You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

A model partitioning method based on dynamic decoupling for the efficient simulation of multibody systems



Publication Type:

Journal article


Multibody System Dynamics


Springer Netherlands




The presence of different time scales in a dynamic model significantly hampers the efficiency of its simulation. In multibody systems the fact is particularly relevant, as the mentioned time scales may be very different, due, for example, to the coexistence of mechanical components controled by electronic drive units, and may also appear in conjunction with significant nonlinearities. This paper proposes a systematic technique, based on the principles of dynamic decoupling, to partition a model based on the time scales that are relevant for the particular simulation studies to be performed and as transparently as possible for the user. In accordance with said purpose, peculiar to the technique is its neat separation into two parts: a structural analysis of the model, which is general with respect to any possible simulation scenario, and a subsequent decoupled integration, which can conversely be (easily) tailored to the study at hand. Also, since the technique does not aim at reducing but rather at partitioning the model, the state space and the physical interpretation of the dynamic variables are inherently preserved. Moreover, the proposed analysis allows us to define some novel indices relative to the separability of the system, thereby extending the idea of “stiffness” in a way that is particularly keen to its use for the improvement of simulation efficiency, be the envisaged integration scheme monolithic, parallel, or even based on cosimulation. Finally, thanks to the way the analysis phase is conceived, the technique is naturally applicable to both linear and nonlinear models. The paper contains a methodological presentation of the proposed technique, which is related to alternatives available in the literature so as to evidence the peculiarities just sketched, and some application examples illustrating the achieved advantages and motivating the major design choice from an operational viewpoint.


author = {Alessandro Papadopoulos and Alberto Leva},
title = {A model partitioning method based on dynamic decoupling for the efficient simulation of multibody systems},
volume = {34},
number = {2},
pages = {163--190},
month = {May},
year = {2015},
journal = {Multibody System Dynamics},
publisher = {Springer Netherlands},
url = {}