You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Formal Verification of an Autonomous Wheel Loader by Model Checking


Publication Type:

Conference/Workshop Paper




In an attempt to increase productivity and the workers’ safety, the construction industry is moving towards autonomous construction sites, where various construction equipment operate without human intervention. In order to perform their tasks autonomously, the machines are equipped with different features, such as position localization, human and obstacle detection, collision avoidance, etc. Such systems are safety critical, and should operate autonomously with very high dependability (e.g., by meeting task deadlines, avoiding (fatal) accidents at all costs, etc.). An Autonomous Wheel Loader is a machine that transports materials within the construction site without a human in the cab. To check the dependability of the loader, in this paper we provide a timed automata description of the vehicle’s control system, including the abstracted path planning and collision avoidance algorithms used to navigate the loader, and we model check the encoding in UPPAAL, against various functional, timing and safety requirements. The complex nature of the navigation algorithms makes the loader’s abstract modeling and the verification very challenging. Our work shows that exhaustive verification techniques can be applied early in the development of autonomous systems, to enable finding potential design errors that would incur increased costs if discovered later.


author = {Rong Gu and Raluca Marinescu and Cristina Seceleanu and Kristina Lundqvist},
title = {Formal Verification of an Autonomous Wheel Loader by Model Checking},
month = {June},
year = {2018},
url = {}