You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.
The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.
For the reports in this repository we specifically note that
By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.
If you are in doubt, feel free to contact webmaster@ide.mdh.se
Abstract:
Product lines in industry are often based on an engineer’s focus on fast and feasible product instantiation rather than a precise product line development method and process as described in literature. When considering functional safety, we need a precise model that includes evidence for the safety of each variant of the product. Functional safety standards provide guidance to develop safety critical products and require that evidence is collected to prove the safety of the product. But today’s functional safety standards do not provide guidance on how to achieve functional safety in product lines. At the same time arguments need to be collected during development so that each product configuration is safe and is fulfilling the requirements of the standards. Providing these arguments requires tracing safety-related requirements and dependencies through the development process taking the impact of variability in different development artifacts into consideration.
In this thesis, we study the challenges of developing safety critical products in product lines. We explore industrial practices to achieve functional safety standard compliance in product lines by interviewing practitioners from different companies and by collecting the reported challenges and practices. This information helps us to identify improvement areas and we derive requirements that a product line engineering method needs to fulfill. Based on these findings we analyze variability management methods from the software product line engineering research domain to identify potential candidate solutions that can be adapted to support safety critical products. We provide an approach for capturing functional safety related characteristics in a model-based product line engineering method. We apply our method in an industrial case demonstrating the applicability.
Grading committee:
Dr Rolf Johansson, SP Technical Research Institute of Sweden,Faculty reviewer (opponent)
Professor Martin Törngren, KTH Royal Institute of Technology
Professor Ivica Crnkovic, Mälardalen University, Chalmers University of Technology
Advisors:
Sasikumar Punnekkat, Joakim Fröberg