You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Defeating Jamming Attacks in Downlink Pairwise NOMA Using Relaying


Research group:

Publication Type:

Conference/Workshop Paper


IEEE International Symposium on Personal, Indoor and Mobile Radio Communications


This study explores an incremental relaying strategy in downlink pairwise Non-Orthogonal Multiple Access (NOMA), which involves multiple pairs of nodes near and far from the downlink destinations. The strategy aims to select a near destination node to relay the packet of a far destination node, considering the presence of jamming attacks. To this end, we first derive closed-form expressions for the individual outage probability (IOP) for both near and far destinations in Nakagami-m fading channels. Next, the overall IOP (OIOP) performance is defined as the maximum value among the obtained IOPs, ensuring fairness among the nodes. To optimize the system, simulated annealing algorithms are proposed to determine the best power allocation and the best relay-destination pairing. We can conclude that both the power allocation and the position/selection of the near destination node significantly impact the OIOP for a specific pair. However, in the case of multiple pairs of destinations, a good power allocation alone suffices for each pair, and fixed or even random destination pairing is satisfactory in the considered context.


author = {Van Lan Dao and Svetlana Girs and Elisabeth Uhlemann},
title = {Defeating Jamming Attacks in Downlink Pairwise NOMA Using Relaying},
month = {July},
year = {2023},
booktitle = {IEEE International Symposium on Personal, Indoor and Mobile Radio Communications},
url = {}