You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Hypothyroid Disease Diagnosis with Causal Explanation using Case-based Reasoning and Domain-specific Ontology

Publication Type:

Conference/Workshop Paper


Workshop on CBR in the Health Science


Explainability of intelligent systems in health-care domain is still in its initial state. Recently, more efforts are made to leverage machine learning in solving causal inference problems of disease diagnosis, prediction and treatments. This research work presents an ontology based causal inference model for hypothyroid disease diagnosis using case-based reasoning. The effectiveness of the proposed method is demonstrated with an example from hypothyroid disease domain. Here, the domain knowledge is mapped into an ontology and causal inference is performed based on this domain-specific ontology. The goal is to incorporate this causal inference model in traditional case-based reasoning cycle enabling explanation for each solved problem. Finally, a mechanism is defined to deduce explanation for a solution to a problem case from the combined causal statements of similar cases. The initial result shows that case-based reasoning can retrieve relevant cases with 95% accuracy.


author = {Mir Riyanul Islam and Shaibal Barua and Shahina Begum and Mobyen Uddin Ahmed},
title = {Hypothyroid Disease Diagnosis with Causal Explanation using Case-based Reasoning and Domain-specific Ontology},
month = {September},
year = {2019},
booktitle = {Workshop on CBR in the Health Science},
url = {}