You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Divide Well To Merge Better: A Novel Clustering Algorithm


Atiq Ur Rehman, Samir Belhaouari

Publication Type:

Journal article


Pattern Recognition


In this paper, a novel non-parametric clustering algorithm which is based on the concept of divide-and-merge is proposed. The proposed algorithm is based on two primary phases, after data cleaning: (i) the Division phase and (ii) the Merging phase. In the initial phase of division, the data is divided into an optimized number of small sub-clusters utilizing all the dimensions of the data. In the second phase of merging, the small sub-clusters obtained as a result of division are merged according to an advanced statistical metric to form the actual clusters in the data. The proposed algorithm has the following merits: (i) ability to discover both convex and non-convex shaped clusters, (ii) ability to discover clusters different in densities, (iii) ability to detect and remove outliers/noise in the data (iv) easily tunable or fixed hyperparameters (v) and its usability for high dimensional data. The proposed algorithm is extensively tested on 20 benchmark datasets including both, the synthetic and the real datasets and is found better/competing to the existing state-of-the-art parametric and non-parametric clustering algorithms.


author = {Atiq Ur Rehman and Samir Belhaouari},
title = {Divide Well To Merge Better: A Novel Clustering Algorithm},
volume = {48},
number = {3},
pages = {1--18},
month = {February},
year = {2022},
journal = {Pattern Recognition},
url = {}