You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.
The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.
For the reports in this repository we specifically note that
- the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
- the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
- technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
- in other cases, please contact the copyright owner for detailed information
By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.
If you are in doubt, feel free to contact webmaster@ide.mdh.se
Optimized Paillier Homomorphic Encryption in Federated Learning for Speech Emotion Recognition
Publication Type:
Conference/Workshop Paper
Venue:
IEEE 47th Annual Computers, Software, and Applications Conference
Abstract
Federated Learning is an approach to distributed machine learning that enables collaborative model training on end devices. FL enhances privacy as devices only share local model parameters instead of raw data with a central server. However, the central server or eavesdroppers could extract sensitive information from these shared parameters. This issue is crucial in applications like speech emotion recognition (SER) that deal with personal voice data. To address this, we propose Optimized Paillier Homomorphic Encryption (OPHE) for SER applications in FL. Paillier homomorphic encryption enables computations on ciphertext, preserving privacy but with high computation and communication overhead. The proposed OPHE method can reduce this overhead by combing Paillier homomorphic encryption with pruning. So, we employ OPHE in one of the use cases of a large research project (DAIS) funded by the European Commission using a public SER dataset.
Bibtex
@inproceedings{Mohammadi6729,
author = {Samaneh Mohammadi and Sima Sinaei and Ali Balador and Francesco Flammini},
title = {Optimized Paillier Homomorphic Encryption in Federated Learning for Speech Emotion Recognition},
month = {August},
year = {2023},
booktitle = {IEEE 47th Annual Computers, Software, and Applications Conference },
url = {http://www.es.mdu.se/publications/6729-}
}