You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

In-Vehicle Stress Monitoring Based on EEG Signal

Publication Type:

Journal article


International Journal of Engineering Research and Applications


In recent years, improved road safety by monitoring human factors i.e., stress, mental load, sleepiness, fatigue etc. of vehicle drivers has been addressed in a number of studies. Due to the individual variations and complex dynamic in-vehicle environment systems that can monitor such factors of a driver while driving is challenging. This paper presents a drivers’ stress monitoring system based on electroencephalography (EEG) signals enabling individual-focused computational approach that can generate automatic decision. Here, a combination of different signal processing i.e., discrete wavelet transform, largest Lyapunov exponent (LLE) and modified covariance have been applied to extract key features from the EEG signals. Hybrid classification approach Fuzzy-CBR (case-based reasoning) is used for decision support. The study has focused on both long and short-term temporal assessment of EEG signals enabling monitoring in different time intervals. In short time interval, which requires complex computations, the classification accuracy using the proposed approach is 79% compare to a human expert. Accuracy of EEG in developing such system is also compared with other reference signals e.g., Electrocardiography (ECG), Finger temperature, Skin conductance, and Respiration. The results show that in decision making the system can handle individual variations and provides decision in each minute time interval.


author = {Shahina Begum and Shaibal Barua and Mobyen Uddin Ahmed},
title = {In-Vehicle Stress Monitoring Based on EEG Signal},
volume = {7},
number = {7},
pages = {55--71},
month = {July},
year = {2017},
journal = {International Journal of Engineering Research and Applications},
url = {}