You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Improving the accuracy of cache-aware response time analysis using preemption partitioning

Fulltext:


Authors:

Filip Markovic, Jan Carlson, Sebastian Altmeyer , Radu Dobrin

Publication Type:

Conference/Workshop Paper

Venue:

The 32nd Euromicro Conference on Real-Time Systems


Abstract

Schedulability analyses for preemptive real-time systems need to take into account cache-related preemption delays (CRPD) caused by preemptions between the tasks. The estimation of the CRPD values must be sound, i.e. it must not be lower than the worst-case CRPD that may occur at runtime, but also should minimise the pessimism of estimation. The existing methods over-approximate the computed CRPD upper bounds by accounting for multiple preemption combinations which cannot occur simultaneously during runtime. This over-approximation may further lead to the over-approximation of the worst-case response times of the tasks, and therefore a false-negative estimation of the system’s schedulability. In this paper, we propose a more precise cache-aware response time analysis for sporadic real-time systems under fully-preemptive fixed priority scheduling. The evaluation shows a significant improvement over the existing state of the art approaches.

Bibtex

@inproceedings{Markovic5812,
author = {Filip Markovic and Jan Carlson and Sebastian Altmeyer and Radu Dobrin},
title = {Improving the accuracy of cache-aware response time analysis using preemption partitioning},
month = {July},
year = {2020},
booktitle = {The 32nd Euromicro Conference on Real-Time Systems},
url = {http://www.es.mdu.se/publications/5812-}
}