You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.
The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.
For the reports in this repository we specifically note that
- the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
- the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
- technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
- in other cases, please contact the copyright owner for detailed information
By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.
If you are in doubt, feel free to contact webmaster@ide.mdh.se
GPU Support for Component-based Development of Embedded Systems
Publication Type:
Doctoral Thesis
Publisher:
E-Print, AB, Stockholm, Sweden
Abstract
One pressing challenge of many modern embedded systems is to successfully deal with the considerable amount of data that originates from the interaction with the environment. A recent solution comes from the use of GPUs. Equipped with a parallel execution model, the GPU excels in parallel process- ing applications, providing an improved performance compared to the CPU.Another trend in the embedded systems domain is the use of component-based development. This software engineering paradigm that promotes construction of applications through the composition of software components, has been successfully used in the development of embedded systems. However, the existing approaches provide no specific support to develop embedded systems with GPUs. As a result, components with GPU capability need to encapsulate all the required GPU information in order to be successfully executed by the GPU. This leads to component specialization to specific platforms, hence drastically impeding component reusability.Our main goal is to facilitate component-based development of embedded systems with GPUs. We introduce the concept of flexible component which increases the flexibility to design embedded systems with GPUs, by allowing the system developer to decide where to place the component, i.e., either on the CPU or GPU. Furthermore, we provide means to automatically generate the required information for flexible components corresponding to their hardware placement, and to improve component communication. Through the introduced support, components with GPU capability are platform-independent, being capable to be executed on a large variety of hardware (i.e., platforms with different GPU characteristics). Furthermore, an optimization step is introduced, which groups connected flexible components into single entities that behave as regular components. Dealing with components that can be executed either by the CPU or GPU, we also introduce an allocation optimization method. The proposed solution, implemented using a mathematical solver, of- fers alternative options in optimizing particular system goals (e.g., minimize memory and energy usage).
Bibtex
@phdthesis{Campeanu5231,
author = {Gabriel Campeanu},
title = {GPU Support for Component-based Development of Embedded Systems},
month = {September},
year = {2018},
school = {E-Print, AB, Stockholm, Sweden},
url = {http://www.es.mdu.se/publications/5231-}
}