You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
    ss
  • technical reports and other articles issued by Mälardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Lic presentation: Satisfying Non-Functional Requirements in Model-Driven Development of Real-Time Embedded Systems

Speakers:

Mehrdad Saadatmand , Mehrdad Saadatmand

Type:

Seminar

Start time:

2012-05-11 13:15

End time:

2012-05-11 15:15

Location:

Kappa

Contact person:



Description

Design of real-time embedded systems is a complex and challenging task. Part of this complexity originates from their limited resources which incurs handling a big range of Non-Functional Requirements (NFRs). Therefore, satisfaction of NFRs plays an important role in the correctness of the design of these systems. Model-driven development has the potential to reduce the design complexity of real-time embedded systems by increasing the abstraction level, enabling analysis at earlier phases of development and code generation. In this thesis, we identify some of the challenges that exist in model-driven development of real-time embedded systems with respect to NFRs, and provide techniques and solutions that aim to help with the satisfaction of NFRs. Our end goal is to ensure that the set of NFRs defined for a system is not violated at runtime.

First, we identify and highlight the challenges of modeling NFRs in telecommunication systems and discuss the application of a UML-based approach for modeling them. Since NFRs have dependencies, and the design decisions to satisfy them cannot be considered in isolation, we propose a modelbased approach for trade-off analysis of NFRs to help with the comparison of different design models with respect to the satisfaction level of their NFRs. Following the issue of evaluating the interdependencies of NFRs, we also propose solutions for establishing and maintaining balance between different NFRs. In this regard, we categorize our suggested solutions into static and dynamic. The former refers to a static design and set of features which ensures and guarantees the balance of NFRs, while the latter means establishing balance at runtime by reconfiguring the system and runtime adaptation. Finally, we discuss the role of the execution platform in preservation and monitoring of timing properties in real-time embedded systems and propose an approach to enrich the platform with necessary mechanisms for monitoring them.

Opponent: Paul Pop, Technical University of Denmark
Examiner: Thomas Nolte, MDH
Advisors: Mikael Sjödin, Antonio Cicchetti, Radu Dobrin

Mehrdad Saadatmand,

Email: mehrdad.saadatmand@mdh.se