You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

A Resource Efficient Framework to Run Automotive Embedded Software on Multi-core ECUs

Publication Type:

Journal article


Journal of Systems and Software


The increasing functionality and complexity of automotive applications requires not only the use of more powerful hardware, e.g., multi-core processors, but also efficient methods and tools to support design decisions. Component-based software engineering proved to be a promising solution for managing software complexity and allowing for reuse. However, there are several challenges inherent in the intersection of resource efficiency and predictability of multi-core processors when it comes to running component-based embedded software. In this paper, we present a software design framework addressing these challenges. The framework includes both mapping of software components onto executable tasks, and the partitioning of the generated task set onto the cores of a multi-core processor. This paper aims at enhancing resource efficiency by optimizing the software design with respect to 1) the inter-software components communication cost, 2) the cost of synchronization among dependent transactions of software components, and 3) the interaction of software components with the basic software services. An engine management system, one of the most complex automotive sub-systems, is considered as a use case, and the experimental results show a reduction of up to 11.2% total CPU usage on a quad-core processor, in comparison with the common framework in the literature.


author = {Hamid Reza Faragardi and Bj{\"o}rn Lisper and Kristian Sandstr{\"o}m and Thomas Nolte},
title = {A Resource Efficient Framework to Run Automotive Embedded Software on Multi-core ECUs},
volume = {161},
pages = {1--61},
month = {January},
year = {2018},
journal = {Journal of Systems and Software},
url = {}