You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Using Real Options In Embedded Automotive System Design

Fulltext:


Note:

http://cser.lboro.ac.uk/CSER08/pdfs/Paper%20142.pdf

Publication Type:

Conference/Workshop Paper

Venue:

Conference on Systems Engineering Research

Publisher:

INCOSE


Abstract

The automotive customers demand new functionality with every new product release and the time-to-market is constantly shortened. The automotive embedded systems are characterized by being mechatronic systems which adds complexity. The systems are often resource constrained and trade-offs between the system behaviour and the resources required is of great importance. The system complexity and the many uncertain factors create a need for support in the design process. Many design features such as memory and processor capacity can be seen as options, i.e. giving you the right but not the obligation to use them in the future. The valuation method using Real Options provides the opportunity to analyze the cost of designing for future growth of a platform, based on the estimated value of the future functionality. In this paper the use of Real Options is applied on a real case within the automotive industry. The studied company develops commercial vehicles for a broad range of applications. In this case study a valuation is performed on two different design alternatives of function allocation. The design alternatives vary in hardware, software, cabling etc. The case study has been per-formed together with the developing organization and it has therefore been possible to observe the acceptance of the method. The study shows how Real Option valuation provides valuable guidance when making system design decisions and more importantly also show how it can be used and accepted by system engineers. The method does not only provide a way of valuing sys-tem designs, but it also forces the system engineer to think about the future in a systematic manor. The value of a flexible design can thereby be quantified making the trade-off between short and long term solutions more accurate.

Bibtex

@inproceedings{Gustavsson1245,
author = {H{\aa}kan Gustavsson and Jakob Axelsson},
title = {Using Real Options In Embedded Automotive System Design},
note = {http://cser.lboro.ac.uk/CSER08/pdfs/Paper{\%}20142.pdf},
month = {April},
year = {2008},
booktitle = {Conference on Systems Engineering Research},
publisher = {INCOSE},
url = {http://www.es.mdu.se/publications/1245-}
}