You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Characterization of Transient Communication Outages Into States to Enable Autonomous Fault Tolerance in Vehicle Platooning

Fulltext:


Research group:


Publication Type:

Journal article

Venue:

IEEE Open Journal of Intelligent Transportation Systems

Publisher:

IEEE

DOI:

https://doi.org/10.1109/OJITS.2023.3237958


Abstract

The benefits of platooning, e.g., fuel efficiency, road throughput enhancement, driver offload, etc., have sparked an interest in a more connected, intelligent, and sustainable transportation ecosystem. However, efficient platooning is realized through wireless communications, characterized by transient connectivity, which is caused by occasional packet losses. Being a safety-critical system of systems, a platoon must be fail-operational even during transient connectivity. Moreover, a platoon should be capable of transitioning into a fail-safe state upon encountering a hazard. To this end, we propose a strategy for classifying the transient communication outages incurred by platooning vehicles into states. Furthermore, a state machine using these states to enable safe automated platooning is proposed that also defines the transitions between the states based on the nature and levels of transient connectivity and hazards. To achieve this, a graceful degradation and upgradation method is proposed, such that the platoon can remain fail-operational by adjusting, e.g., the automated controller and/or the inter-vehicle gaps based on the current communication quality. An emergency braking strategy is also proposed to enable a fast transition into a fail-safe state, should the platoon encounter a hazard. Rigorous simulation studies show that the proposed strategies enable fault-tolerant automated platooning also during transient connectivity.

Bibtex

@article{Hasan6623,
author = {Shahriar Hasan and Svetlana Girs and Elisabeth Uhlemann},
title = {Characterization of Transient Communication Outages Into States to Enable Autonomous Fault Tolerance in Vehicle Platooning},
volume = {4},
pages = {101--129},
month = {January},
year = {2023},
journal = {IEEE Open Journal of Intelligent Transportation Systems},
publisher = {IEEE},
url = {http://www.es.mdu.se/publications/6623-}
}