You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

How effective are current population-based metaheuristic algorithms for variance-based multi-level image thresholding?


Seyed Jalaleddin Mousavirad , Gerald Schaefer , Huiyu Zhou , Mahshid Helali Moghadam

Publication Type:

Journal article


Knowledge-Based Systems


Multi-level image thresholding is a common approach to image segmentation where an image is divided into several regions based on its histogram. Otsu’s method is the most popular method for this purpose, and is based on seeking for threshold values that maximise the between-class variance. This requires an exhaustive search to find the optimal set of threshold values, making image thresholding a time-consuming process. This is especially the case with increasing numbers of thresholds since, due to the curse of dimensionality, the search space enlarges exponentially with the number of thresholds. Population-based metaheuristic algorithms are efficient and effective problem-independent methods to tackle hard optimisation problems. Over the years, a variety of such algorithms, often based on bio-inspired paradigms, have been proposed. In this paper, we formulate multi-level image thresholding as an optimisation problem and perform an extensive evaluation of 23 population-based metaheuristics, including both state-of-the-art and recently introduced algorithms, for this purpose. We benchmark the algorithms on a set of commonly used images and based on various measures, including objective function value, peak signal-to-noise ratio, feature similarity index, and structural similarity index. In addition, we carry out a stability analysis as well as a statistical analysis to judge if there are significant differences between algorithms. Our experimental results indicate that recently introduced algorithms do not necessarily achieve acceptable performance in multi-level image thresholding, while some established algorithms are demonstrated to work better.


author = {Seyed Jalaleddin Mousavirad and Gerald Schaefer and Huiyu Zhou and Mahshid Helali Moghadam},
title = {How effective are current population-based metaheuristic algorithms for variance-based multi-level image thresholding?},
pages = {1--38},
month = {April},
year = {2023},
journal = {Knowledge-Based Systems},
url = {}