You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Development of a cutting-edge ensemble pipeline for rapid and accurate diagnosis of plant leaf diseases

Authors:

S. M. Nuruzzaman Nobel , Maharin Afroj , Md Mohsin Kabir, M.F. Mridha

Publication Type:

Journal article

Venue:

Artificial Intelligence in Agriculture


Abstract

Selecting techniques is a crucial aspect of disease detection analysis, particularly in the convergence of computer vision and agricultural technology. Maintaining crop disease detection in a timely and accurate manner is essential to maintaining global food security. Deep learning is a viable answer to meet this need. To proceed with this study, we have developed and evaluated a disease detection model using a novel ensemble technique. We propose to introduce DenseNetMini, a smaller version of DenseNet. We propose combining DenseNetMini with a learning resizer in ensemble approach to enhance training accuracy and expedite learning. Another unique proposition involves utilizing Gradient Product (GP) as an optimization technique, effectively reducing the training time and improving the model performance. Examining images at different magnifications reveals noteworthy diagnostic agreement and accuracy improvements. Test accuracy rates of 99.65 %, 98.96 %, and 98.11 % are seen in the Plantvillage, Tomato leaf, and Appleleaf9 datasets, respectively. One of the research's main achievements is the significant decrease in processing time, which suggests that using the GP could improve disease detection in agriculture's accessibility and efficiency. Beyond quantitative successes, the study highlights Explainable Artificial Intelligence (XAI) methods, which are essential to improving the disease detection model's interpretability and transparency. XAI enhances the interpretability of the model by visually identifying critical areas on plant leaves for disease identification, which promotes confidence and understanding of the model's functionality.

Bibtex

@article{Nobel7056,
author = {S. M. Nuruzzaman Nobel and Maharin Afroj and Md Mohsin Kabir and M.F. Mridha},
title = {Development of a cutting-edge ensemble pipeline for rapid and accurate diagnosis of plant leaf diseases},
editor = {Elsevier},
pages = {1--55},
month = {November},
year = {2024},
journal = {Artificial Intelligence in Agriculture},
url = {http://www.es.mdu.se/publications/7056-}
}