You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Network Fault Tolerance by Means of Diverse Physical Layers

Fulltext:


Authors:


Research group:


Publication Type:

Conference/Workshop Paper

Venue:

The 25th IEEE International Conference on Emerging Technologies and Factory Automation


Abstract

Wired networks are deployed in scenarios requiring the highest levels of performance in terms of reliability and timeliness. Unfortunately, broken wires might permanently compromise the network operation unless fault tolerance mechanisms are in place. Fault tolerance is commonly achieved by replicating the wired network components, but this paper examines the use of a wireless backup network, since the wireless physical layer (PHY) is not expected to display permanent failures due to broken wires. Two mechanisms at medium access control (MAC) level are presented to take advantage of the wireless backup network: one allocating redundancy statically and one dynamically. Without loss of generality, redundancy is applied using the standard mechanisms from IEEE 802.3 (Ethernet) and IEEE 802.11 (Wi-Fi). The performance increase added by the backup network is studied both analytically and by simulation, showing considerable improvements in a very compromised mid-size wired network.

Bibtex

@inproceedings{Gutierrez Peon6065,
author = {Pablo Guti{\'e}rrez Pe{\'o}n and Wilfried Steiner and Elisabeth Uhlemann},
title = {Network Fault Tolerance by Means of Diverse Physical Layers},
month = {September},
year = {2020},
booktitle = {The 25th IEEE International Conference on Emerging Technologies and Factory Automation},
url = {http://www.es.mdu.se/publications/6065-}
}