You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

ESPRET: A Tool for Execution Time Estimation of Manual Test Cases

Fulltext:


Publication Type:

Journal article

Venue:

Journal of Systems and Software


Abstract

Manual testing is still a predominant and an important approach for validation of computer systems, particularly in certain domains such as safetycritical systems. Knowing the execution time of test cases is important to perform test scheduling, prioritization and progress monitoring. In this work, we present, apply and evaluate ESPRET (EStimation and PRediction of Execution Time) as our tool for estimating and predicting the execution time of manual test cases based on their test specifications. Our approach works by extracting timing information for various steps in manual test specifcation. This information is then used to estimate the maximum time for test steps that have not previously been executed, but for which textual specifications exist. As part of our approach, natural language parsing of the specifications is performed to identify word combinations to check whether existing timing information on various test steps is already available or not. Since executing test cases on the several machines may take different time, we predict the actual execution time for test cases by a set of regression models. Finally, an empirical evaluation of the approach and tool has been performed on a railway use case at Bombardier Transportation (BT) in Sweden.

Bibtex

@article{Tahvili5223,
author = {Sahar Tahvili and Wasif Afzal and Mehrdad Saadatmand and Markus Bohlin and Sharvathul Hasan Ameerjan},
title = {ESPRET: A Tool for Execution Time Estimation of Manual Test Cases},
volume = {161},
pages = {1--43},
month = {September},
year = {2018},
journal = {Journal of Systems and Software},
url = {http://www.es.mdu.se/publications/5223-}
}