You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.
The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.
For the reports in this repository we specifically note that
- the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
- the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
- technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
- in other cases, please contact the copyright owner for detailed information
By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.
If you are in doubt, feel free to contact webmaster@ide.mdh.se
Diagnosis of Machines Within Industri Using Sensor Signals and Case-Based Reasoning
Publication Type:
Licentiate Thesis
Publisher:
Mälardalen University Press
Abstract
Machines are not perfect; they sometimes fail to operate as intended.
Such failures can be more or less severe depending on the kind of machine
and the circumstances of the failure. E.g. the failure of an industrial
robot can cause the hold-up of an entire assembly line costing the af-
fected company large amounts of money each minute on hold. This kind
of situation can be prevented by equipping machines with automatic
condition-monitoring systems that continuously monitor their condition
and instantly report the detection of a failure or an incipient failure.
The nature of machine-monitoring and diagnosis lends itself naturally
to Case-Based Reasoning. Case-Based Reasoning is a method in the
discipline of Arti¯cial Intelligence based on the idea of assembling expe-
rience from problems and their solutions as "cases" for reuse in solving
future problems. Cases are stored in a case library, available for retrieval
and reuse at any time. By collecting such sensor data as sound and vi-
brations from a machine and representing this data as the problem part
of a case and consequently representing the measured corrective action
as the solution to this problem, a complete series of the events of a ma-
chine failure and its correction can be stored in a case for future use.
This thesis describes an innovative approach to this concept by using a
combination of Case-Based Reasoning and wavelet analysis as a means
of condition-monitoring and diagnosis of primarily industrial machines.
For evaluation purposes this novel approach is implemented as a pro-
totype system for the diagnosis of the status of gearboxes in industrial
robots.
Bibtex
@misc{Olsson967,
author = {Ella Olsson},
title = {Diagnosis of Machines Within Industri Using Sensor Signals and Case-Based Reasoning},
number = {no 55},
month = {November},
year = {2005},
publisher = {M{\"a}lardalen University Press},
url = {http://www.es.mdu.se/publications/967-}
}