distributed information systems. These services provide
functionality such as transaction handling and persistent data
management, which is common for applications in this domain
and which is often time consuming and error prone to implement

for each component. We use the same criteria for selecting which
services our component model should standardize, namely that
they should provide non-trivial functionality that is commonly
required in the application domain. Since our component model
targets a different domain than COM+, the services we have
selected are different from those of COM+ as well.

We are furthermore inspired by the technique of providing
services by interception. This mechanism is also used in other
technologies and is sometimes called interceptors rather than
proxies, e.g. in the Common Object Request Broker Architecture
(CORBA) [14] and the MEAD framework for fault-tolerant real-
time CORBA applications [15].

The approach presented in this paper is similar to the concept of
aspects and weaving. The real-time component model RTCOM
[16] supports weaving of functionality into components as aspects
while maintaining real-time policies, e.g. execution times.
However, RTCOM is a proprietary source code component
model. Moreover, functionality is weaved in at the level of source
code in RTCOM whereas in our approach, services are introduced
at the system composition level.

Another effort to support binary software components for
embedded real-time systems is the ROBOCUP project [17],
which builds on the aforementioned Koala model and primarily
targets the consumer electronics domain. This work is similar to
ours in that the component model defined as part of this project is
largely based on the basic concepts of COM. Furthermore, the
sequel of the project, called Space4U [18], also seems to use a
mechanism similar to proxy objects, e.g. to support fault-
tolerance.Our thanks to ACM SIGCHI for allowing us to modify
templates they had developed.

7. CONCLUSION AND FUTURE WORK
This paper describes a multiple-case study we have launched to
evaluate the usefulness of a prototype tool that supports the
concept of software component services in embedded real-time
systems. The study is based on four parallel software
development projects, where two of the project teams were given
the tool. One of these only partly used the tool as intended,
however, so in some important respects, three of the projects were
conducted without tool support and only one with tool support.
The projects are completed and have resulted in delivery of
documentation and software from each of the four teams. This
paper presents our first analyses of some of this data – the
reported number of working hours for different activities and the
properties of the delivered software with respect to timeliness and
thread safety. We have not been able to draw any conclusion from
the reported working hours, except that it is desirable to study the
required development effort related to certain parts of the
software in more detail.
The analysis of software properties has shown that the students
participating in the projects were not well prepared for
implementing the required functionality in a thread safe manner,
neither with the support of the tool nor without it. However, we
have identified possible changes to the tool that would probably
make it easier to avoid such errors, even for developers without
experience of multithreaded software.
In the immediate continuation of the work presented here we plan
to expand upon our analysis of the differences between the four

projects. In addition to the already identified task of analyzing the
development effort in more detail, we expect to undertake a more
comprehensive and systematic qualitative analysis of the
delivered documentation and software.
We also plan to launch further empirical studies to evaluate our
approach for software component services and the prototype tool.
For instance, it would be of great interest to investigate the use of
the tool in connection with reuse of components across projects.
One possibility is to conduct another study with students as
participants, either as a multiple-case study again or as a
controlled experiment.
It would also be desirable to apply the prototype tool in an
industrial case study, which would imply a lower level of
replication and control but allow us to evaluate our approach in a
more realistic setting. We plan to evaluate and extend the set of
services supported by the tool. We hope to do this with the help of
industrial partners in such domains as industrial automation,
telecommunications, and vehicle control systems.

8. REFERENCES
[1] R. Englander, Developing Java Beans, O'Reilly, Sebas-

topol, CA, USA, 1997.
[2] D. Chappell, Understanding ActiveX and OLE, Microsoft

Press, Redmond, WA, USA, 1996.
[3] R. Monson-Haefel, B. Burke, and S. Labourey, Enterprise

JavaBeans, 4th edition, O'Reilly, Sebastopol, CA, USA,
2004.

[4] D.S. Platt, Understanding COM+, Microsoft Press,
Redmond, WA, USA, 1999.

[5] G.T. Heineman and W.T. Council, Component-Based
Software Engineering – Putting the Pieces Together,
Addison-Wesley, Reading, MA, USA, 2001.

[6] R. van Ommering, F. van der Linden, and J. Kramer, “The
Koala Component Model for Consumer Electronics
Software”, Computer, volume 33, issue 3, March 2000, pp.
78-85.

[7] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren,
“SaveCCM – A Component Model for Safety-Critical Real-
Time Systems”, Proc. 30th EROMICRO Conference,
Rennes, France, 2004, pp. 627-635.

[8] F. Lüders, D. Flemström, I. Crnkovic, and A. Wall, “A
Prototype Tool for Software Component Services in
Embedded Real-Time Systems”, Proc. 9th International
Symposium on Component-Based Software Engineering,
Västerås, Sweden, 2006, pp. 222-237.

[9] D. Box, Essential COM, Addison-Wesley, Reading, MA,
USA, 1997.

[10] J. Murray, Inside Microsoft Windows CE, Microsoft Press,
Redmond, WA, USA, 1998.

[11] K.J. Åström and B. Wittenmark, Computer Controlled
Systems – Theory and Design, 2nd edition, Prentice Hall,
Englewood Cliffs, NJ, USA, 1990.

[12] R.K. Yin, Case Study Research – Design and Methods, 3rd
edition, Sage Publications, Thousand Oaks, CA, USA,
2003.

[13] C. Robson, Real World Research, 2nd edition, Blackwell
Publishing, Oxford, UK, 2002.

[14] Object Management Group, “Common Object Request
Broker Architecture – Core Specification”, OMG for-
mal/04-03-12, March 2004.

[15] P. Narasimhan, T.A. Dumitras, A.M. Paulos, S.M. Pertet,
C.F. Reverte, J.G. Slember, and D. Srivastava, “MEAD –
Support for Real-Time Fault-Tolerant CORBA”,
Concurrency and Computation – Practice and Experience,
volume 17, number 12, February 2005, pp. 1527-1545.

[16] A. Tesanovic, D. Nyström, J. Hansson, and C. Norström,
“Aspects and Components in Real-Time System
Development – Towards Reconfigurable and Reusable
Software”, Journal of Embedded Computing, volume 1,
number 1, February 2004, pp. 1-16.

[17] J. Muskens, M.R.V. Chaudron, and J.J. Lukkien, “A
Component Framework for Consumer Electronics
Middleware”, C. Atkinson et al. (eds.), Component-Based
Software Development for Embedded Systems, Springer,
Heidelberg, Germany, 2005, pp. 164-184.

[18] Space4U Project, “Space4U Public Home Page”,
http://www.hitech-projects.com/euprojects/space4u/,
January 2006 (accessed 28 April 2006).

