You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Detecting Inconsistencies in Annotated Product Line Models

Publication Type:

Conference/Workshop Paper

Venue:

Proceedings of the 24th ACM Conference on Systems and Software Product Line: Volume A - Volume A

DOI:

10.1145/3382025.3414969


Abstract

Model-based product line engineering applies the reuse practices from product line engineering with graphical modeling for the specification of software intensive systems. Variability is usually described in separate variability models, while the implementation of the variable systems is specified in system models that use modeling languages such as SysML. Most of the SysML modeling tools with variability support, implement the annotation-based modeling approach. Annotated product line models tend to be error-prone since the modeler implicitly describes every possible variant in a single system model. To identifying variability-related inconsistencies, in this paper, we firstly define restrictions on the use of SysML for annotative modeling in order to avoid situations where resulting instances of the annotated model may contain ambiguous model constructs. Secondly, inter-feature constraints are extracted from the annotated model, based on relations between elements that are annotated with features. By analyzing the constraints, we can identify if the combined variability- and system model can result in incorrect or ambiguous instances. The evaluation of our prototype implementation shows the potential of our approach by identifying inconsistencies in the product line model of our industrial partner which went undetected through several iterations of the model.

Bibtex

@inproceedings{Bilic5940,
author = {Damir Bilic and Jan Carlson and Daniel Sundmark and Wasif Afzal and Peter Wallin},
title = {Detecting Inconsistencies in Annotated Product Line Models},
isbn = {978-1-4503-7569-6/20/10},
month = {October},
year = {2020},
booktitle = {Proceedings of the 24th ACM Conference on Systems and Software Product Line: Volume A - Volume A},
url = {http://www.es.mdu.se/publications/5940-}
}