You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Dealing with Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying and Redundant Transmissions


Research group:

Publication Type:

Journal article


IEEE Open Journal of the Communications Society


This study focuses on optimizing the performance of an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario with and without the support of a relayer, while subject to jamming attacks. We consider two different relaying protocols, one where the sources and the destination are within range of each other and one where they are not. The relay node can be mobile, e.g., a mobile base station, an unmanned aerial vehicle (UAV) or a stationary node that is chosen as a result of a relay selection procedure. We also benchmark with a NOMA retransmission protocol and an Orthogonal Multiple Access (OMA) scheme without a relayer. We analyze, adjust and compare the four protocols for different settings using outage analysis, which is an efficient tool for establishing communication reliability for both individual nodes and the overall wireless network. Closed-form expressions of outage probabilities can be adopted by deep reinforcement learning (RL) algorithms to optimize wireless networks online. Accordingly, we first derive closed-form expressions for the individual outage probability (IOP) of each source node link and the relayer link using both pairwise NOMA and OMA. Next, we analyze the IOP for one packet (IOPP) for each source node considering all possible links between the source node to the destination, taking both phases into account for the considered protocols when operating in Nakagami-$m$ fading channels. The overall outage probability for all packets (OOPP) is defined as the maximum IOPP obtained among the source nodes. This metric is useful to optimize the whole wireless network, e.g., to ensure fairness among the source nodes. Then, we propose a method using deep RL where the OOPP is used as a reward function in order to adapt to the dynamic environment associated with jamming attacks. Finally, we discuss valuable guidelines for enhancing the communication reliability of the legitimate system.


author = {Van Lan Dao and Elisabeth Uhlemann and Svetlana Girs},
title = {Dealing with Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying and Redundant Transmissions},
volume = {1},
pages = {1--20},
month = {December},
year = {2023},
journal = {IEEE Open Journal of the Communications Society},
url = {}