You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Task Roadmaps: Speeding up Task Replanning



Publication Type:

Journal article


Frontiers in Robotics and AI




Modern industrial robots are increasingly deployed in dynamic environments, where unpredictable events are expected to impact the robot’s operation. Under these conditions, runtime task replanning is required to avoid failures and unnecessary stops, while keeping up productivity. Task replanning is a long-sighted complement to path replanning, which is mostly concerned with avoiding unexpected obstacles that can lead to potentially unsafe situations. This paper focuses on task replanning as a way to dynamically adjust the robot behaviour to the continuously evolving environment in which it is deployed. Analogously to probabilistic roadmaps used in path planning, we propose the concept of Task roadmaps as a method to replan tasks by leveraging an offline generated search space. A graph-based model of the robot application is converted to a task scheduling problem to be solved by a proposed Branch and Bound (B&B) approach and two benchmark approaches: Mixed Integer Linear Programming (MILP) and Planning Domain Definition Language (PDDL). The B&B approach is proposed to compute the task roadmap, which is then reused to replan for unforeseeable events. The optimality and efficiency of this replanning approach are demonstrated in a simulation-based experiment with a mobile manipulator in a kitting application. In this study, the proposed B&B Task Roadmap replanning approach is significantly faster than a MILP solver and a PDDL based planner.


author = {Anders Lager and Giacomo Spampinato and Alessandro Papadopoulos and Thomas Nolte},
title = {Task Roadmaps: Speeding up Task Replanning},
volume = {9},
pages = {1--14},
month = {April},
year = {2022},
journal = {Frontiers in Robotics and AI},
url = {}