You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Improving Quality-of-Control using Flexible Timing Constraints: Metric and Scheduling Issues

Fulltext:


Authors:

Pau Marti , Gerhard Fohler, Krithi Ramamritham , Josep M. Fuertes

Publication Type:

Conference/Workshop Paper

Venue:

23 rd IEEE Real-time System Symposium


Abstract

Closed-loop control systems are dynamic systems subject to perturbations. One of the main concerns of the control is to design controllers to correct or limit the deviation that transient perturbations cause in the controlled system response. The smaller and shorter the deviation, the better the achieved performance. However, such controllers have been traditionally implemented using fixed timing constraints (periods and deadlines). This precludes controllers to execute dynamically, accordingly to the system dynamics, which may lead to sub-optimal implementations: although higher execution rates may be preferable when reacting to perturbations in order to minimize the response deviations, they imply wastage of resources when the system is in equilibrium.In this paper we argue and demonstrate that the responsibility of maximizing the performance of closed-loop systems relies on both the controller designer and the scheduler. We show that the dynamic optimization of the quality of the controlled system response calls for (a) flexible control task timing constraints that deliver effective control performance; flexible constraints allow us to achieve faster reaction by adaptively choosing the controller sampling rate and completion time upon transient perturbations, (b) a Quality-of-Control (QoC) metric; it associates with each control task timing a quantitative value expressing control performance (in terms of the closed-loop system error), and (c) new scheduling approaches; their goal is to quickly react to perturbations by dynamically scheduling tasks based on the chosen control task execution parameters to maximize the QoC. This combination offers the possibility of taking scheduling decisions based on the control information for each control task invocation, rather than using fixed timing constraints with constant periods and deadlines

Bibtex

@inproceedings{Marti354,
author = {Pau Marti and Gerhard Fohler and Krithi Ramamritham and Josep M. Fuertes},
title = {Improving Quality-of-Control using Flexible Timing Constraints: Metric and Scheduling Issues},
month = {December},
year = {2002},
booktitle = {23 rd IEEE Real-time System Symposium},
url = {http://www.es.mdu.se/publications/354-}
}