You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Unobtrusive Cognitive Assessment in Smart-Homes: Leveraging Visual Encoding and Synthetic Movement Traces Data Mining

Publication Type:

Journal article








The ubiquity of sensors in smart-homes facilitates the support of independent living for older adults and enables cognitive assessment. Notably, there has been a growing interest in utilizing movement traces for identifying signs of cognitive impairment in recent years. In this study, we introduce an innovative approach to identify abnormal indoor movement patterns that may signal cognitive decline. This is achieved through the non-intrusive integration of smart-home sensors, including passive infrared sensors and sensors embedded in everyday objects. The methodology involves visualizing user locomotion traces and discerning interactions with objects on a floor plan representation of the smart-home, and employing different image descriptor features designed for image analysis tasks and synthetic minority oversampling techniques to enhance the methodology. This approach distinguishes itself by its flexibility in effortlessly incorporating additional features through sensor data. A comprehensive analysis, conducted with a substantial dataset obtained from a real smart-home, involving 99 seniors, including those with cognitive diseases, reveals the effectiveness of the proposed functional prototype of the system architecture. The results validate the system’s efficacy in accurately discerning the cognitive status of seniors, achieving a macro-averaged F1-score of 72.22% for the two targeted categories: cognitively healthy and people with dementia. Furthermore, through experimental comparison, our system demonstrates superior performance compared with state-of-the-art methods.


author = {Samaneh Zolfaghari and Annica Kristoffersson and Mia Folke and Maria Lind{\'e}n and Daniele Riboni},
title = {Unobtrusive Cognitive Assessment in Smart-Homes: Leveraging Visual Encoding and Synthetic Movement Traces Data Mining},
volume = {23},
number = {5},
month = {February},
year = {2024},
journal = {Sensors},
publisher = {MDPI},
url = {}