You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

DeepMaker: Customizing the Architecture of Convolutional Neural Networks for Resource-Constrained Platforms



Publication Type:

Licentiate Thesis


Convolutional Neural Networks (CNNs) suffer from energy-hungry implementation due to requiring huge amounts of computations and significant memory consumption. This problem will be more highlighted by the proliferation of CNNs on resource-constrained platforms in, e.g., embedded systems. In this thesis, we focus on decreasing the computational cost of CNNs in order to be appropriate for resource-constrained platforms. The thesis work proposes two distinct methods to tackle the challenges: optimizing CNN architecture while considering network accuracy and network complexity, and proposing an optimized ternary neural network to compensate the accuracy loss of network quantization methods. We evaluated the impact of our solutions on Commercial-Off-The-Shelf (COTS) platforms where the results show considerable improvement in network accuracy and energy efficiency.


author = {Mohammad Loni},
title = {DeepMaker: Customizing the Architecture of Convolutional Neural Networks for Resource-Constrained Platforms},
isbn = {978-91-7485-490-9},
month = {December},
year = {2020},
url = {}