You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

An EVT-based Worst-Case Response Time Analysis of Complex Real-Time Systems

Publication Type:

Conference/Workshop Paper


8th IEEE International Symposium on Industrial Embedded Systems (SIES13)




In recent years, the complexity of real-time embedded systems has increased dramatically. For those modern real-time systems, the limitations of original static Response Time Analysis (RTA) become more and more conspicuous. Most static analysis methods not only require much detailed system information, but also only target to some specific system model with non-realistic assumptions. As a result, those methods may produce overly pessimistic results, making them unsuitable to be applied on a complex industrial system. The best system model may be the system itself. Therefore, statistical RTA, which can produce probabilistic analysis results based on samples provided by real systems or simulators, may become more expedient. Statistical RTA usually requires more relaxed assumptions and less system information than static RTA. In this paper, we present an Extreme Value Theory (EVT) based method to compute Worst-Case Response Time (WCRT) targeting complex real-time systems. In the evaluation phase, we have applied this method to the calculation of worst-case transmission delays of messages over Controller Area Network (CAN), and some comparisons with static RTA are also provided. According to the experimental results, as the system complexity increases, our approach performs much more stable and less pessimistic.


author = {Meng Liu and Moris Behnam and Thomas Nolte},
title = {An EVT-based Worst-Case Response Time Analysis of Complex Real-Time Systems},
month = {June},
year = {2013},
booktitle = { 8th IEEE International Symposium on Industrial Embedded Systems (SIES13)},
publisher = {IEEE},
url = {}