You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.
The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.
For the reports in this repository we specifically note that
- the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
- the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
- technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
- in other cases, please contact the copyright owner for detailed information
By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.
If you are in doubt, feel free to contact webmaster@ide.mdh.se
NeuroPower: Designing Energy Efficient Convolutional Neural Network Architecture for Embedded Systems
Publication Type:
Conference/Workshop Paper
Venue:
The 28th International Conference on Artificial Neural Networks
Abstract
Convolutional Neural Networks (CNNs) suffer from energy-hungry implementation due to their computation and memory intensive processing patterns. This problem is even more significant by the proliferation of CNNs on embedded platforms. To overcome this problem, we offer NeuroPower as an automatic framework that designs a highly optimized and energy efficient set of CNN architectures for embedded systems. NeuroPower explores and prunes the design space to find improved set of neural architectures. Toward this aim, a multi-objective optimization strategy is integrated to solve Neural Architecture Search (NAS) problem by near-optimal tuning network hyperparameters. The main objectives of the optimization algorithm are network accuracy and number of parameters in the network. The evaluation results show the effectiveness of NeuroPower on energy consumption, compacting rate and inference time compared to other cutting-edge approaches. In comparison with the best results on CIFAR-10/CIFAR-100 datasets, a generated network by NeuroPower presents up to 2.1x/1.56x compression rate, 1.59x/3.46x speedup and 1.52x/1.82x power saving while loses 2.4%/-0.6% accuracy, respectively.
Bibtex
@inproceedings{Loni5553,
author = {Mohammad Loni and Ali Zoljodi and Sima Sinaei and Masoud Daneshtalab and Mikael Sj{\"o}din},
title = {NeuroPower: Designing Energy Efficient Convolutional Neural Network Architecture for Embedded Systems},
month = {September},
year = {2019},
booktitle = {The 28th International Conference on Artificial Neural Networks},
publisher = {Springer},
url = {http://www.es.mdu.se/publications/5553-}
}