You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Explaining the Unexplainable: Role of XAI for Flight Take-Off Time Delay Prediction

Publication Type:

Conference/Workshop Paper


19th International Conference on Artificial Intelligence Applications and Innovations


Flight Take-Off Time (TOT) delay prediction is essential to optimizing capacity-related tasks in Air Traffic Management (ATM) systems. Recently, the ATM domain has put afforded to predict TOT delays using machine learning (ML) algorithms, often seen as “black boxes”; therefore, it is difficult for air traffic controllers (ATCOs) to understand how the algorithms have made this decision. Hence, the ATCOs are reluctant to trust the decisions or predictions provided by the algorithms. This research paper explores the use of explainable artificial intelligence (XAI) in explaining flight TOT delay to ATCOs predicted by ML-based predictive models. Here, three post hoc explanation methods are employed to explain the models’ predictions. Quantitative and user evaluations are conducted to assess the acceptability and usability of the XAI methods in explaining the predictions to ATCOs. The results show that the post hoc methods can successfully mimic the inference mechanism and explain the models’ individual predictions. The user evaluation reveals that user-centric explanation is more usable and preferred by ATCOs. These findings demonstrate the potential of XAI to improve the transparency and interpretability of ML models in the ATM domain.


author = {Waleed Reafee Sbu Jmoona and Mobyen Uddin Ahmed and Mir Riyanul Islam and Shaibal Barua and Shahina Begum and Ana Ferreira and Nicola Cavagnetto},
title = {Explaining the Unexplainable: Role of XAI for Flight Take-Off Time Delay Prediction},
month = {June},
year = {2023},
booktitle = {19th International Conference on Artificial Intelligence Applications and Innovations},
url = {}